1. Surfactant protein A modulates neuroinflammation in adult mice upon pulmonary infection.
- Author
-
Scheffzük C, Biedziak D, Gisch N, Goldmann T, and Stamme C
- Subjects
- Animals, Male, Mice, Mice, Knockout, Mice, Inbred C57BL, Pseudomonas Infections metabolism, Lung metabolism, Inflammation metabolism, Pulmonary Surfactant-Associated Protein A metabolism, Brain metabolism, Pseudomonas aeruginosa, Neuroinflammatory Diseases metabolism, Lipopolysaccharides, Cytokines metabolism
- Abstract
Background: One of the most common entry gates for systemic infection is the lung. In humans, pulmonary infections can lead to significant neurological impairment, ranging from acute sickness behavior to long-term disorders. Surfactant proteins (SP), essential parts of the pulmonary innate immune defense, have been detected in the brain of rats and humans. Recent evidence suggests that SP-A, the major protein component of surfactant, also plays a functional role in modulating neuroinflammation. This study aimed to determine whether SP-A deficiency affects the inflammatory response in the brain of adult mice during pulmonary infection., Experimental Procedure: Adult male wild-type (WT, n = 72) and SP-A-deficient (SP-A
-/- , n = 72) mice were oropharyngeally challenged with lipopolysaccharide (LPS), Pseudomonas aeruginosa (P. aeruginosa), or PBS (control). Both, behavioral assessment and subsequent brain tissue analysis, were performed 24, 48, and 72 h after challenge. The brain concentrations of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were determined by ELISA. Quantitative rtPCR was used to detect SP-A mRNA expression in brain homogenates and immunohistochemistry was applied for the detection of SP-A protein expression in brain coronal slices., Results: SP-A mRNA and histological evidence of protein expression were detected in both the lungs and brains of WT mice, with significantly higher amounts in lung samples. SP-A-/- mice exhibited significantly higher baseline concentrations of brain TNF-α, IL-6, and IL-1β compared to WT mice. Oropharyngeal application of either LPS or P. aeruginosa elicited significantly higher brain levels of TNF-α and IL-1β in SP-A-/- mice compared to WT mice at all time points. In comparison, behavioral impairment as a measure of sickness behavior, was significantly stronger in WT than in SP-A-/- mice, particularly after LPS application., Conclusion: SP-A is known for its anti-inflammatory role in the pulmonary immune response to bacterial infection. Recent evidence suggests that in an abdominal sepsis model SP-A deficiency can lead to increased cytokine levels in the brain. Our results extend this perception and provide evidence for an anti-inflammatory role of SP-A in the brain of adult WT mice after pulmonary infection., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF