Il misfolding proteico e l’aggregazione di proteine sono problemi essenziali alla base di diversi disordini neurodegenerativi. Tali malattie sono caratterizzate dalla presenza di inclusioni di proteine misfoldate che possono interferire con la corretta proteostasi, portando alla perdita dell’attività neuronale cerebrale. Ciononostante, la formazione di aggregati proteici è un meccanismo messo in atto anche da cellule eucariote sane per proteggere il proprio proteoma. Tra tali siti di deposito, i Dendritic cells Aggresome-Like Induced Structures (DALISs) sono stati recentemente identificati in cellule dendritiche. Essi rappresentano dei depositi transienti per proteine difettive ubiquitinate ed antigeni, che si formano in risposta a diversi stress. La loro funzione non è ancora completamente compresa, specialmente dopo essere stati identificati anche in cellule non appartenenti al sistema immunitario. Ad oggi, nessuna indagine è stata condotta in altre cellule eucariote ma, fungendo da siti di deposito per proteine ubiquitinate, ci si aspetta di incontrarli anche in altri modelli cellulari. Il lievito Saccharomyces cerevisiae viene ampiamente utilizzato per la ricerca sugli aggregati cellulari, poiché presenta un ampio range di inclusioni dinamiche che sono stati dimostrate essere conservati tra diverse specie, nonostante il maggior grado di complessità nella composizione proteica e nelle funzionalità negli eucarioti multicellulari. Abbiamo identificato quattro diverse condizioni di stress in cui il lievito S. cerevisiae manifesta la formazione di corpi citoplasmatici: shock termico a 42°C, stress acuto da etanolo, deprivazione di azoto e carenza di glucosio. Abbiamo quindi sottoposto S. cerevisiae a questi stimoli di stress e investigato la formazione di inclusioni insolubili, concentrandoci sugli aggregati ubiquitinati. A questo fine, abbiamo deciso di includere anche il trattamento con puromicina come condizione di stress a cui esporre le cellule di lievito, poiché la puromicina è stata dimostrata indurre la formazione di DALIS in cellule dendritiche. Abbiamo dimostrato la formazione di aggregati ricchi di ubiquitina in cellule di lievito a seguito di stress acuto da etanolo, di deprivazione di azoto prolungata e di trattamento con puromicina. Abbiamo poi indagato la localizzazione cellulare degli aggregati ubiquitinati in cellule di S. cerevisiae grazie a microscopia a fluorescenza. Abbiamo osservato l’accumulo di aggregati ricchi di ubiquitina dalla forma rotonda, che sono disseminati nel cytosol e non colocalizzati con altre strutture cellulari. I corpi osservati rispecchiano le caratteristiche morfologiche riportate per i DALISs nelle cellule dendritiche. Abbiamo poi deciso di investigare come gli aggregati ricchi di ubiquitina indotti a seguito di stress acuto da etanolo vengano eliminati all’interno della cellula di lievito. Abbiamo dimostrato che l’accumulo di aggregati ricchi di ubiquitina è persistente nelle cellule mutanti atg1Δ rispetto alle cellule wild type, in cui il livello di proteine ubiquitinate decresce qualche ora dopo l’esposizione allo stress. Ciò suggerisce che il processo di autofagia è implicato nella rimozione degli aggregati ubiquitinati, poiché Atg1 è una chinasi che gioca un ruolo fondamentale nella regolazione di tale processo. D’altro canto, abbiamo osservato che le cellule mutanti cue5Δ mostravano un minor accumulo di ubiquitina durante l’intera durata del trattamento con etanolo, rispetto alle cellule wild type. La proteina di lievito Cue5 è una proteina che lega ubiquitina e che collabora con gli enzimi di coniugazione dell’ubiquitina Ucb4/Ubc5 e con l’ubiquitina ligasi Rsp5 per congiungere l’ubiquitina al suo substrato. Dato che abbiamo osservato una minor presenza di ubiquitina nelle cellule mutanti cue5Δ, suggeriamo che Cue5 possa avere un ruolo nell’ubiquitinazione stessa agli aggregati osservati in condizioni di stress acuto da etanolo. Protein misfolding and aggregation are major issues in neurodegenerative disorders. Such diseases are characterized by the presence of large inclusions of misfolded proteins which can interfere with the proper proteostasis, possibly leading to loss of neuronal activity. Nevertheless, the formation of protein aggregates is a conserved mechanism engaged also by healthy eukaryotic cells in response to external stimuli that alter their physiological environment. In this context, protein aggregates function as well-organized deposition sites which help the cell to protect its proteome in the waiting for the restoration of the physiological condition. Among the organized cytoplasmic deposition sites for proteins, Dendritic cell Aggresome-Like Induced Structures (DALISs) has recently been identified in dendritic cells. They represent transient deposits for ubiquitinated defective proteins and antigens, which are formed in response to several stresses. Their function is still not completely understood, especially since they were later characterized in non-immune cells as well. No investigation has ever been conducted in other eukaryotic cells, but since they act as deposition sites for ubiquitinated misfolded proteins, we can expect to identify them in other cellular models as well. The yeast Saccharomyces cerevisiae is widely used for the research on cellular aggregates, as it displays a range of different dynamic deposition sites that are demonstrated to be conserved between different species, despite the increased complexity in protein composition and function in multicellular eukaryotes. We identified four main stress conditions under which the yeast Saccharomyces cerevisiae manifests the formation of large cytoplasmic bodies, namely heat shock temperatures at 42°C, severe ethanol stress, nitrogen depletion and glucose starvation. Therefore, we subjected yeast cells to these stress conditions and investigated the formation of insoluble inclusions, with a particular focus on ubiquitin-rich protein aggregates. To this purpose, we decided to include puromycin treatment as a stress condition to which a puromycin-sensitive yeast strain should be exposed, as puromycin was demonstrated to induce the formation of DALISs in dendritic cells. We demonstrated the formation of ubiquitin-rich protein aggregates in S. cerevisiae cells following the exposure to severe ethanol stress, under prolonged nitrogen starvation, and following puromycin treatment. We further investigated the cellular localization of ubiquitinated aggregates of wild type S. cerevisiae cells by fluorescence microscopy. We observed that the accumulation of round-shaped ubiquitin-rich aggregates, which are disseminated in the cytosol and not colocalized with any cellular structure. Such structures reflect the characteristic morphology of DALIS reported in dendritic cells. We then decided to investigate how these ethanol-induced ubiquitin-rich protein aggregates are cleared inside the yeast cell. We demonstrated that the accumulation of ubiquitin-rich aggregates is persistent in atg1Δ mutant cells, whereas in wild type cells the level of ubiquitinated proteins decrease a few hours after the exposure to the stress. This suggests that autophagy is implied in the clearance of ubiquitinated aggregates, as Atg1 is a kinase which plays a crucial role in the regulation of this process. On the other hand, we observed that cue5Δ mutant cells displayed a minor accumulation of ubiquitin throughout the whole treatment with ethanol, compared to wild type cells. The yeast protein Cue5 is a ubiquitin-binding protein that collaborates with Ubc4/Ubc5 ubiquitin-conjugating enzymes and the Rsp5 ubiquitin ligase for the conjugation of ubiquitin to its substrate. Since we observed a lower presence of ubiquitin in cue5Δ mutant cells, we propose that Cue5 might have a role in the conjugation of ubiquitin itself to the aggregates under severe ethanol stress.