1. Domain Randomization for Robust, Affordable and Effective Closed-loop Control of Soft Robots
- Author
-
Tiboni, Gabriele, Protopapa, Andrea, Tommasi, Tatiana, and Averta, Giuseppe
- Subjects
Computer Science - Robotics ,Computer Science - Machine Learning - Abstract
Soft robots are gaining popularity thanks to their intrinsic safety to contacts and adaptability. However, the potentially infinite number of Degrees of Freedom makes their modeling a daunting task, and in many cases only an approximated description is available. This challenge makes reinforcement learning (RL) based approaches inefficient when deployed on a realistic scenario, due to the large domain gap between models and the real platform. In this work, we demonstrate, for the first time, how Domain Randomization (DR) can solve this problem by enhancing RL policies for soft robots with: i) robustness w.r.t. unknown dynamics parameters; ii) reduced training times by exploiting drastically simpler dynamic models for learning; iii) better environment exploration, which can lead to exploitation of environmental constraints for optimal performance. Moreover, we introduce a novel algorithmic extension to previous adaptive domain randomization methods for the automatic inference of dynamics parameters for deformable objects. We provide an extensive evaluation in simulation on four different tasks and two soft robot designs, opening interesting perspectives for future research on Reinforcement Learning for closed-loop soft robot control., Comment: Presented as conference paper at IEEE/RSJ IROS 2023, Detroit, USA. Project website at https://andreaprotopapa.github.io/dr-soro/
- Published
- 2023