1. Guggulsterone Selectively Modulates STAT-3, mTOR, and PPAR-Gamma Signaling in a Methylmercury-Exposed Experimental Neurotoxicity: Evidence from CSF, Blood Plasma, and Brain Samples.
- Author
-
Kumar S, Mehan S, Khan Z, Das Gupta G, and Narula AS
- Subjects
- Animals, Male, Rats, Rats, Wistar, TOR Serine-Threonine Kinases metabolism, PPAR gamma metabolism, STAT3 Transcription Factor metabolism, Methylmercury Compounds toxicity, Brain drug effects, Brain pathology, Brain metabolism, Signal Transduction drug effects, Pregnenediones pharmacology
- Abstract
Amyotrophic lateral sclerosis (ALS) is a paralytic disease that damages the brain and spinal cord motor neurons. Several clinical and preclinical studies have found that methylmercury (MeHg
+ ) causes ALS. In ALS, MeHg+ -induced neurotoxicity manifests as oligodendrocyte destruction; myelin basic protein (MBP) deficiency leads to axonal death. ALS development has been connected to an increase in signal transducer and activator of transcription-3 (STAT-3), a mammalian target of rapamycin (mTOR), and a decrease in peroxisome proliferator-activated receptor (PPAR)-gamma. Guggulsterone (GST), a plant-derived chemical produced from Commiphorawhighitii resin, has been found to protect against ALS by modulating these signaling pathways. Vitamin D3 (VitD3 ) deficiency has been related to oligodendrocyte precursor cells (OPC) damage, demyelination, and white matter deterioration, which results in motor neuron death. As a result, the primary goal of this work was to investigate the therapeutic potential of GST by altering STAT-3, mTOR, and PPAR-gamma levels in a MeHg+ -exposed experimental model of ALS in adult rats. The GST30 and 60 mg/kg oral treatments significantly improved the behavioral, motor, and cognitive dysfunctions and increased remyelination, as proven by the Luxol Fast Blue stain (LFB), and reduced neuroinflammation as measured by histological examinations. Furthermore, the co-administration of VitD3 exhibits moderate efficacy when administered in combination with GST60. Our results show that GST protects neurons by decreasing STAT-3 and mTOR levels while increasing PPAR-gamma protein levels in ALS rats., (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF