1. Continuation of periodic solutions for systems with fractional derivatives
- Author
-
Christophe Vergez, Bruno Lombard, Pierre Vigué, Bruno Cochelin, Sons, Laboratoire de Mécanique et d'Acoustique [Marseille] (LMA ), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM), and Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)
- Subjects
Hopf bifurcation ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,Applied Mathematics ,Mechanical Engineering ,Numerical analysis ,Aerospace Engineering ,Ocean Engineering ,01 natural sciences ,Fractional calculus ,Nonlinear system ,Harmonic balance ,symbols.namesake ,Control and Systems Engineering ,0103 physical sciences ,symbols ,Applied mathematics ,Electrical and Electronic Engineering ,Constant (mathematics) ,Representation (mathematics) ,010301 acoustics ,Bifurcation ,Mathematics - Abstract
International audience; This paper addresses the numerical computation of periodic solutions of nonlinear differential systems involving fractional derivatives. For this purpose, the Harmonic Balance Method and the Asymptotic Numerical Method are combined, generalizing an approach largely followed in non-fractional systems. This enables to perform the continuation of periodic solutions of fractional systems with respect to a system parameter or to the fractional order. In the particular case of a constant fractional order, the results are validated by a successful comparison with an alternative formulation based on the diffusive representation of fractional operators. The new numerical strategy presented here allows to simulate phenomena still lacking from theoretical foundations. For example, the numerical experiments proposed here lead to a bifurcation similar to the Hopf bifurcation, well known in the case of non-fractional systems. Throughout this article, the Weyl derivative is used; its link with the classic Caputo derivative is elucidated.
- Published
- 2019
- Full Text
- View/download PDF