De Bacco F, Orzan F, Crisafulli G, Prelli M, Isella C, Casanova E, Albano R, Reato G, Erriquez J, D'Ambrosio A, Panero M, Dall'Aglio C, Casorzo L, Cominelli M, Pagani F, Melcarne A, Zeppa P, Altieri R, Morra I, Cassoni P, Garbossa D, Cassisa A, Bartolini A, Pellegatta S, Comoglio PM, Finocchiaro G, Poliani PL, and Boccaccio C
Glioblastoma (GBM) is known as an intractable, highly heterogeneous tumor encompassing multiple subclones, each supported by a distinct glioblastoma stem cell (GSC). The contribution of GSC genetic and transcriptional heterogeneity to tumor subclonal properties is debated. In this study, we describe the systematic derivation, propagation, and characterization of multiple distinct GSCs from single, treatment-naive GBMs (GSC families). The tumorigenic potential of each GSC better correlates with its transcriptional profile than its genetic make-up, with classical GSCs being inherently more aggressive and mesenchymal more dependent on exogenous growth factors across multiple GBMs. These GSCs can segregate and recapitulate different histopathological aspects of the same GBM, as shown in a paradigmatic tumor with two histopathologically distinct components, including a conventional GBM and a more aggressive primitive neuronal component. This study provides a resource for investigating how GSCs with distinct genetic and/or phenotypic features contribute to individual GBM heterogeneity and malignant escalation., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)