1. Evaluation of glucocorticoid-related genes reveals GPD1 as a therapeutic target and regulator of sphingosine 1-phosphate metabolism in CRPC.
- Author
-
Liu R, Zou Z, Zhang Z, He H, Xi M, Liang Y, Ye J, Dai Q, Wu Y, Tan H, Zhong W, Wang Z, and Liang Y
- Subjects
- Humans, Male, Cell Line, Tumor, Animals, Gene Expression Regulation, Neoplastic drug effects, Glucocorticoids pharmacology, Mice, Prostatic Neoplasms, Castration-Resistant drug therapy, Prostatic Neoplasms, Castration-Resistant genetics, Prostatic Neoplasms, Castration-Resistant pathology, Prostatic Neoplasms, Castration-Resistant metabolism, Lysophospholipids metabolism, Receptors, Glucocorticoid metabolism, Receptors, Glucocorticoid genetics, Sphingosine analogs & derivatives, Sphingosine metabolism
- Abstract
Prostate cancer (PCa) is an androgen-dependent disease, with castration-resistant prostate cancer (CRPC) being an advanced stage that no longer responds to androgen deprivation therapy (ADT). Mounting evidence suggests that glucocorticoid receptors (GR) confer resistance to ADT in CRPC patients by bypassing androgen receptor (AR) blockade. GR, as a novel therapeutic target in CRPC, has attracted substantial attention worldwide. This study utilized bioinformatic analysis of publicly available CRPC single-cell data to develop a consensus glucocorticoid-related signature (Glu-sig) that can serve as an independent predictor for relapse-free survival. Our results revealed that the signature demonstrated consistent and robust performance across seven publicly accessible datasets and an internal cohort. Furthermore, our findings demonstrated that glycerol-3-phosphate dehydrogenase 1 (GPD1) in Glu-sig can significantly promote CRPC progression by mediating the cell cycle pathway. Additionally, GPD1 was shown to be regulated by GR, with the GR antagonist mifepristone enhancing the anti-tumorigenic effects of GPD1 in CRPC cells. Mechanistically, targeting GPD1 induced the production of sphingosine 1-phosphate (S1P) and enhanced histone acetylation, thereby inducing the transcription of p21 that involved in cell cycle regulation. In conclusion, Glu-sig could serve as a robust and promising tool to improve the clinical outcomes of PCa patients, and modulating the GR/GPD1 axis that promotes tumor growth may be a promising approach for delaying CRPC progression., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF