1. [Protein induced proximity and targeted degradations by new degraders: concepts, developments, challenges for clinical applications].
- Author
-
Reboud-Ravaux M
- Subjects
- Humans, Animals, Proteins metabolism, Drug Discovery trends, Drug Discovery methods, Proteasome Endopeptidase Complex metabolism, Proteasome Endopeptidase Complex physiology, Molecular Targeted Therapy methods, Molecular Targeted Therapy trends, Autophagy physiology, Proteolysis drug effects, Lysosomes metabolism
- Abstract
The review is focused on recent drug discovery advances based on targeted protein degradation strategies. This new area of research has exploded leading to the development of potential drugs useful in a large variety of human diseases. They first target disease relevant proteins difficult to counteract with other classical strategies and extend now to aggregates, organelles, nucleic acids or lipidic droplets. These degraders engaged either the ubiquitin-proteasome system for PROTACs and molecular glues (first generation), or the lysosomal system via endosome-lysosome degradation (LYTACs) and autophagy-lysosome degradation (ATTEC, AUTAC, AUTOTAC) (following generations of degraders). PROTACs have expanded from the orthodox heterobifunctional ones to new derivatives such as homo-PROTACs, pro-PROTACs, CLIPTACs, HaloPROTACs, PHOTOTACs, Bac-PROTACs, AbTACs, ARN-PROTACs. The small molecular-weight molecular glues induce the formation of new ternary complexes which implicate the targeted protein and an ubiquitin ligase E3 allowing the protein ubiquinitation followed by its proteasomal degradation. Lysosomal degraders (LYTAC, ATTEC, AUTAC, AUTOTAC) specifically recognize extracellular and membrane proteins or dysfunctional organelles and transport them into lysosomes where they are degraded. They overcome the limitations observed with proteasomal degradations induced by PROTAC and molecular glues and demonstrate their potential to treat human diseases, especially neurodegenerative ones. Pharmaceutical companies are engaged at the world level to develop these new potential drugs targeting cancers, immuno-inflammatory and neurodegenerative diseases as well as a variety of other ones. Efficiency and risks for these novel therapeutic strategies are discussed., (© Société de Biologie, 2024.)
- Published
- 2024
- Full Text
- View/download PDF