1. A Novel Inserting Pilot Radio over Fiber System without the Bit Walk-Off Effect for the Generation and Distribution of Frequency 16-Tupling Millimeter Waves by Mach–Zehnder Modulators.
- Author
-
Chen, Xu, Chen, Xinqiao, Dai, Siyuan, Li, Bin, and Wang, Ling
- Subjects
RADIO-on-fiber systems ,MILLIMETER waves ,CONTINUOUS wave lasers ,BIT error rate ,FIBER Bragg gratings ,OPTICAL dispersion ,QUALITY factor - Abstract
A novel inserting pilot scheme to generate and distribute a frequency 16-tupling millimeter wave (MMW) radio over fiber (ROF) system without the bit walk-off effect via Mach–Zehnder modulators (MZMs) is proposed. The operation principle is analyzed and the feasibility of our proposed scheme is verified by simulation test. The main part of our scheme is a ±8
th -order sidebands generator (SG), which is constructed by four MZMs connected in parallel. In the back-to-back (BTB) transmission case, by properly adjusting the voltage and initial phase of the radio frequency (RF) drive signals of the MZMs, ±8th -order sidebands are generated by the SG. In the data transmission case, the data signal is first split into two beams, one of which modulates the RF drive signal with an electrical phase modulator (PM) while the other is amplified by an electrical gainer (EG), and then the two beams are combined into one and used as the composite RF drive signal of the MZMs. By adjusting the modulation index of the PM and the gain of the EG, the data signal can only be modulated to the +8th -order sideband of the output of the SG. The optical carrier from the continuous wave (CW) laser is split into two paths: one is sent into the SG, and the other is used as a pilot signal. The output signal of SG is combined with the pilot signal and is transmitted to the base station (BS) via optical fiber. At the BS, the pilot signal is filtered out by a fiber Bragg grating (FBG) and used as the carrier for the uplink for carrier reuse. After filtering out the pilot, the signal from the FBG, which is composed of ±8th -order sidebands, is injected into a photodetector, and a frequency 16-tupling MMW with downlink data is generated. The key parameters' influence on the bit error rate (BER) and Q factor in the system is also analyzed. Our scheme can not only effectively overcome the bit walk-off effect caused by optical fiber chromatic dispersion and greatly increase the fiber transmission distance but can also effectively improve the performance and the tunability of system. Therefore, it has important application prospects in ROF systems. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF