1. Identities for the Rogers-Ramanujan Continued Fraction
- Author
-
Baruah, Nayandeep Deka and Talukdar, Pranjal
- Subjects
Mathematics - Number Theory ,Primary 11F27, 11P84, Secondary 11A55, 33D90 - Abstract
We prove some new modular identities for the Rogers\textendash Ramanujan continued fraction. For example, if $R(q)$ denotes the Rogers\textendash Ramanujan continued fraction, then \begin{align*}&R(q)R(q^4)=\dfrac{R(q^5)+R(q^{20})-R(q^5)R(q^{20})}{1+R(q^{5})+R(q^{20})},\\ &\dfrac{1}{R(q^{2})R(q^{3})}+R(q^{2})R(q^{3})= 1+\dfrac{R(q)}{R(q^{6})}+\dfrac{R(q^{6})}{R(q)}, \end{align*}and\begin{align*}R(q^2)=\dfrac{R(q)R(q^3)}{R(q^6)}\cdot\dfrac{R(q) R^2(q^3) R(q^6)+2 R(q^6) R(q^{12})+ R(q) R(q^3) R^2(q^{12})}{R(q^3) R(q^6)+2 R(q) R^2(q^3) R(q^{12})+ R^2(q^{12})}.\end{align*} In the process, we also find some new relations for the Rogers-Ramanujan functions by using dissections of theta functions and the quintuple product identity., Comment: To appear in Journal of the Korean Mathematical Society
- Published
- 2024