Im Rahmen der vorliegenden Arbeit wurde die prinzipielle Eignung von porösen Vycor®-Gläsern als Feuchteregulierungsmaterial für den Einsatz im Baubereich erarbeitet. Im Speziellen wurden die Einflüsse der Herstellungsparameter auf die Glaseigenschaften entwickelt und optimiert. Die porösen Glasflakes wurden in angepasste Putzsysteme implementiert und praxisnahe Untersuchungen der Wirksamkeit durchgeführt. Unterstützt wurden die Ergebnisse durch auf Messwerten basierte Simulationen des Gebäudeklimas, welche auch die Auswirkungen bei verschiedenen klimatischen Bedingungen berücksichtigen. Der verwendete Prozess zur Herstellung der porösen Gläser basiert auf dem 1933 patentierten Vycor®-Verfahren [HOO34][HOO38]. Durch eine Temperaturbehandlung entmischt das homogene Natrium-Borosilicatglas in zwei perkolierende, interpenetrierende Phasen. Diese weisen deutlich unterschiedliche chemische Beständigkeiten auf. Durch Auflösen der instabileren Phase verbleibt ein poröses, fast reines Siliciumdioxidgefüge, dessen Struktur und Eigenschaften durch die Wahl der Prozessparameter eingestellt werden kann. Erstmals konnte gezeigt werden, dass poröse Vycor®-Gläser in der Lage sind, Wasser bei Raumtemperatur reversibel aufzunehmen, im Porensystem zu speichern und wieder abzugeben. Basierend auf dieser unerlässlichen Eigenschaft, konnten die Vycor®-Gläser durch eine Optimierung und ein besseres Verständnis der Herstellungsparameter hin zu einem Material mit wirklichen Feuchteregulierungseigenschaften qualifiziert werden. Im ersten Teil der vorliegenden Arbeit (Kapitel 4.1 und 4.2) wurde der Einfluss der strukturbestimmenden Parameter Glaszusammensetzung, Partikelgröße bzw. -form und Entmischungsbedingungen auf das Sorptionsverhalten von Wasser dargestellt. Um die Wasseraufnahme und -abgabe sowie das Zusammenspiel (Zyklisierbarkeit) bei unterschiedlichen Luftfeuchtigkeiten zu untersuchen, wurde in einem Klimaschrank ein realitätsnahes Feuchte- und Temperaturprofil generiert. Hiermit konnte die Zyklisierbarkeit der porösen Gläser in Abhängigkeit der Glaseigenschaften beobachtet werden. Ergänzt wurde die Charakterisierung durch Stickstoffsorptionsuntersuchungen und REM-Aufnahmen. Bei der Glaszusammensetzung wurde der Einfluss des Siliciumdioxid-Anteils und des Boroxid zu Natriumoxid Verhältnisses auf das finale poröse Glas betrachtet. Es zeigte sich, dass Gläser mit einem geringeren SiO2 Anteil zu Gläsern mit einer höheren Porosität, einer höheren spezifischen Oberfläche und als Folge daraus zu einer besseren Zyklisierbarkeit führen. Die praktische Einsatzfähigkeit wird allerdings von einer ungenügenden mechanischen Beständigkeit von Gläsern mit Siliciumdioxidgehalten unterhalb von 50 MA% begrenzt. Das B2O3/Na2O-Verhältnis wirkt sich vor allem auf den Grad des Entmischungsverlaufs und damit auf die sich bildende interpenetrierende Struktur aus. Erkennbar ist dies an der zum Boroxidanteil indirekt proportionalen Transformationstemperatur. Dies zeigt sich ebenfalls bei den Zyklisierungsversuchen, bei denen sich die Wasseraufnahme bzw. -abgabe bei gegebener Temperatur und unterschiedlichem B2O3/Na2O-Verhältnis deutlich unterscheidet. Anhand der entsprechenden Stickstoffsorptionsuntersuchungen konnte gezeigt werden, dass das Reaktionsvermögen eines porösen Glases auf einen Temperatur- und Feuchtezyklus, ein Zusammenspiel aus passendem Porendurchmesser und hoher spezifischer Oberfläche ist. Einen besonderen Aspekt der vorliegenden Arbeit stellt die Untersuchung von Glasflakes, flache Plättchen mit Dicken von einigen µm und Durchmessern von bis zu 1000 µm, dar. Diese können z. B. mittels eines Rotationsflakers hergestellt werden. Es konnte gezeigt werden, dass die mit den Flakes versehenen Wandanstriche nicht nur bessere Verarbeitungseigenschaften aufweisen, sondern auch im Vergleich zu annähernd isotropen Partikeln signifikant verbesserte Sorptionseigenschaften besitzen. Die Ausbildung der Porengröße und damit der spezifischen Oberfläche verläuft hauptsächlich über den einstellbaren thermischen Entmischungsvorgang. Um die optimalen Parameter für die Feuchtigkeitsaufnahme und -abgabe zu finden, wurde in dieser Arbeit neben der Plateautemperatur auch die Entmischungsdauer variiert. Oberhalb von ca. 520 °C ist die charakteristische Phasenseparation energetisch begünstigt. Diese verstärkt sich mit steigender Temperatur, wodurch größere Entmischungsbezirke entstehen. Oberhalb von ca. 650 °C kommt es zum Zusammensintern der Glasflakes, sodass deren ursprüngliche Geometrie zerstört wird. Für Untersuchungen oberhalb dieser Temperaturen muss also das Rohglas entmischt und erst im nachfolgenden Prozess zu Pulver aufgemahlen werden. Glasflakes sind durch diesen Verarbeitungsprozess jedoch nicht mehr herstellbar. Ein entscheidendes neues Ergebnis dieser Arbeit ist, dass die Porengröße innerhalb dieses Temperaturbereiches durch Anpassung der Entmischungstemperatur annähernd nanometer-genau eingestellt werden kann. Dies zeigt auch den großen Vorteil poröser Vycor®-Gläser im Vergleich zu anderen porösen Materialien. Für die Feuchteregulierung erwies sich ein Porendurchmesser von 3,8 nm, welcher durch eine Entmischungstemperatur von 533 °C generiert wird, als optimal. Die Dauer der Entmischung hat vor allem einen Einfluss auf den Fortschritt des Porenwachstums, nicht jedoch auf die Porengröße selbst. Nach ca. 30 Minuten kann das Entstehen der Poren erstmals eindeutig nachgewiesen werden. Der Entmischungsprozess ist nach ca. 24 Stunden abgeschlossen. Eine Verlängerung der Entmischungszeit hat keine weitere Veränderung der Porenstruktur zur Folge. In Kombination mit den Ergebnissen der Untersuchungen zum Einfluss des B2O3/Na2O-Verhältnisses konnte gezeigt werden, dass durch die Wahl der passenden Entmischungstemperatur die gewünschte Porengröße, in weiten Bereichen unabhängig vom B2O3/Na2O-Verhältnis, gezielt eingestellt werden kann. Im zweiten Teil der Arbeit wurde die Auslaugung hinsichtlich technischer Funktionalität und Umweltfreundlichkeit optimiert. Hierbei konnte gezeigt werden, dass neben Schwefelsäure auch Salzsäure zur vollständigen Auslaugung verwendet werden kann. Salzsäure kann im Gegensatz zu Schwefelsäure deutlich einfacher wieder aufgearbeitet werden (geringere Temperatur und Druck im Falle einer destillativen Aufarbeitung), was für die wirtschaftliche Anwendung von hoher Bedeutung ist. Weiterhin wurde die Konzentration der Säure verringert. Hierbei konnten bis zu einer Verdünnung auf 0,75 molare Salzsäure noch poröse Gläser mit vergleichbaren Zyklisierungswerten erhalten werden. Erst bei weiterer Verdünnung wurden die entmischten Glasflakes unvollständig ausgelaugt. Ein weiterer Einfluss der verwendeten Säureart oder der Konzentration auf die Porenstruktur bzw. die Porengröße konnte nicht gefunden werden. Wie in der Literatur beschrieben, wurde die Auslaugung der entmischten Gläser zunächst bei hohen Temperaturen oberhalb von 95 °C durchgeführt, sodass dieser Teilschritt viel Energie verbraucht [JAS01]. Um den Prozess ressourcenschonender aufzustellen, wurde im Kapitel 4.3 untersucht, welche Temperatur zwingend benötigt wird. Hierbei wurden die Temperatur und die Säurekonzentration variiert. Diese Parameter verändern den Anteil der Poren, jedoch nicht die Porengröße. Durch eine geringere Temperatur und geringere Säurekonzentrationen nimmt die Porosität ab. Eine Verlängerung der Auslaugedauer auf drei Stunden verbessert den Grad der Auslaugung erheblich. Da die Auslaugung bei 0,40 molarer Salzsäure nicht vollständig verläuft, wurde bei dieser Konzentration die Auslaugedauer nochmals einzeln betrachtet. Hierbei bestätigte sich, dass eine längere Auslaugung den Anteil der in der Entmischung eingestellten Poren vergrößert und auch die Zyklisierbarkeit (Massenhub) zunimmt. Die Werte von den mit 1,5 molarer Salzsäure ausgelaugten Gläsern können, trotz einer Dauer von bis zu acht Stunden, jedoch nicht erreicht werden. Eine alternative Möglichkeit um die Auslaugung ressourcenschonender zu gestalten, wurde mit dem neuen Ansatz die Synthese unter hydrothermischen Bedingungen durchzuführen, entwickelt. Hierbei wurden die entmischten Gläser entweder mit verdünnter Säure (0,75 mol/l HCl) oder mit Wasser in einem Autoklaven bei Temperaturen von 100 °C bis 200 °C, einem Reaktionsdruck von bis zu 30 bar und für bis zu 20 Stunden behandelt. Im Fall der Salzsäure verursachen alle drei Parameter eine Veränderung der Porenstruktur. In der Porengrößenbetrachtung mittels Stickstoffsorption erkennt man einen zweiten Peak bei größerem Durchmesser, wobei der ursprüngliche Peak abnimmt. Dies deutet auf ein Auflösen der ursprünglichen Porenwände hin. Die Zunahme des Porenvolumens und die Abnahme der spezifischen Oberfläche bestätigt diese Annahme. Da die resultierende Porenstruktur und die spezifische Oberfläche stark verändert werden, ist diese hydrothermale Methode zur Fertigung von Glasflakes für die Anwendung als Feuchtespeichermaterial nicht geeignet. Für andere Anwendungsfelder (siehe Seite 85) könnte diese Möglichkeit dennoch sehr interessant sein, da so leicht ein bimodales Porensystem hergestellt werden kann. Das Kapitel „Variation der Auslaugebedingungen“ wird mit Untersuchungen zur Wiederverwertbarkeit von Auslaugemedium und Borsäure abgeschlossen. Hierzu wird die gelöste Borsäure aus dem Auslaugemedium bei Raumtemperatur ausgefällt. Eine anschließende destillative Aufreinigung kann zu einem nahezu vollständigen Recycling, sowohl des Auslaugemediums als auch der Borsäure, führen. Neben dem Einfluss der Glasherstellung und der Herstellungsparameter auf die Wasserauf- und -abgabefähigkeit der porösen Gläser, wurden auch die Parameter der Klimaprofile (Raumtemperaturschwankungen, Änderung der Feuchtigkeit) genauer betrachtet. Die Sorption hängt stark von der Temperatur ab. Die Wasserabgabe wird durch eine höhere Temperatur (50 °C) erhöht und beschleunigt. Dieser Effekt zeigt sich auch bei der Zyklisierung. Der Massenhub beträgt bei 50 °C 12,1 MA%, bei 20 °C nur noch 3,3 MA% bei identischem Feuchte- und Zeitprofil. Die Kinetik der Wasseraufnahme und -abgabe wurde anhand von Klimaprofilen mit unterschiedlichen Änderungsraten untersucht. Hierbei fand die Feuchteänderung von 30 % auf 90 % innerhalb von einer Stunde, zwei Stunden und vier Stunden statt. Untersucht wurden die für den Einsatz als Feuchteregulierungsmaterial optimierten Glasflakes sowie Flakes mit größeren und kleineren Porendurchmessern. Bei allen Proben findet die Aufnahme deutlich schneller statt als die Desorption. Ein Grund hierfür ist der Flaschenhalsporeneffekt (siehe Seite 37). Des Weiteren ist bei den optimierten Glasflakes die Steigung der Massenänderung, unabhängig von der Feuchteänderungsrate, immer am größten. Diese Gläser sprechen also am direktesten auf Änderungen der Luftfeuchtigkeit an und es bestätigt sich, dass die Einstellung der richtigen Porengröße entscheidend ist. Dies konnte im Rahmen der vorliegenden Arbeit realisiert werden. Darüber hinaus ermöglichen die Ergebnisse der Experimente zur Sorptionskinetik einen umfassenderen Blick auf die Sorption und dabei insbesondere auf die Poreneigenschaften und auf die Sorptionsvorgeschichte. Ebenfalls wurde die Alterung der Sorptionsfähigkeit untersucht. Bei bis zu 20 Wiederholungszyklen konnte kein negativer Effekt beobachtet werden. Die Wasseraufnahme und -abgabe hat neben dem feuchtigkeitsregulierenden auch eine energetische Auswirkung auf den Energiehaushalt in einem Gebäude. Da bei jeder Sorption Energie verbraucht bzw. frei wird, kann ein wärmeregulierender Effekt auftreten. Um diesen Effekt genauer zu quantifizieren, wurde die Desorption von konditionierten Gläsern mittels Differenzkalorimetrie untersucht. Der Energiebetrag kann sowohl bei den Glasflakes als auch bei den mit Flakes versetzten Putzen detektiert werden und korreliert mit der gespeicherten Wassermenge. Auch wenn die Einzelenergiemenge pro Vorgang sehr gering ist, so summiert sich diese bei den vielen Vorgängen über das Jahr hinweg zu einem erheblichen Gesamtenergiebetrag (ca. 6 % des Energieverbrauchs in einem Wohnhaus), welcher eine interessante Ergänzung zur Feuchtigkeitsregulierung darstellen kann. Mit den für die Wasserauf- und -abgabe optimierten porösen Gläsern wurden Wandanstriche (Putze und Farben) hergestellt (siehe Seite 112) und diese auf ihre Eignung als Feuchteregulierungsmaterial untersucht. Im Vergleich mit den Standardputzen haben die Klimaputze mit dem Zusatz von Glasflakes aktuell noch geringere mechanische Kennwerte, insbesondere Druckfestigkeit und Dynamisches E-Modul. Dies ist vor allem auf das lockere Gefüge durch die Beimischung der Glasflakes zurückzuführen. Die Beimengung führt umgekehrt aber zu einer Steigerung der Porosität und der spezifischen Oberfläche. REM-Aufnahmen belegen dies. Durch Optimierung der Putzzusammensetzung gibt es jedoch eine gute Chance, die mechanischen Eigenschaften der Klimaputze noch zu verbessern. Um den Feuchteregulierungseffekt besser einschätzen zu können, wurde in Zyklisierungsversuchen der Vycor®-Putz mit kommerziellen Putzen mit und ohne zusätzliche Regulierungsfunktionalität und anderen Feuchteregulierungsmaterialien, wie Zeolithen und Holzfaserplatten, verglichen. Dabei zeigte der Putz mit den optimierten Glasflakes eine deutlich höhere Wasseraufnahmekapazität, ein direkteres Ansprechverhalten auf Feuchtigkeitsschwankungen und einen sehr viel höheren Massenhub. Erkennbar wird dies vor allem beim realitätsnahen Vergleich von zwei Wandstücken. Hierfür wurden Trägerplatten als Basis sowohl mit einem Standardputz als auch mit dem Vycor®-Klimaputz aufgebaut. Das Vycor®-Wandsystem konnte den Feuchtigkeitssprung im Klimaschrank von 72 % r. L. auf 40 % r. L. vollständig abpuffern. Der Massenhub betrug mit ca. 13 g Wasser pro m2 Wandfläche sogar das Dreifache der eigentlich zu bindenden Wassermenge. In Zusammenarbeit mit der Universität Bayreuth konnten die im Labor gewonnen Ergebnisse mittels Simulationsberechnungen untermauert werden. Mit dem Software-Tool WUFI (Wärme und Feuchte instationär) konnte sowohl eine Regulierung der jahreszeitlichen Feuchteschwankungen als auch ein positiver Effekt auf das Wohlbefinden der Bewohner gezeigt werden. Durch die Simulationen, deren Eingangswerte auf realen Messwerten basieren, konnte nachgewiesen werden, dass sowohl poröse Gläser als auch die mit porösen Glasflakes versetzen Baustoffe einen deutlich messbaren positiven Effekt auf das Raumklima haben. Der direkte Nachweis, also ein positiver Effekt des porösen Glases auf das Raumklima, wurde bisher nur in Simulationen modelliert und ist unter realen Versuchsbedingungen noch zu prüfen. Hierzu müsste ein Testraum aufgebaut und über längere Zeit vermessen werden. Im Rahmen dieser Arbeit wurde an Hand der voran beschriebenen Ergebnisse das poröse Glassystem der Vycor®-Gläser hinsichtlich seiner kontrollierten Sorptionseigenschaften für eine Anwendung als Feuchteregulierungsmaterial entwickelt. Im Zuge dessen wurde ein besseres Verständnis für die Abläufe und Mechanismen der auftretenden spinodalen Entmischung erarbeitet. Weiterhin konnten die Zusammenhänge zwischen den Poreneigenschaften und der Sorption von Wasser tiefgehender verstanden werden, sodass wichtige Erkenntnisse gewonnen werden konnten, um poröses Vycor®-Glas als Modellsystem für Entmischung und Sorption weiter zu etablieren., In the present work, the principles of the application of porous Vycor®-glass as a humidity regulation material for civil engineering applications were investigated. First, the influences of production process parameters on the glass properties were developed and optimized. Then, the adapted porous glass flakes were implemented in customized plaster systems. These plasters were characterized in application-oriented studies. The results were supported by simulations of the indoor climate, based on measured data. Within these simulations the impact of different climatic conditions were regarded. The production process of the porous glasses is based on the 1933 patented Vycor®-method [HOO34][HOO38]. The homogeneous alkali borosilicate glass separates into two percolating phases by a heat treatment, one phase is almost pure SiO2 glass, and the other an almost pure sodium borate glass. The two phases have a different chemical resistance towards acids and after dissolving the unstable sodium-borate phase, an almost pure silicon dioxide framework remains. The structure and the properties of this porous SiO2-structure depend significantly on the process parameters. In the first part of this thesis (Chapter 4.1 and 4.2), the influence of structural determining parameters (the glass composition, the particle size and particle shape and the conditions of the phase separation) on the water sorption properties were investigated. To determine the water absorption and release, as well as the interaction (cyclisation) at different relative humidities, a realistic humidity and temperature profile was generated in a climate chamber. Hereby, the cyclisation of the porous glasses could be correlated with the glass properties. These investigations were complemented by nitrogen sorption measurements and SEM investigations. To further consider the influence of the glass composition on the porous glass, the silica content and the ratio of boron oxide to sodium oxide were varied. It was found that a lower SiO2 content causes a higher porosity, a higher specific surface area and, hence, a better cyclisation behavior of the final product. But this effect is limited by the mechanical durability of the glass which is only stable up to 50 MA%. The ratio of B2O3/Na2O especially affects the degree of the phase separation at a given temperature. This can be already perceived by the transformation temperature, which decreases with increasing boron content in the glass. This was also confirmed by the water sorption experiments: The water uptake and release at a given temperature differs significantly with different B2O3/Na2O ratios in the initial glass. Regarding the corresponding nitrogen sorption measurements, it was shown that a high sorption capacity towards a temperature and humidity cycle is triggered by a combination of suitable pore diameter and high specific surface. A very important and also new aspect of this thesis is the investigation of glass flakes, with a thickness of a few μm and diameters of up to 1000 μm. These flitters can be produced by means of a rotary flaker. The wall paints made with these glass flakes show a better handling than with isotropic particles, additional these wall paints also have significantly improved sorption properties in comparison to similar glass powders with an isotropic particle size. The formation of the pores and hence the specific surface area of the porous SiO2-network is mainly determined by the adjustable thermal phase separation process. In order to find the optimum parameters to guarantee high water absorption and release capacity, the plateau temperatures as well as the time of this heat treatment were varied. Above 520 °C, the formation of the characteristic phase separation is entropically favored. With increasing temperature the kinetics of the demixing is accelerated and the size of the phase separated domains increase. Above approximately 650 °C the glass flakes sinter and thus their original geometry is destroyed. To investigate the influence of higher temperatures, the raw glass must be phase separated and grinded to powder in a subsequent process step. However, only spherical particles can be produced this way, but no particles in a flake shape. A new and also a key result of this work is, that the pore size, within the range of 2 to 35 nm, can be adjusted with a reproducibility less than one nanometer by adjusting the separation temperature precisely. This tunability is a great advantage of the porous Vycor®-glass in comparison to other porous materials. To regulate the humidity very effective, a pore diameter of 3.8 nm, which is generated by a phase separation temperature of 533 °C, was proved to be the best. The duration of the separation process has mainly an impact on the progress of the pore growth, but less on the pore size itself. After about 30 minutes phase separation time, the formation of pores can be detected. This process is completed after 24 hours. Any additional extension of the phase separation time has no further impact on the pore structure of the phase separated glass. In combination with the results of studies on the influence of the B2O3/Na2O ratio it was shown that any desired pore size can be adjusted in a wide range by selection of the phase separation temperature almost independent of the B2O3/Na2O ratio. In the second part of this work, the leaching step was optimized with regard to technical applicability and environmental friendliness. It was shown that the acid needed to dissolve the sodium borate glass could be changed from sulfuric acid to hydrochloric acid without any loss in function. Hydrochloric acid can be much better recycled, e. g. by a distillation process, than sulfuric acid. Furthermore, the concentration of the acid was reduced in comparison to the standard procedure. Above a dilution of 0.75 molar hydrochloric acid, comparable cyclisation properties could be obtained for the porous glasses. Only when the acid is further diluted, the separated glass flakes were leached out incomplete. In addition no effect on the pore structure and the pore size of the type of acid or the concentration was found. As described in the literature, the leaching of separated glasses is performed at high temperatures (usually more than 95 °C). Obviously, this process step consumes a lot of energy [JAS01]. In order to reduce the energy consumption, the leaching was examined as a function of the temperature in Chapter 4.3. Besides the temperature, also the concentrations of the acids investigated here were reduced to significant lower values. The variation of these parameters does not change the pore size, but the number of pores: Applying a lower temperature and lower acid concentration, the porosity decreases. An extension of the leaching time up to 3 hours improves the degree of leaching. Since the leaching with 0.40 molar HCl is far from complete, the influence of the time of leaching was investigated at this concentration. It can be confirmed that a longer leaching time increases the fraction of pores, generated in the phase separation, and subsequently the cyclisation properties of the final material were ameliorate. However, the values obtained from the porous glasses leached with 1.5 molar HCl cannot be achieved, even after 8 hours of leaching. An alternative route for a more resource-efficient leaching process can be the new concept of a leaching under hydrothermal conditions. In order to investigate this process, the glasses were separated and treated with a dilute acid (0.75 mol/l HCl), as well as with pure water in an autoclave at temperatures of 100 °C to 200 °C, a reaction pressure of up to 30 bar and for up to 20 hours. In the case of hydrochloric acid, all three parameters cause a change of the pore structure. In the pore size distribution as obtained from the nitrogen sorption measurements, a second peak occurs at larger diameters, while the height of the initial peak decreases. This indicates a considerable dissolution of the original pore walls. The increase of the pore volume and the decrease of the specific surface area confirm this assumption. Because of the extreme change of the resulting pore structure, this method is not suitable for the preparation of porous glass for the moisture regulation. Nevertheless, due to the bimodal pore system, porous glass obtained by a leaching under hydrothermal conditions can be of interest for other applications. Chapter 4.3 is completed with an examination of the recyclability of leaching medium and boric acid, the latter being the most precious medium in the process. For this purpose, the dissolved boric acid is precipitated from the leaching medium at room temperature. A subsequent purification by atmospheric distillation completes the recycling of the leaching medium as well as the boric acid. Besides the impact of the glass production process and the production parameters on the water uptake and release, the dynamics of the moisture uptake and releases under conditions relevant for building applications were investigated. The sorption is strongly influenced by the temperature. The release of water is similarly accelerated and increased by a higher operation temperature (50 °C). This effect can also be observed by an increased cyclisation. The difference between the mass maximum and the mass minimum with an identical humidity and time profile is 12.1 MA% at 50 °C and only 3.3 MA% at 20 °C. The kinetics of the water uptake and release was investigated in experiments, where the humidity changes (from 30 % to 90 %) were performed within 1 hour, 2 hours and 4 hours. For this study, glass flakes with optimized pore size (3.8 nm), as well as flakes with larger and smaller pores were investigated. All samples show a significantly faster water adsorption than desorption. One reason for this observation is the “bottleneck pore effect” (see page 37). Furthermore, the slope of the mass change of the optimized glass flakes is always larger irrespective of the moisture gradient. This confirms that the proper pore size is very decisive for the cyclisation dynamics and could be realized in this thesis. Moreover these results provide the possibility to a more comprehensive picture of the sorption, in particular not only as a function of the pore properties, but also on the sorption history. Besides the moisture-regulation, the sorption of water also causes an energetic effect in a living room. The adsorption consumes energy, while the desorption release energy and so an additional heat-regulating effect may occur. In order to quantify this effect, the desorption of conditioned glasses were examined with DSC. These experiments were performed for the pure glass flakes, as well as for the finery system containing these flakes. The results were correlated with the amount of water, which can be stored in the porous system. Although the amount of energy per single sorption step is very low, due to the large number of cyclisations during a year, the total amount of energy can be about 6 % of the energy consumption of a dwelling. So the energy effect is an interesting surplus to the moisture regulation of porous glasses, in particular since it is a “passive” effect. Using porous glasses optimized for the moisture regulation, wall coatings were prepared (see page 112). The whole system was investigated for its suitability as a moisture regulating material. Currently, the plasters with the glass flakes have still a lower mechanical performance in comparison with the standard plasters, especially the compressive strength and the dynamic Youngs-modulus (3268 N/mm² to 1099 N/mm2) are significantly decreased. This is mainly due to the loose structure, resulting from the addition of the glass flakes. On the other hand, this incorporation also leads to an increase in the porosity. Nevertheless, there is a good chance to improve the mechanical properties by optimizing the finery composition. To classify the moisture regulating performance of the Vycor®-finery, benchmark tests were performed where the materials was incorporated into commercial plasters (with and without regulatory functions), zeolite and fiberboard wall plates were selected. These very different materials were compared in cyclisation tests. Here the plaster with the optimized glass flakes show a significantly higher water adsorption capacity, a quicker response to humidity changes and much higher dynamics of water uptake and release in comparison to the other materials. This was verified practically by investigating two wall pieces constructed by using the Vycor®-glass containing concrete. Samples with classical finery and Vycor®-finery were applied on a support plate and exposed to a climate profile. Hereby the Vycor®-wall system was able to adsorb the water amount completely, originating mitted from a humidity change of 72 % r. h. to 40 % r. h. With about 13 g of absorbed water per m2 wall, the water regulation capacity of the wall system was even three times higher than necessary for a typical residential building. In cooperation with the University of Bayreuth, the obtained experimental results were supported by simulation experiments. The commercial tool WUFI (Wärme und Feuchte instationär) confirms a significant equilibration of seasonal humidity fluctuations, even for buildings in different climatic regions, for buildings where the walls were setup by plasters containing the porous glass. In addition, due to the more balanced humidity, there is also a positive effect on the wellbeing of the residents. The simulations, based on real measured data, demonstrated that not only the porous glass flakes itself, but also the finery with the porous glass additives have a significant effect on the indoor climate. This effect, a positive effect of the porous glass on the indoor climate has been modeled in simulations and must be examined in a real experimental setup e.g. by investigating a model room or building. In this work, the porous glass system obtained by thermal separation of the Vycor®-glasses was optimized with regard to its controlled sorption properties for the application as a moisture control material. In this course, a better understanding of the underlying processes and mechanisms of the spinodal separation was developed. In addition, the interaction between pore properties and the sorption of water could be understood more in detail, so that important findings could be gained in order to establish porous Vycor®-glass as a model system for phase separation and sorption.