1. Studies on the role of apoptosis after transient myocardial ischemia: genetic deletion of the executioner caspases-3 and -7 does not limit infarct size and ventricular remodeling.
- Author
-
Inserte J, Cardona M, Poncelas-Nozal M, Hernando V, Vilardosa Ú, Aluja D, Parra VM, Sanchis D, and Garcia-Dorado D
- Subjects
- Animals, Caspase 3 genetics, Caspase 7 genetics, Female, Male, Mice, Knockout, Myocardial Infarction enzymology, Myocardial Infarction pathology, Myocardium pathology, Apoptosis, Caspase 3 metabolism, Caspase 7 metabolism, Myocardial Infarction etiology, Ventricular Remodeling
- Abstract
Although it is widely accepted that apoptosis may contribute to cell death in myocardial infarction, experimental evidence suggests that adult cardiomyocytes repress the expression of the caspase-dependent apoptotic pathway. The aim of this study was to analyze the contribution of caspase-mediated apoptosis to myocardial ischemia-reperfusion injury. Cardiac-specific caspase-3 deficient/full caspase-7-deficient mice (Casp3/7DKO) and wild type control mice (WT) were subjected to in situ ischemia by left anterior coronary artery ligation for 45 min followed by 24 h or 28 days of reperfusion. Heart function was assessed using M-mode echocardiography. Deletion of caspases did not modify neither infarct size determined by triphenyltetrazolium staining after 24 h of reperfusion (40.0 ± 5.1 % in WT vs. 36.2 ± 3.6 % in Casp3/7DKO), nor the scar area measured by pricosirius red staining after 28 days of reperfusion (41.1 ± 5.4 % in WT vs. 44.6 ± 8.7 % in Casp3/7DKO). Morphometric and echocardiographic studies performed 28 days after the ischemic insult revealed left ventricular dilation and severe cardiac dysfunction without statistically significant differences between WT and Casp3/7DKO groups. These data demonstrate that the executioner caspases-3 and -7 do not significantly contribute to cardiomyocyte death induced by transient coronary occlusion and provide the first evidence obtained in an in vivo model that argues against a relevant role of apoptosis through the canonical caspase pathway in this context.
- Published
- 2016
- Full Text
- View/download PDF