1. Precision immunotherapy for cholangiocarcinoma: Pioneering the use of human-derived anti-cMET single chain variable fragment in anti-cMET chimeric antigen receptor (CAR) NK cells.
- Author
-
Chiawpanit C, Wathikthinnakorn M, Sawasdee N, Phanthaphol N, Sujjitjoon J, Junking M, Yamabhai M, Panaampon J, Yenchitsomanus PT, and Panya A
- Subjects
- Humans, Cell Line, Tumor, Immunotherapy, Adoptive methods, Immunotherapy methods, Precision Medicine, Single-Chain Antibodies genetics, Single-Chain Antibodies therapeutic use, Single-Chain Antibodies immunology, Cholangiocarcinoma therapy, Cholangiocarcinoma immunology, Receptors, Chimeric Antigen immunology, Receptors, Chimeric Antigen genetics, Receptors, Chimeric Antigen metabolism, Killer Cells, Natural immunology, Bile Duct Neoplasms therapy, Bile Duct Neoplasms immunology, Proto-Oncogene Proteins c-met metabolism, Proto-Oncogene Proteins c-met immunology
- Abstract
Cholangiocarcinoma (CCA) presents a significant clinical challenge which is often identified in advanced stages, therby restricting the effectiveness of surgical interventions for most patients. The high incidence of cancer recurrence and resistance to chemotherapy further contribute to a bleak prognosis and low survival rates. To address this pressing need for effective therapeutic strategies, our study focuses on the development of an innovative cellular immunotherapy, specifically utilizing chimeric antigen receptor (CAR)-engineered natural killer (NK) cells designed to target the cMET receptor tyrosine kinase. In this investigation, we initiated the screening of a phage library displaying human single-chain variable fragment (ScFv) to identify novel ScFv molecules with specificity for cMET. Remarkably, ScFv11, ScFv72, and ScFv114 demonstrated exceptional binding affinity, confirmed by molecular docking analysis. These selected ScFvs, in addition to the well-established anti-cMET ScFvA, were integrated into a CAR cassette harboring CD28 transmembrane region-41BB-CD3ζ domains. The resulting anti-cMET CAR constructs were transduced into NK-92 cells, generating potent anti-cMET CAR-NK-92 cells. To assess the specificity and efficacy of these engineered cells, we employed KKU213A cells with high cMET expression and KKU055 cells with low cMET levels. Notably, co-culture of anti-cMET CAR-NK-92 cells with KKU213A cells resulted in significantly increased cell death, whereas no such effect was observed with KKU055 cells. In summary, our study identified cMET as a promising therapeutic target for CCA. The NK-92 cells, armed with the anti-cMET CAR molecule, have shown strong ability to kill cancer cells specifically, indicating their potential as a promising treatment for CCA in the future., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF