A Hausdorff topological group is called minimal if it does not admit a strictly coarser Hausdorff group topology. This paper mostly deals with the topological group $H_+(X)$ of order-preserving homeomorphisms of a compact linearly ordered connected space $X$. We provide a sufficient condition on $X$ under which the topological group $H_+(X)$ is minimal. This condition is satisfied, for example, by: the unit interval, the ordered square, the extended long line and the circle (endowed with its cyclic order). In fact, these groups are even $a$-minimal, meaning, in this setting, that the compact-open topology on $G$ is the smallest Hausdorff group topology on $G$. One of the key ideas is to verify that for such $X$ the Zariski and the Markov topologies on the group $H_+(X)$ coincide with the compact-open topology. The technique in this article is mainly based on a work of Gartside and Glyn., Comment: 18 pages