1. Machine Learning-Based Detection of Icebergs in Sea Ice and Open Water Using SAR Imagery
- Author
-
Zahra Jafari, Pradeep Bobby, Ebrahim Karami, and Rocky Taylor
- Subjects
synthetic aperture radar (SAR) ,RADARSAT Constellation Mission (RCM) ,iceberg detection ,machine learning (ML) ,remote sensing ,feature selection ,Science - Abstract
Icebergs pose significant risks to shipping, offshore oil exploration, and underwater pipelines. Detecting and monitoring icebergs in the North Atlantic Ocean, where darkness and cloud cover are frequent, is particularly challenging. Synthetic aperture radar (SAR) serves as a powerful tool to overcome these difficulties. In this paper, we propose a method for automatically detecting and classifying icebergs in various sea conditions using C-band dual-polarimetric images from the RADARSAT Constellation Mission (RCM) collected throughout 2022 and 2023 across different seasons from the east coast of Canada. This method classifies SAR imagery into four distinct classes: open water (OW), which represents areas of water free of icebergs; open water with target (OWT), where icebergs are present within open water; sea ice (SI), consisting of ice-covered regions without any icebergs; and sea ice with target (SIT), where icebergs are embedded within sea ice. Our approach integrates statistical features capturing subtle patterns in RCM imagery with high-dimensional features extracted using a pre-trained Vision Transformer (ViT), further augmented by climate parameters. These features are classified using XGBoost to achieve precise differentiation between these classes. The proposed method achieves a low false positive rate of 1% for each class and a missed detection rate ranging from 0.02% for OWT to 0.04% for SI and SIT, along with an overall accuracy of 96.5% and an area under curve (AUC) value close to 1. Additionally, when the classes were merged for target detection (combining SI with OW and SIT with OWT), the model demonstrated an even higher accuracy of 98.9%. These results highlight the robustness and reliability of our method for large-scale iceberg detection along the east coast of Canada.
- Published
- 2025
- Full Text
- View/download PDF