60 results on '"Pye HOT"'
Search Results
2. Improved model of isoprene emissions in Africa using Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde: Implications for oxidants and particulate matter
- Author
-
Marais, EA, Jacob, DJ, Guenther, A, Chance, K, Kurosu, TP, Murphy, JG, Reeves, CE, and Pye, HOT
- Subjects
Meteorology & Atmospheric Sciences ,Atmospheric Sciences ,Astronomical and Space Sciences - Abstract
We use a 2005-2009 record of isoprene emissions over Africa derived from Ozone Monitoring Instrument (OMI) satellite observations of formaldehyde (HCHO) to better understand the factors controlling isoprene emission in the continent and evaluate the impact on atmospheric composition. OMI-derived isoprene emissions show large seasonality over savannas driven by temperature and leaf area index (LAI), and much weaker seasonality over equatorial forests driven by temperature. The commonly used MEGAN (Model of Emissions of Gases and Aerosols from Nature, version 2.1) global isoprene emission model reproduces this seasonality but is biased high, particularly for equatorial forests, when compared to OMI and relaxed-eddy accumulation measurements. Isoprene emissions in MEGAN are computed as the product of an emission factor Eo, LAI, and activity factors dependent on environmental variables. We use the OMI-derived emissions to provide improved estimates of Eo that are in good agreement with direct leaf measurements from field campaigns (r = 0.55, bias Combining double low line-19%). The largest downward corrections to MEGAN Eo values are for equatorial forests and semi-arid environments, and this is consistent with latitudinal transects of isoprene over western Africa from the African Monsoon Multidisciplinary Analysis (AMMA) aircraft campaign. Total emission of isoprene in Africa is estimated to be 77 Tg C ag-1, compared to 104 Tg C ag-1 in MEGAN. Simulations with the GEOS-Chem oxidant-aerosol model suggest that isoprene emissions increase mean surface ozone in western Africa by up to 8 ppbv, and particulate matter by up to 1.5 μg mg-3, due to coupling with anthropogenic influences. © 2014 Author(s).
- Published
- 2014
3. Evolution of Reactive Organic Compounds and Their Potential Health Risk in Wildfire Smoke.
- Author
-
Pye HOT, Xu L, Henderson BH, Pagonis D, Campuzano-Jost P, Guo H, Jimenez JL, Allen C, Skipper TN, Halliday HS, Murphy BN, D'Ambro EL, Wennberg PO, Place BK, Wiser FC, McNeill VF, Apel EC, Blake DR, Coggon MM, Crounse JD, Gilman JB, Gkatzelis GI, Hanisco TF, Huey LG, Katich JM, Lamplugh A, Lindaas J, Peischl J, St Clair JM, Warneke C, Wolfe GM, and Womack C
- Subjects
- Air Pollutants analysis, Humans, Organic Chemicals analysis, Organic Chemicals toxicity, Air Pollution, Wildfires, Smoke
- Abstract
Wildfires are an increasing source of emissions into the air, with health effects modulated by the abundance and toxicity of individual species. In this work, we estimate reactive organic compounds (ROC) in western U.S. wildland forest fire smoke using a combination of observations from the 2019 Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) field campaign and predictions from the Community Multiscale Air Quality (CMAQ) model. Standard emission inventory methods capture 40-45% of the estimated ROC mass emitted, with estimates of primary organic aerosol particularly low (5-8×). Downwind, gas-phase species abundances in molar units reflect the production of fragmentation products such as formaldehyde and methanol. Mass-based units emphasize larger compounds, which tend to be unidentified at an individual species level, are less volatile, and are typically not measured in the gas phase. Fire emissions are estimated to total 1250 ± 60 g·C of ROC per kg·C of CO, implying as much carbon is emitted as ROC as is emitted as CO. Particulate ROC has the potential to dominate the cancer and noncancer risk of long-term exposure to inhaled smoke, and better constraining these estimates will require information on the toxicity of particulate ROC from forest fires.
- Published
- 2024
- Full Text
- View/download PDF
4. Impact of Heatwaves and Declining NO x on Nocturnal Monoterpene Oxidation in the Urban Southeastern United States.
- Author
-
Desai NS, Moore AC, Mouat AP, Liang Y, Xu T, Takeuchi M, Pye HOT, Murphy B, Bash J, Pollack IB, Peischl J, Ng NL, and Kaiser J
- Abstract
Nighttime oxidation of monoterpenes (MT) via the nitrate radical (NO
3 ) and ozone (O3 ) contributes to the formation of secondary organic aerosol (SOA). This study uses observations in Atlanta, Georgia from 2011-2022 to quantify trends in nighttime production of NO3 (PNO3 ) and O3 concentrations and compare to model outputs from the EPA's Air QUAlity TimE Series Project (EQUATES). We present urban-suburban gradients in nighttime NO3 and O3 concentrations and quantify their fractional importance (F) for MT oxidation. Both observations and EQUATES show a decline in PNO3 , with modeled PNO3 declining faster than observations. Despite decreasing PNO3 , we find that NO3 continues to dominate nocturnal boundary layer (NBL) MT oxidation (FNO3 = 60%) in 2017, 2021, and 2022, which is consistent with EQUATES (FNO3 = 80%) from 2013-2019. This contrasts an anticipated decline in FNO3 based on prior observations in the nighttime residual layer, where O3 is the dominant oxidant. Using two case studies of heatwaves in summer 2022, we show that extreme heat events can increase NO3 concentrations and FNO3 , leading to short MT lifetimes (<1 h) and high gas-phase organic nitrate production. Regardless of the presence of heatwaves, our findings suggest sustained organic nitrate aerosol formation in the urban SE US under declining NOx emissions, and highlight the need for improved representation of extreme heat events in chemistry-transport models and additional observations along urban to rural gradients.- Published
- 2024
- Full Text
- View/download PDF
5. Diverging trends in aerosol sulfate and nitrate measured in the remote North Atlantic in Barbados are attributed to clean air policies, African smoke, and anthropogenic emissions.
- Author
-
Gaston CJ, Prospero JM, Foley K, Pye HOT, Custals L, Blades E, Sealy P, and Christie JA
- Abstract
Sulfate and nitrate aerosols degrade air quality, modulate radiative forcing and the hydrological cycle, and affect biogeochemical cycles, yet their global cycles are poorly understood. Here, we examined trends in 21 years of aerosol measurements made at Ragged Point, Barbados, the easternmost promontory on the island located in the eastern Caribbean Basin. Though the site has historically been used to characterize African dust transport, here we focused on changes in nitrate and non-sea-salt (nss) sulfate aerosols from 1990-2011. Nitrate aerosol concentrations averaged over the entire period were stable at 0.59 μg m
-3 ± 0.04 μg m-3 , except for elevated nitrate concentrations in the spring of 2010 and during the summer and fall of 2008 due to the transport of biomass burning emissions from both northern and southern Africa to our site. In contrast, from 1990 to 2000, nss-sulfate decreased 30% at a rate of 0.023 μg m-3 yr-1 , a trend which we attribute to air quality policies enacted in the United States (US) and Europe. From 2000-2011, sulfate gradually increased at a rate of 0.021 μg m-3 yr-1 to pre-1990s levels of 0.90 μg m-3 . We used the Community Multiscale Air Quality (CMAQ) model simulations from the EPA's Air QUAlity TimE Series (EQUATES) to better understand the changes in nss-sulfate after 2000. The model simulations estimate that increases in anthropogenic emissions from Africa explain the increase in nss-sulfate observed in Barbados. Our results highlight the need to better constrain emissions from developing countries and to assess their impact on aerosol burdens in remote source regions.- Published
- 2024
- Full Text
- View/download PDF
6. Applying a Phase-Separation Parameterization in Modeling Secondary Organic Aerosol Formation from Acid-Driven Reactive Uptake of Isoprene Epoxydiols under Humid Conditions.
- Author
-
Chen Y, Ng AE, Green J, Zhang Y, Riva M, Riedel TP, Pye HOT, Lei Z, Olson NE, Cooke ME, Zhang Z, Vizuete W, Gold A, Turpin BJ, Ault AP, and Surratt JD
- Abstract
Secondary organic aerosol (SOA) from acid-driven reactive uptake of isoprene epoxydiols (IEPOX) contributes up to 40% of organic aerosol (OA) mass in fine particulate matter. Previous work showed that IEPOX substantially converts particulate inorganic sulfates to surface-active organosulfates (OSs). This decreases aerosol acidity and creates a viscous organic-rich shell that poses as a diffusion barrier, inhibiting additional reactive uptake of IEPOX. To account for this "self-limiting" effect, we developed a phase-separation box model to evaluate parameterizations of IEPOX reactive uptake against time-resolved chamber measurements of IEPOX-SOA tracers, including 2-methyltetrols (2-MT) and methyltetrol sulfates (MTS), at ~ 50% relative humidity. The phase-separation model was most sensitive to the mass accommodation coefficient, IEPOX diffusivity in the organic shell, and ratio of the third-order reaction rate constants forming 2-MT and MTS ( k M T / k M T S ). In particular, k M T / k M T S had to be lower than 0.1 to bring model predictions of 2-MT and MTS in closer agreement with chamber measurements; prior studies reported values larger than 0.71. The model-derived rate constants favor more particulate MTS formation due to 2-MT likely off-gassing at ambient-relevant OA loadings. Incorporating this parametrization into chemical transport models is expected to predict lower IEPOX-SOA mass and volatility due to the predominance of OSs.
- Published
- 2024
- Full Text
- View/download PDF
7. Modeling the Oxygen Isotope Anomaly (Δ17O) of Reactive Nitrogen in the Community Multiscale Air Quality Model: Insights into Nitrogen Oxide Chemistry in the Northeastern United States.
- Author
-
Walters WW, Pye HOT, Kim H, and Hastings MG
- Abstract
Atmospheric nitrate, including nitric acid (HNO
3 ), particulate nitrate (pNO3 ), and organic nitrate (RONO2 ), is a key atmosphere component with implications for air quality, nutrient deposition, and climate. However, accurately representing atmospheric nitrate concentrations within atmospheric chemistry models is a persistent challenge. A contributing factor to this challenge is the intricate chemical transformations involving HNO3 formation, which can be difficult for models to replicate. Here, we present a novel model framework that utilizes the oxygen stable isotope anomaly (Δ17 O) to quantitatively depict ozone (O3 ) involvement in precursor nitrogen oxides N O x = N O + N O 2 photochemical cycling and HNO3 formation. This framework has been integrated into the US EPA Community Multiscale Air Quality (CMAQ) modeling system to facilitate a comprehensive assessment of NOx oxidation and HNO3 formation. In application across the northeastern US, the model Δ17 O compares well with recently conducted diurnal Δ17 O(NO2 ) and spatiotemporal Δ17 O(HNO3 ) observations, with a root mean square error between model and observations of 2.6 ‰ for Δ17 O(HNO3 ). The model indicates the major formation pathways of annual HNO3 production within the northeastern US are NO+OH (46 %), N2 O5 hydrolysis (34 %), and organic nitrate hydrolysis (12 %). This model can evaluate NOx chemistry in CMAQ in future air quality and deposition studies involving reactive nitrogen.- Published
- 2024
- Full Text
- View/download PDF
8. A better representation of VOC chemistry in WRF-Chem and its impact on ozone over Los Angeles.
- Author
-
Zhu Q, Schwantes RH, Coggon M, Harkins C, Schnell J, He J, Pye HOT, Li M, Baker B, Moon Z, Ahmadov R, Pfannerstill EY, Place B, Wooldridge P, Schulze BC, Arata C, Bucholtz A, Seinfeld JH, Warneke C, Stockwell CE, Xu L, Zuraski K, Robinson MA, Neuman A, Veres PR, Peischl J, Brown SS, Goldstein AH, Cohen RC, and McDonald BC
- Abstract
The declining trend in vehicle emissions has underscored the growing significance of Volatile Organic Compound (VOC) emissions from Volatile Chemical Products (VCP). However, accurately representing VOC chemistry in simplified chemical mechanisms remains challenging due to its chemical complexity including speciation and reactivity. Previous studies have predominantly focused on VOCs from fossil fuel sources, leading to an underrepresentation of VOC chemistry from VCP sources. We developed an integrated chemical mechanism, RACM2B-VCP, that is compatible with WRF-Chem and is aimed to enhance the representation of VOC chemistry, particularly from VCP sources, within the present urban environment. Evaluation against the Air Quality System (AQS) network data demonstrates that our model configured with RACM2B-VCP reproduces both the magnitude and spatial variability of O
3 as well as PM2.5 in Los Angeles. Furthermore, evaluation against comprehensive measurements of O3 and PM2.5 precursors from the Reevaluating the Chemistry of Air Pollutants in California (RECAP-CA) airborne campaign and the Southwest Urban NOx and VOC Experiment (SUNVEx) ground site and mobile laboratory campaign, confirm the model's accuracy in representing NOx and many VOCs and highlight remaining biases. Although there exists an underprediction in the total VOC reactivity of observed VOC species, our model with RACM2B-VCP exhibits good agreement for VOC markers emitted from different sectors, including biogenic, fossil fuel, and VCP sources. Through sensitivity analyses, we probe the contributions of VCP and fossil fuel emissions to total VOC reactivity and O3 . Our results reveal that 52% of the VOC reactivity and 35% of the local enhancement of MDA8 O3 arise from anthropogenic VOC emissions in Los Angeles. Significantly, over 50% of this anthropogenic fraction of either VOC reactivity or O3 is attributed to VCP emissions. The RACM2B-VCP mechanism created, described, and evaluated in this work is ideally suited for accurately representing ozone for the right reasons in the present urban environment where mobile, biogenic, and VCP VOCs are all important contributors to ozone formation., Competing Interests: Competing interests. The authors have the following competing interests: At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics.- Published
- 2024
- Full Text
- View/download PDF
9. An updated modeling framework to simulate Los Angeles air quality - Part 1: Model development, evaluation, and source apportionment.
- Author
-
Pennington EA, Wang Y, Schulze BC, Seltzer KM, Yang J, Zhao B, Jiang Z, Shi H, Venecek M, Chau D, Murphy BN, Kenseth CM, Ward RX, Pye HOT, and Seinfeld JH
- Abstract
This study describes a modeling framework, model evaluation, and source apportionment to understand the causes of Los Angeles (LA) air pollution. A few major updates are applied to the Community Multiscale Air Quality (CMAQ) model with a high spatial resolution (1 km × 1 km). The updates include dynamic traffic emissions based on real-time, on-road information and recent emission factors and secondary organic aerosol (SOA) schemes to represent volatile chemical products (VCPs). Meteorology is well predicted compared to ground-based observations, and the emission rates from multiple sources (i.e., on-road, volatile chemical products, area, point, biogenic, and sea spray) are quantified. Evaluation of the CMAQ model shows that ozone is well predicted despite inaccuracies in nitrogen oxide (NO
x ) predictions. Particle matter (PM) is underpredicted compared to concurrent measurements made with an aerosol mass spectrometer (AMS) in Pasadena. Inorganic aerosol is well predicted, while SOA is underpredicted. Modeled SOA consists of mostly organic nitrates and products from oxidation of alkane-like intermediate volatility organic compounds (IVOCs) and has missing components that behave like less-oxidized oxygenated organic aerosol (LO-OOA). Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx -saturated (VOC-sensitive), with the largest sensitivity of O3 to changes in VOCs in the urban core. Differing oxidative capacities in different regions impact the nonlinear chemistry leading to PM and SOA formation, which is quantified in this study., Competing Interests: Competing interests. At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.- Published
- 2024
- Full Text
- View/download PDF
10. Temperature-dependent composition of summertime PM 2.5 in observations and model predictions across the Eastern U.S.
- Author
-
Vannucci PF, Foley K, Murphy BN, Hogrefe C, Cohen RC, and Pye HOT
- Abstract
Throughout the U.S., summertime fine particulate matter (PM
2.5 ) exhibits a strong temperature (T) dependence. Reducing the PM2.5 enhancement with T could reduce the public health burden of PM2.5 now and in a warmer future. Atmospheric models are a critical tool for probing the processes and components driving observed behaviors. In this work, we describe how observed and modeled aerosol abundance and composition varies with T in the present-day Eastern U.S. with specific attention to the two major PM2.5 components: sulfate (SO4 2- ) and organic carbon (OC). Observations in the Eastern U.S. show an average measured summertime PM2.5 -T sensitivity of 0.67 μg/m3 /K, with CMAQ v5.4 regional model predictions closely matching this value. Observed SO4 2- and OC also increase with T; however, the model has component-specific discrepancies with observations. Specifically, the model underestimates SO4 2- concentrations and their increase with T while overestimating OC concentrations and their increase with T. Here, we explore a series of model interventions aimed at correcting these deviations. We conclude that the PM2.5 -T relationship is driven by inorganic and organic systems that are highly coupled, and it is possible to design model interventions to simultaneously address biases in PM2.5 component concentrations as well as their response to T.- Published
- 2024
- Full Text
- View/download PDF
11. Predictions of PFAS regional-scale atmospheric deposition and ambient air exposure.
- Author
-
D'Ambro EL, Murphy BN, Bash JO, Gilliam RC, and Pye HOT
- Subjects
- Humans, United States, North Carolina, Air, Drinking Water chemistry, Fluorocarbons analysis, Water Pollutants, Chemical analysis
- Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large class of human-made compounds that have contaminated the global environment. One environmental entry point for PFAS is via atmospheric emission. Air releases can impact human health through multiple routes, including direct inhalation and contamination of drinking water following air deposition. In this work, we convert the reference dose (RfD) underlying the United States Environmental Protection Agency's GenX drinking water Health Advisory to an inhalation screening level and compare to predicted PFAS and GenX air concentrations from a fluorochemical manufacturing facility in Eastern North Carolina. We find that the area around the facility experiences ~15 days per year of GenX concentrations above the inhalation screening level we derive. We investigate the sensitivity of model predictions to assumptions regarding model spatial resolution, emissions temporal profiles, and knowledge of air emission chemical composition. Decreasing the chemical specificity of PFAS emissions has the largest impact on deposition predictions with domain-wide total deposition varying by as much as 250 % for total PFAS. However, predicted domain-wide mean and median air concentrations varied by <18 % over all scenarios tested for total PFAS. Other model features like emission temporal variability and model spatial resolution had weaker impacts on predicted PFAS deposition., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Published by Elsevier B.V.)
- Published
- 2023
- Full Text
- View/download PDF
12. Reactive organic carbon air emissions from mobile sources in the United States.
- Author
-
Murphy BN, Sonntag D, Seltzer KM, Pye HOT, Allen C, Murray E, Toro C, Gentner DR, Huang C, Jathar S, Li L, May AA, and Robinson AL
- Abstract
Mobile sources are responsible for a substantial controllable portion of the reactive organic carbon (ROC) emitted to the atmosphere, especially in urban environments of the United States. We update existing methods for calculating mobile source organic particle and vapor emissions in the United States with over a decade of laboratory data that parameterize the volatility and organic aerosol (OA) potential of emissions from on-road vehicles, nonroad engines, aircraft, marine vessels, and locomotives. We find that existing emission factor information from Teflon filters combined with quartz filters collapses into simple relationships and can be used to reconstruct the complete volatility distribution of ROC emissions. This new approach consists of source-specific filter artifact corrections and state-of-the-science speciation including explicit intermediate-volatility organic compounds (IVOCs), yielding the first bottom-up volatility-resolved inventory of US mobile source emissions. Using the Community Multiscale Air Quality model, we estimate mobile sources account for 20 %-25 % of the IVOC concentrations and 4.4 %-21.4 % of ambient OA. The updated emissions and air quality model reduce biases in predicting fine-particle organic carbon in winter, spring, and autumn throughout the United States (4.3 %-11.3 % reduction in normalized bias). We identify key uncertain parameters that align with current state-of-the-art research measurement challenges., Competing Interests: Competing interests. At least one of the (co-)authors is a member of the editorial board of Atmospheric Chemistry and Physics. The peer-review process was guided by an independent editor, and the authors also have no other competing interests to declare.
- Published
- 2023
- Full Text
- View/download PDF
13. Sensitivity of northeastern US surface ozone predictions to the representation of atmospheric chemistry in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMMv1.0).
- Author
-
Place BK, Hutzell WT, Appel KW, Farrell S, Valin L, Murphy BN, Seltzer KM, Sarwar G, Allen C, Piletic IR, D'Ambro EL, Saunders E, Simon H, Torres-Vasquez A, Pleim J, Schwantes RH, Coggon MM, Xu L, Stockwell WR, and Pye HOT
- Abstract
Chemical mechanisms describe how emissions of gases and particles evolve in the atmosphere and are used within chemical transport models to evaluate past, current, and future air quality. Thus, a chemical mechanism must provide robust and accurate predictions of air pollutants if it is to be considered for use by regulatory bodies. In this work, we provide an initial evaluation of the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMMv1.0) by assessing CRACMMv1.0 predictions of surface ozone (O
3 ) across the northeastern US during the summer of 2018 within the Community Multiscale Air Quality (CMAQ) modeling system. CRACMMv1.0 O3 predictions of hourly and maximum daily 8 h average (MDA8) ozone were lower than those estimated by the Regional Atmospheric Chemistry Mechanism with aerosol module 6 (RACM2_ae6), which better matched surface network observations in the northeastern US (RACM2_ae6 mean bias of +4.2 ppb for all hours and +4.3 ppb for MDA8; CRACMMv1.0 mean bias of +2.1 ppb for all hours and +2.7 ppb for MDA8). Box model calculations combined with results from CMAQ emission reduction simulations indicated a high sensitivity of O3 to compounds with biogenic sources. In addition, these calculations indicated the differences between CRACMMv1.0 and RACM2_ae6 O3 predictions were largely explained by updates to the inorganic rate constants (reflecting the latest assessment values) and by updates to the representation of monoterpene chemistry. Updates to other reactive organic carbon systems between RACM2_ae6 and CRACMMv1.0 also affected ozone predictions and their sensitivity to emissions. Specifically, CRACMMv1.0 benzene, toluene, and xylene chemistry led to efficient NOx cycling such that CRACMMv1.0 predicted controlling aromatics reduces ozone without rural O3 disbenefits. In contrast, semivolatile and intermediate-volatility alkanes introduced in CRACMMv1.0 acted to suppress O3 formation across the regional background through the sequestration of nitrogen oxides (NOx ) in organic nitrates. Overall, these analyses showed that the CRACMMv1.0 mechanism within the CMAQ model was able to reasonably simulate ozone concentrations in the northeastern US during the summer of 2018 with similar magnitude and diurnal variation as the current operational Carbon Bond (CB6r3_ae7) mechanism and good model performance compared to recent modeling studies in the literature., Competing Interests: Competing interests. The contact author has declared that none of the authors has any competing interests.- Published
- 2023
- Full Text
- View/download PDF
14. Secondary Organic Aerosol Formation from Volatile Chemical Product Emissions: Model Parameters and Contributions to Anthropogenic Aerosol.
- Author
-
Sasidharan S, He Y, Akherati A, Li Q, Li W, Cocker D, McDonald BC, Coggon MM, Seltzer KM, Pye HOT, Pierce JR, and Jathar SH
- Subjects
- Hydrocarbons, Terpenes, Alkanes, Aerosols analysis, Ethers, China, Air Pollutants analysis, Volatile Organic Compounds analysis
- Abstract
Volatile chemical products (VCP) are an increasingly important source of hydrocarbon and oxygenated volatile organic compound (OVOC) emissions to the atmosphere, and these emissions are likely to play an important role as anthropogenic precursors for secondary organic aerosol (SOA). While the SOA from VCP hydrocarbons is often accounted for in models, the formation, evolution, and properties of SOA from VCP OVOCs remain uncertain. We use environmental chamber data and a kinetic model to develop SOA parameters for 10 OVOCs representing glycols, glycol ethers, esters, oxygenated aromatics, and amines. Model simulations suggest that the SOA mass yields for these OVOCs are of the same magnitude as widely studied SOA precursors (e.g., long-chain alkanes, monoterpenes, and single-ring aromatics), and these yields exhibit a linear correlation with the carbon number of the precursor. When combined with emissions inventories for two megacities in the United States (US) and a US-wide inventory, we find that VCP VOCs react with OH to form 0.8-2.5× as much SOA, by mass, as mobile sources. Hydrocarbons (terpenes, branched and cyclic alkanes) and OVOCs (terpenoids, glycols, glycol ethers) make up 60-75 and 25-40% of the SOA arising from VCP use, respectively. This work contributes to the growing body of knowledge focused on studying VCP VOC contributions to urban air pollution.
- Published
- 2023
- Full Text
- View/download PDF
15. Anthropogenic Secondary Organic Aerosol and Ozone Production from Asphalt-Related Emissions.
- Author
-
Seltzer KM, Rao V, Pye HOT, Murphy BN, Place BK, Khare P, Gentner DR, Allen C, Cooley D, Mason R, and Houyoux M
- Abstract
Liquid asphalt is a petroleum-derived substance commonly used in construction activities. Recent work has identified lower volatility, reactive organic carbon from asphalt as an overlooked source of secondary organic aerosol (SOA) precursor emissions. Here, we leverage potential emission estimates and usage data to construct a bottom-up inventory of asphalt-related emissions in the United States. In 2018, we estimate that hot-mix, warm-mix, emulsified, cutback, and roofing asphalt generated ~380 Gg (317 Gg - 447 Gg) of organic compound emissions. The impacts of these emissions on anthropogenic SOA and ozone throughout the contiguous United States are estimated using photochemical modeling. In several major cities, asphalt-related emissions can increase modeled summertime SOA, on average, by 0.1 - 0.2 μg m-3 (2-4% of SOA) and may reach up to 0.5 μg m-3 at noontime on select days. The influence of asphalt-related emissions on modeled ozone are generally small (~0.1 ppb). We estimate that asphalt paving-related emissions are half of what they were nearly 50 years ago, largely due to the concerted efforts to reduce emissions from cutback asphalts. If on-road mobile emissions continue their multidecadal decline, contributions of urban SOA from evaporative and non-road mobile sources will continue to grow in relative importance., Competing Interests: Conflicts of interest There are no conflicts to declare.
- Published
- 2023
- Full Text
- View/download PDF
16. 2002-2017 anthropogenic emissions data for air quality modeling over the United States.
- Author
-
Foley KM, Pouliot GA, Eyth A, Aldridge MF, Allen C, Appel KW, Bash JO, Beardsley M, Beidler J, Choi D, Farkas C, Gilliam RC, Godfrey J, Henderson BH, Hogrefe C, Koplitz SN, Mason R, Mathur R, Misenis C, Possiel N, Pye HOT, Reynolds L, Roark M, Roberts S, Schwede DB, Seltzer KM, Sonntag D, Talgo K, Toro C, Vukovich J, Xing J, and Adams E
- Abstract
The United States Environmental Protection Agency (US EPA) has developed a set of annual North American emissions data for multiple air pollutants across 18 broad source categories for 2002 through 2017. The sixteen new annual emissions inventories were developed using consistent input data and methods across all years. When a consistent method or tool was not available for a source category, emissions were estimated by scaling data from the EPA's 2017 National Emissions Inventory with scaling factors based on activity data and/or emissions control information. The emissions datasets are designed to support regional air quality modeling for a wide variety of human health and ecological applications. The data were developed to support simulations of the EPA's Community Multiscale Air Quality model but can also be used by other regional scale air quality models. The emissions data are one component of EPA's Air Quality Time Series Project which also includes air quality modeling inputs (meteorology, initial conditions, boundary conditions) and outputs (e.g., ozone, PM
2.5 and constituent species, wet and dry deposition) for the Conterminous US at a 12 km horizontal grid spacing., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article., (© 2023 The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
17. Ammonium-adduct chemical ionization to investigate anthropogenic oxygenated gas-phase organic compounds in urban air.
- Author
-
Khare P, Krechmer JE, Machesky JE, Hass-Mitchell T, Cao C, Wang J, Majluf F, Lopez-Hilfiker F, Malek S, Wang W, Seltzer K, Pye HOT, Commane R, McDonald BC, Toledo-Crow R, Mak JE, and Gentner DR
- Abstract
Volatile chemical products (VCPs) and other non-combustion-related sources have become important for urban air quality, and bottom-up calculations report emissions of a variety of functionalized compounds that remain understudied and uncertain in emissions estimates. Using a new instrumental configuration, we present online measurements of oxygenated organic compounds in a U.S. megacity over a 10-day wintertime sampling period, when biogenic sources and photochemistry were less active. Measurements were conducted at a rooftop observatory in upper Manhattan, New York City, USA using a Vocus chemical ionization time-of-flight mass spectrometer with ammonium (NH
4 + ) as the reagent ion operating at 1 Hz. The range of observations spanned volatile, intermediate-volatility, and semi-volatile organic compounds with targeted analyses of ~150 ions whose likely assignments included a range of functionalized compound classes such as glycols, glycol ethers, acetates, acids, alcohols, acrylates, esters, ethanolamines, and ketones that are found in various consumer, commercial, and industrial products. Their concentrations varied as a function of wind direction with enhancements over the highly-populated areas of the Bronx, Manhattan, and parts of New Jersey, and included abundant concentrations of acetates, acrylates, ethylene glycol, and other commonly-used oxygenated compounds. The results provide top-down constraints on wintertime emissions of these oxygenated/functionalized compounds with ratios to common anthropogenic marker compounds, and comparisons of their relative abundances to two regionally-resolved emissions inventories used in urban air quality models.- Published
- 2022
- Full Text
- View/download PDF
18. Volatile Chemical Product Enhancements to Criteria Pollutants in the United States.
- Author
-
Seltzer KM, Murphy BN, Pennington EA, Allen C, Talgo K, and Pye HOT
- Subjects
- Aerosols, New York City, United States, Air Pollutants analysis, Environmental Pollutants, Ozone analysis, Volatile Organic Compounds
- Abstract
Volatile chemical products (VCPs) are a significant source of reactive organic carbon emissions in the United States with a substantial fraction (>20% by mass) serving as secondary organic aerosol (SOA) precursors. Here, we incorporate a new nationwide VCP inventory into the Community Multiscale Air Quality (CMAQ) model with VCP-specific updates to better model air quality impacts. Model results indicate that VCPs mostly enhance anthropogenic SOA in densely populated areas with population-weighted annual average SOA increasing 15-30% in Southern California and New York City due to VCP emissions (contribution of 0.2-0.5 μg m
-3 ). Annually, VCP emissions enhance total population-weighted PM2.5 by ∼5% in California, ∼3% in New York, New Jersey, and Connecticut, and 1-2% in most other states. While the maximum daily 8 h ozone enhancements from VCP emissions are more modest, their influence can cause a several ppb increase on select days in major cities. Printing Inks, Cleaning Products, and Paints and Coatings product use categories contribute ∼75% to the modeled VCP-derived SOA and Cleaning Products, Paints and Coatings, and Personal Care Products contribute ∼81% to the modeled VCP-derived ozone. Overall, VCPs enhance multiple criteria pollutants throughout the United States with the largest impacts in urban cores.- Published
- 2022
- Full Text
- View/download PDF
19. Human-health impacts of controlling secondary air pollution precursors.
- Author
-
Pye HOT, Appel KW, Seltzer KM, Ward-Caviness CK, and Murphy BN
- Abstract
Exposure to ozone and fine particle (PM
2.5 ) air pollution results in premature death. These pollutants are predominantly secondary in nature and can form from nitrogen oxides (NOX ), sulfur oxides (SOX ), and volatile organic compounds (VOCs). Predicted health benefits for emission reduction scenarios often incompletely account for VOCs as precursors as well as the secondary organic aerosol (SOA) component of PM2.5 . Here, we show that anthropogenic VOC emission reductions are more than twice as effective as equivalent fractional reductions of SOX or NOX at reducing air pollution-associated cardiorespiratory mortality in the United States. A 25% reduction in anthropogenic VOC emissions from 2016 levels is predicted to avoid 13,000 premature deaths per year, and most (85%) of the VOC-reduction benefits result from reduced SOA with the remainder from ozone. While NOX (-5.7 ± 0.2 % yr-1 ) and SOX (-12 ± 1 % yr-1 ) emissions have declined precipitously across the U.S. since 2002, anthropogenic VOC emissions (-1.8 ± 0.3 % yr-1 ) and concentrations of non-methane organic carbon (-2.4 ± 1.0 % yr-1 ) have changed less. This work indicates preferentially controlling VOCs could yield significant benefits to human health.- Published
- 2022
- Full Text
- View/download PDF
20. Contribution of Organic Nitrates to Organic Aerosol over South Korea during KORUS-AQ.
- Author
-
Kenagy HS, Romer Present PS, Wooldridge PJ, Nault BA, Campuzano-Jost P, Day DA, Jimenez JL, Zare A, Pye HOT, Yu J, Song CH, Blake DR, Woo JH, Kim Y, and Cohen RC
- Subjects
- Aerosols analysis, Cities, Nitrates analysis, Air Pollutants analysis, Volatile Organic Compounds
- Abstract
The role of anthropogenic NO
x emissions in secondary organic aerosol (SOA) production is not fully understood but is important for understanding the contribution of emissions to air quality. Here, we examine the role of organic nitrates (RONO2 ) in SOA formation over the Korean Peninsula during the Korea-United States Air Quality field study in Spring 2016 as a model for RONO2 aerosol in cities worldwide. We use aircraft-based measurements of the particle phase and total (gas + particle) RONO2 to explore RONO2 phase partitioning. These measurements show that, on average, one-fourth of RONO2 are in the condensed phase, and we estimate that ≈15% of the organic aerosol (OA) mass can be attributed to RONO2 . Furthermore, we observe that the fraction of RONO2 in the condensed phase increases with OA concentration, evidencing that equilibrium absorptive partitioning controls the RONO2 phase distribution. Lastly, we model RONO2 chemistry and phase partitioning in the Community Multiscale Air Quality modeling system. We find that known chemistry can account for one-third of the observed RONO2 , but there is a large missing source of semivolatile, anthropogenically derived RONO2 . We propose that this missing source may result from the oxidation of semi- and intermediate-volatility organic compounds and/or from anthropogenic molecules that undergo autoxidation or multiple generations of OH-initiated oxidation.- Published
- 2021
- Full Text
- View/download PDF
21. Secondary organic aerosol association with cardiorespiratory disease mortality in the United States.
- Author
-
Pye HOT, Ward-Caviness CK, Murphy BN, Appel KW, and Seltzer KM
- Subjects
- Aerosols analysis, Air Pollutants analysis, Air Pollution, Carbon, Environmental Exposure, Environmental Pollution, Heart Diseases chemically induced, Humans, United States epidemiology, Aerosols adverse effects, Air Pollutants adverse effects, Heart Diseases mortality, Respiratory Tract Diseases mortality
- Abstract
Fine particle pollution, PM
2.5 , is associated with increased risk of death from cardiorespiratory diseases. A multidecadal shift in the United States (U.S.) PM2.5 composition towards organic aerosol as well as advances in predictive algorithms for secondary organic aerosol (SOA) allows for novel examinations of the role of PM2.5 components on mortality. Here we show SOA is strongly associated with county-level cardiorespiratory death rates in the U.S. independent of the total PM2.5 mass association with the largest associations located in the southeastern U.S. Compared to PM2.5 , county-level variability in SOA across the U.S. is associated with 3.5× greater per capita county-level cardiorespiratory mortality. On a per mass basis, SOA is associated with a 6.5× higher rate of mortality than PM2.5 , and biogenic and anthropogenic carbon sources both play a role in the overall SOA association with mortality. Our results suggest reducing the health impacts of PM2.5 requires consideration of SOA., (© 2021. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)- Published
- 2021
- Full Text
- View/download PDF
22. Modeling secondary organic aerosol formation from volatile chemical products.
- Author
-
Pennington EA, Seltzer KM, Murphy BN, Qin M, Seinfeld JH, and Pye HOT
- Abstract
Volatile chemical products (VCPs) are commonly-used consumer and industrial items that are an important source of anthropogenic emissions. Organic compounds from VCPs evaporate on atmospherically relevant time scales and include many species that are secondary organic aerosol (SOA) precursors. However, the chemistry leading to SOA, particularly that of intermediate volatility organic compounds (IVOCs), has not been fully represented in regional-scale models such as the Community Multiscale Air Quality (CMAQ) model, which tend to underpredict SOA concentrations in urban areas. Here we develop a model to represent SOA formation from VCP emissions. The model incorporates a new VCP emissions inventory and employs three new classes of emissions: siloxanes, oxygenated IVOCs, and nonoxygenated IVOCs. VCPs are estimated to produce 1.67 μg m
-3 of noontime SOA, doubling the current model predictions and reducing the SOA mass concentration bias from -75% to -58% when compared to observations in Los Angeles in 2010. While oxygenated and nonoxygenated intermediate volatility VCP species are emitted in similar quantities, SOA formation is dominated by the nonoxygenated IVOCs. Formaldehyde and SOA show similar relationships to temperature and bias signatures indicating common sources and/or chemistry. This work suggests that VCPs contribute up to half of anthropogenic SOA in Los Angeles and models must better represent SOA precursors from VCPs to predict the urban enhancement of SOA., Competing Interests: Competing Interests The authors declare that they have no competing interests.- Published
- 2021
- Full Text
- View/download PDF
23. Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds.
- Author
-
Tilgner A, Schaefer T, Alexander B, Barth M, Collett JL Jr, Fahey KM, Nenes A, Pye HOT, Herrmann H, and McNeill VF
- Abstract
The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.
- Published
- 2021
- Full Text
- View/download PDF
24. Predicting the Nonlinear Response of PM 2.5 and Ozone to Precursor Emission Changes with a Response Surface Model.
- Author
-
Kelly JT, Jang C, Zhu Y, Long S, Xing J, Wang S, Murphy BN, and Pye HOT
- Abstract
Reducing PM
2.5 and ozone concentrations is important to protect human health and the environment. Chemical transport models, such as the Community Multiscale Air Quality (CMAQ) model, are valuable tools for exploring policy options for improving air quality but are computationally expensive. Here, we statistically fit an efficient polynomial function in a response surface model (pf-RSM) to CMAQ simulations over the eastern U.S. for January and July 2016. The pf-RSM predictions were evaluated using out-of-sample CMAQ simulations and used to examine the nonlinear response of air quality to emission changes. Predictions of the pf-RSM are in good agreement with the out-of-sample CMAQ simulations, with some exceptions for cases with anthropogenic emission reductions approaching 100%. NOX emission reductions were more effective for reducing PM2.5 and ozone concentrations than SO2 , NH3 , or traditional VOC emission reductions. NH3 emission reductions effectively reduced nitrate concentrations in January but increased secondary organic aerosol (SOA) concentrations in July. More work is needed on SOA formation under conditions of low NH3 emissions to verify the responses of SOA to NH3 emission changes predicted here. Overall, the pf-RSM performs well in the eastern U.S., but next-generation RSMs based on deep learning may be needed to meet the computational requirements of typical regulatory applications., Competing Interests: Conflicts of Interest: The authors declare no conflict of interest.- Published
- 2021
- Full Text
- View/download PDF
25. Evaluation of the offline-coupled GFSv15-FV3-CMAQv5.0.2 in support of the next-generation National Air Quality Forecast Capability over the contiguous United States.
- Author
-
Chen X, Zhang Y, Wang K, Tong D, Lee P, Tang Y, Huang J, Campbell PC, Mcqueen J, Pye HOT, Murphy BN, and Kang D
- Abstract
As a candidate for the next-generation National Air Quality Forecast Capability (NAQFC), the meteorological forecast from the Global Forecast System with the new Finite Volume Cube-Sphere dynamical core (GFS-FV3) will be applied to drive the chemical evolution of gases and particles described by the Community Multiscale Air Quality modeling system. CMAQv5.0.2, a historical version of CMAQ, has been coupled with the North American Mesoscale Forecast System (NAM) model in the current operational NAQFC. An experimental version of the NAQFC based on the offline-coupled GFS-FV3 version 15 with CMAQv5.0.2 modeling system (GFSv15-CMAQv5.0.2) has been developed by the National Oceanic and Atmospheric Administration (NOAA) to provide real-time air quality forecasts over the contiguous United States (CONUS) since 2018. In this work, comprehensive region-specific, time-specific, and categorical evaluations are conducted for meteorological and chemical forecasts from the offline-coupled GFSv15-CMAQv5.0.2 for the year 2019. The forecast system shows good overall performance in forecasting meteorological variables with the annual mean biases of -0.2 °C for temperature at 2 m, 0.4% for relative humidity at 2 m, and 0.4 m s
-1 for wind speed at 10 m compared to the METeorological Aerodrome Reports (METAR) dataset. Larger biases occur in seasonal and monthly mean forecasts, particularly in spring. Although the monthly accumulated precipitation forecasts show generally consistent spatial distributions with those from the remote-sensing and ensemble datasets, moderate-to-large biases exist in hourly precipitation forecasts compared to the Clean Air Status and Trends Network (CASTNET) and METAR. While the forecast system performs well in forecasting ozone (O3 ) throughout the year and fine particles with a diameter of 2.5 μm or less (PM2.5 ) for warm months (May-September), it significantly overpredicts annual mean concentrations of PM2.5 . This is due mainly to the high predicted concentrations of fine fugitive and coarse-mode particle components. Underpredictions in the southeastern US and California during summer are attributed to missing sources and mechanisms of secondary organic aerosol formation from biogenic volatile organic compounds (VOCs) and semivolatile or intermediate-volatility organic compounds. This work demonstrates the ability of FV3-based GFS in driving the air quality forecasting. It identifies possible underlying causes for systematic region- and time-specific model biases, which will provide a scientific basis for further development of the next-generation NAQFC., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.- Published
- 2021
- Full Text
- View/download PDF
26. The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module in the Community Multiscale Air Quality (CMAQ) modeling system version 5.3.2.
- Author
-
Murphy BN, Nolte CG, Sidi F, Bash JO, Appel KW, Jang C, Kang D, Kelly J, Mathur R, Napelenok S, Pouliot G, and Pye HOT
- Abstract
Air quality modeling for research and regulatory applications often involves executing many emissions sensitivity cases to quantify impacts of hypothetical scenarios, estimate source contributions, or quantify uncertainties. Despite the prevalence of this task, conventional approaches for perturbing emissions in chemical transport models like the Community Multiscale Air Quality (CMAQ) model require extensive offline creation and finalization of alternative emissions input files. This workflow is often time-consuming, error-prone, inconsistent among model users, difficult to document, and dependent on increased hard disk resources. The Detailed Emissions Scaling, Isolation, and Diagnostic (DESID) module, a component of CMAQv5.3 and beyond, addresses these limitations by performing these modifications online during the air quality simulation. Further, the model contains an Emission Control Interface which allows users to prescribe both simple and highly complex emissions scaling operations with control over individual or multiple chemical species, emissions sources, and spatial areas of interest. DESID further enhances the transparency of its operations with extensive error-checking and optional gridded output of processed emission fields. These new features are of high value to many air quality applications including routine perturbation studies, atmospheric chemistry research, and coupling with external models (e.g., energy system models, reduced-form models)., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.
- Published
- 2021
- Full Text
- View/download PDF
27. The Community Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation.
- Author
-
Appel KW, Bash JO, Fahey KM, Foley KM, Gilliam RC, Hogrefe C, Hutzell WT, Kang D, Mathur R, Murphy BN, Napelenok SL, Nolte CG, Pleim JE, Pouliot GA, Pye HOT, Ran L, Roselle SJ, Sarwar G, Schwede DB, Sidi FI, Spero TL, and Wong DC
- Abstract
The Community Multiscale Air Quality (CMAQ) model version 5.3 (CMAQ53), released to the public in August 2019 and followed by version 5.3.1 (CMAQ531) in December 2019, contains numerous science updates, enhanced functionality, and improved computation efficiency relative to the previous version of the model, 5.2.1 (CMAQ521). Major science advances in the new model include a new aerosol module (AERO7) with significant updates to secondary organic aerosol (SOA) chemistry, updated chlorine chemistry, updated detailed bromine and iodine chemistry, updated simple halogen chemistry, the addition of dimethyl sulfide (DMS) chemistry in the CB6r3 chemical mechanism, updated M3Dry bidirectional deposition model, and the new Surface Tiled Aerosol and Gaseous Exchange (STAGE) bidirectional deposition model. In addition, support for the Weather Research and Forecasting (WRF) model's hybrid vertical coordinate (HVC) was added to CMAQ53 and the Meteorology-Chemistry Interface Processor (MCIP) version 5.0 (MCIP50). Enhanced functionality in CMAQ53 includes the new Detailed Emissions Scaling, Isolation and Diagnostic (DESID) system for scaling incoming emissions to CMAQ and reading multiple gridded input emission files. Evaluation of CMAQ531 was performed by comparing monthly and seasonal mean daily 8 h average (MDA8) O
3 and daily PM2.5 values from several CMAQ531 simulations to a similarly configured CMAQ521 simulation encompassing 2016. For MDA8 O3 , CMAQ531 has higher O3 in the winter versus CMAQ521, due primarily to reduced dry deposition to snow, which strongly reduces wintertime O3 bias (2-4 ppbv monthly average). MDA8 O3 is lower with CMAQ531 throughout the rest of the year, particularly in spring, due in part to reduced O3 from the lateral boundary conditions (BCs), which generally increases MDA8 O3 bias in spring and fall ( 0.5 μg m-3 ). For daily 24 h average PM2.5 , CMAQ531 has lower concentrations on average in spring and fall, higher concentrations in summer, and similar concentrations in winter to CMAQ521, which slightly increases bias in spring and fall and reduces bias in summer. Comparisons were also performed to isolate updates to several specific aspects of the modeling system, namely the lateral BCs, meteorology model version, and the deposition model used. Transitioning from a hemispheric CMAQ (HCMAQ) version 5.2.1 simulation to a HCMAQ version 5.3 simulation to provide lateral BCs contributes to higher O3 mixing ratios in the regional CMAQ simulation in higher latitudes during winter (due to the decreased O3 dry deposition to snow in CMAQ53) and lower O3 mixing ratios in middle and lower latitudes year-round (due to reduced O3 over the ocean with CMAQ53). Transitioning from WRF version 3.8 to WRF version 4.1.1 with the HVC resulted in consistently higher (1.0-1.5 ppbv) MDA8 O3 mixing ratios and higher PM2.5 concentrations (0.1-0.25 μg m-3 ) throughout the year. Finally, comparisons of the M3Dry and STAGE deposition models showed that MDA8 O3 is generally higher with M3Dry outside of summer, while PM2.5 is consistently higher with STAGE due to differences in the assumptions of particle deposition velocities to non-vegetated surfaces and land use with short vegetation (e.g., grasslands) between the two models. For ambient NH3 , STAGE has slightly higher concentrations and smaller bias in the winter, spring, and fall, while M3Dry has higher concentrations and smaller bias but larger error and lower correlation in the summer., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.- Published
- 2021
- Full Text
- View/download PDF
28. Reactive organic carbon emissions from volatile chemical products.
- Author
-
Seltzer KM, Pennington E, Rao V, Murphy BN, Strum M, Isaacs KK, and Pye HOT
- Abstract
Volatile chemical products (VCPs) are an increasingly important source of anthropogenic reactive organic carbon (ROC) emissions. Among these sources are everyday items, such as personal care products, general cleaners, architectural coatings, pesticides, adhesives, and printing inks. Here, we develop VCPy, a new framework to model organic emissions from VCPs throughout the United States, including spatial allocation to regional and local scales. Evaporation of a species from a VCP mixture in the VCPy framework is a function of the compound-specific physiochemical properties that govern volatilization and the timescale relevant for product evaporation. We introduce two terms to describe these processes: evaporation timescale and use timescale. Using this framework, predicted national per capita organic emissions from VCPs are 9.5 kg per person per year (6.4 kg C per person per year) for 2016, which translates to 3.05 Tg (2.06 Tg C), making VCPs a dominant source of anthropogenic organic emissions in the United States. Uncertainty associated with this framework and sensitivity to select parameters were characterized through Monte Carlo analysis, resulting in a 95 % confidence interval of national VCP emissions for 2016 of 2.61-3.53 Tg (1.76-2.38 Tg C). This nationwide total is broadly consistent with the U.S. EPA's 2017 National Emission Inventory (NEI); however, county-level and categorical estimates can differ substantially from NEI values. VCPy predicts higher VCP emissions than the NEI for approximately half of all counties, with 5 % of all counties having greater than 55 % higher emissions. Categorically, application of the VCPy framework yields higher emissions for personal care products (150 %) and paints and coatings (25 %) when compared to the NEI, whereas pesticides (-54 %) and printing inks (-13 %) feature lower emissions. An observational evaluation indicates emissions of key species from VCPs are reproduced with high fidelity using the VCPy framework (normalized mean bias of -13 % with r = 0.95). Sector-wide, the effective secondary organic aerosol yield and maximum incremental reactivity of VCPs are 5.3 % by mass and 1.58 gO
3 g-1 , respectively, indicating VCPs are an important, and likely to date underrepresented, source of secondary pollution in urban environments., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.- Published
- 2021
- Full Text
- View/download PDF
29. Characterizing the Air Emissions, Transport, and Deposition of Per- and Polyfluoroalkyl Substances from a Fluoropolymer Manufacturing Facility.
- Author
-
D'Ambro EL, Pye HOT, Bash JO, Bowyer J, Allen C, Efstathiou C, Gilliam RC, Reynolds L, Talgo K, and Murphy BN
- Subjects
- Humans, Manufacturing and Industrial Facilities, North Carolina, Fluorocarbons analysis, Water Pollutants, Chemical analysis, Water Purification
- Abstract
Per- and polyfluoroalkyl substances (PFASs) have been released into the environment for decades, yet contributions of air emissions to total human exposure, from inhalation and drinking water contamination via deposition, are poorly constrained. The atmospheric transport and fate of a PFAS mixture from a fluoropolymer manufacturing facility in North Carolina were investigated with the Community Multiscale Air Quality (CMAQ) model applied at high resolution (1 km) and extending ∼150 km from the facility. Twenty-six explicit PFAS compounds, including GenX, were added to CMAQ using current best estimates of air emissions and relevant physicochemical properties. The new model, CMAQ-PFAS, predicts that 5% by mass of total emitted PFAS and 2.5% of total GenX are deposited within ∼150 km of the facility, with the remainder transported out. Modeled air concentrations of total GenX and total PFAS around the facility can reach 24.6 and 8500 ng m
-3 but decrease to ∼0.1 and ∼10 ng m-3 at 35 km downwind, respectively. We find that compounds with acid functionality have higher deposition due to enhanced water solubility and pH-driven partitioning to aqueous media. To our knowledge, this is the first modeling study of the fate of a comprehensive, chemically resolved suite of PFAS air emissions from a major manufacturing source.- Published
- 2021
- Full Text
- View/download PDF
30. Impact of dimethylsulfide chemistry on air quality over the Northern Hemisphere.
- Author
-
Zhao J, Sarwar G, Gantt B, Foley K, Henderson BH, Pye HOT, Fahey K, Kang D, Mathur R, Zhang Y, Li Q, and Saiz-Lopez A
- Abstract
We implement oceanic dimethylsulfide (DMS) emissions and its atmospheric chemical reactions into the Community Multiscale Air Quality (CMAQv53) model and perform annual simulations without and with DMS chemistry to quantify its impact on tropospheric composition and air quality over the Northern Hemisphere. DMS chemistry enhances both sulfur dioxide (SO
2 ) and sulfate ( S O 4 2 - ) over seawater and coastal areas. It enhances annual mean surface SO2 concentration by +46 pptv and S O 4 2 - by +0.33 μg/m3 and decreases aerosol nitrate concentration by -0.07 μg/m3 over seawater compared to the simulation without DMS chemistry. The changes decrease with altitude and are limited to the lower atmosphere. Impacts of DMS chemistry on S O 4 2 - are largest in the summer and lowest in the fall due to the seasonality of DMS emissions, atmospheric photochemistry and resultant oxidant levels. Hydroxyl and nitrate radical-initiated pathways oxidize 75% of the DMS while halogen-initiated pathways oxidize 25%. DMS chemistry leads to more acidic particles over seawater by decreasing aerosol pH. Increased S O 4 2 - from DMS enhances atmospheric extinction while lower aerosol nitrate reduces the extinction so that the net effect of DMS chemistry on visibility tends to remain unchanged over most of the seawater.- Published
- 2020
- Full Text
- View/download PDF
31. Criteria pollutant impacts of volatile chemical products informed by near-field modeling.
- Author
-
Qin M, Murphy BN, Isaacs KK, McDonald BC, Lu Q, McKeen SA, Koval L, Robinson AL, Efstathiou C, Allen C, and Pye HOT
- Abstract
Consumer, industrial, and commercial product usage is a source of exposure to potentially hazardous chemicals. In addition, cleaning agents, personal care products, coatings, and other volatile chemical products (VCPs), evaporate and react in the atmosphere producing secondary pollutants. Here, we show high air emissions from VCP usage (≥ 14 kg person
-1 yr-1 , at least 1.7× higher than current operational estimates) are supported by multiple estimation methods and constraints imposed by ambient levels of ozone, hydroxyl radical (OH) reactivity, and the organic component of fine particulate matter (PM2.5 ) in Pasadena, California. A near-field model, which estimates human chemical exposure during or in the vicinity of product use, indicates these high air emissions are consistent with organic product usage up to ~75 kg person-1 yr-1 , and inhalation of consumer products could be a non-negligible exposure pathway. After constraining the PM2.5 yield to 5% by mass, VCPs produce ~41% of the photochemical organic PM2.5 (1.1 ± 0.3 μ g m-3 ) and ~17% of maximum daily 8-hr average ozone (9 ± 2 ppb) in summer Los Angeles. Therefore, both toxicity and ambient criteria pollutant formation should be considered when organic substituents are developed for VCPs in pursuit of safer and sustainable products and cleaner air.- Published
- 2020
- Full Text
- View/download PDF
32. Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model.
- Author
-
Schmedding R, Rasool QZ, Zhang Y, Pye HOT, Zhang H, Chen Y, Surratt JD, Lopez-Hilfiker FD, Thornton JA, Goldstein AH, and Vizuete W
- Abstract
Atmospheric aerosols are a significant public health hazard and have substantial impacts on the climate. Secondary organic aerosols (SOAs) have been shown to phase separate into a highly viscous organic outer layer surrounding an aqueous core. This phase separation can decrease the partitioning of semi-volatile and low-volatile species to the organic phase and alter the extent of acid-catalyzed reactions in the aqueous core. A new algorithm that can determine SOA phase separation based on their glass transition temperature ( T
g ), oxygen to carbon (O : C) ratio and organic mass to sulfate ratio, and meteorological conditions was implemented into the Community Multiscale Air Quality Modeling (CMAQ) system version 5.2.1 and was used to simulate the conditions in the continental United States for the summer of 2013. SOA formed at the ground/surface level was predicted to be phase separated with core-shell morphology, i.e., aqueous inorganic core surrounded by organic coating 65.4 % of the time during the 2013 Southern Oxidant and Aerosol Study (SOAS) on average in the isoprene-rich southeastern United States. Our estimate is in proximity to the previously reported ~ 70 % in literature. The phase states of organic coatings switched between semi-solid and liquid states, depending on the environmental conditions. The semi-solid shell occurring with lower aerosol liquid water content (western United States and at higher altitudes) has a viscosity that was predicted to be 102 -1012 Pa s, which resulted in organic mass being decreased due to diffusion limitation. Organic aerosol was primarily liquid where aerosol liquid water was dominant (eastern United States and at the surface), with a viscosity < 102 Pa s. Phase separation while in a liquid phase state, i.e., liquid-liquid phase separation (LLPS), also reduces reactive uptake rates relative to homogeneous internally mixed liquid morphology but was lower than aerosols with a thick viscous organic shell. The sensitivity cases performed with different phase-separation parameterization and dissolution rate of isoprene epoxydiol (IEPOX) into the particle phase in CMAQ can have varying impact on fine particulate matter (PM2.5 ) organic mass, in terms of bias and error compared to field data collected during the 2013 SOAS. This highlights the need to better constrain the parameters that govern phase state and morphology of SOA, as well as expand mechanistic representation of multiphase chemistry for non-IEPOX SOA formation in models aided by novel experimental insights., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.- Published
- 2020
- Full Text
- View/download PDF
33. The Acidity of Atmospheric Particles and Clouds.
- Author
-
Pye HOT, Nenes A, Alexander B, Ault AP, Barth MC, Clegg SL, Collett JL Jr, Fahey KM, Hennigan CJ, Herrmann H, Kanakidou M, Kelly JT, Ku IT, McNeill VF, Riemer N, Schaefer T, Shi G, Tilgner A, Walker JT, Wang T, Weber R, Xing J, Zaveri RA, and Zuend A
- Abstract
Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semi-volatile gases such as HNO
3 , NH3 , HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally-constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicates acidity may be relatively constant due to the semi-volatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.- Published
- 2020
- Full Text
- View/download PDF
34. Simulation of organic aerosol formation during the CalNex study: updated mobile emissions and secondary organic aerosol parameterization for intermediate-volatility organic compounds.
- Author
-
Lu Q, Murphy BN, Qin M, Adams PJ, Zhao Y, Pye HOT, Efstathiou C, Allen C, and Robinson AL
- Abstract
We describe simulations using an updated version of the Community Multiscale Air Quality model version 5.3 (CMAQ v5.3) to investigate the contribution of intermediate-volatility organic compounds (IVOCs) to secondary organic aerosol (SOA) formation in southern California during the CalNex study. We first derive a model-ready parameterization for SOA formation from IVOC emissions from mobile sources. To account for SOA formation from both diesel and gasoline sources, the parameterization has six lumped precursor species that resolve both volatility and molecular structure (aromatic versus aliphatic). We also implement new mobile-source emission profiles that quantify all IVOCs based on direct measurements. The profiles have been released in SPECIATE 5.0. By incorporating both comprehensive mobile-source emission profiles for semivolatile organic compounds (SVOCs) and IVOCs and experimentally constrained SOA yields, this CMAQ configuration best represents the contribution of mobile sources to urban and regional ambient organic aerosol (OA). In the Los Angeles region, gasoline sources emit 4 times more non-methane organic gases (NMOGs) than diesel sources, but diesel emits roughly 3 times more IVOCs on an absolute basis. The revised model predicts all mobile sources (including on- and off-road gasoline, aircraft, and on- and off-road diesel) contribute ~ 1 μgm
-3 to the daily peak SOA concentration in Pasadena. This represents a ~ 70% increase in predicted daily peak SOA formation compared to the base version of CMAQ. Therefore, IVOCs in mobile-source emissions contribute almost as much SOA as traditional precursors such as single-ring aromatics. However, accounting for these emissions in CMAQ does not reproduce measurements of either ambient SOA or IVOCs. To investigate the potential contribution of other IVOC sources, we performed two exploratory simulations with varying amounts of IVOC emissions from nonmobile sources. To close the mass balance of primary hydrocarbon IVOCs, IVOCs would need to account for 12% of NMOG emissions from nonmobile sources (or equivalently 30.7 t d-1 in the Los Angeles-Pasadena region), a value that is well within the reported range of IVOC content from volatile chemical products. To close the SOA mass balance and also explain the mildly oxygenated IVOCs in Pasadena, an additional 14.8% of nonmobile-source NMOG emissions would need to be IVOCs (assuming SOA yields from the mobile IVOCs apply to nonmobile IVOCs). However, an IVOC-to-NMOG ratio of 26.8% (or equivalently 68.5 t d-1 in the Los Angeles-Pasadena region) for nonmobile sources is likely unrealistically high. Our results highlight the important contribution of IVOCs to SOA production in the Los Angeles region but underscore that other uncertainties must be addressed (multigenerational aging, aqueous chemistry and vapor wall losses) to close the SOA mass balance. This research also highlights the effectiveness of regulations to reduce mobile-source emissions, which have in turn increased the relative importance of other sources, such as volatile chemical products., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.- Published
- 2020
- Full Text
- View/download PDF
35. Resolving ambient organic aerosol formation and aging pathways with simultaneous molecular composition and volatility observations.
- Author
-
Lee BH, D'Ambro EL, Lopez-Hilfiker FD, Schobesberger S, Mohr C, Zawadowicz MA, Liu J, Shilling JE, Hu W, Palm BB, Jimenez JL, Hao L, Virtanen A, Zhang H, Goldstein AH, Pye HOT, and Thornton JA
- Abstract
Organic aerosol (OA) constitutes a significant fraction of atmospheric fine particle mass. However, the precursors and chemical processes responsible for a majority of OA are rarely conclusively identified. We use online observations of hundreds of simultaneously measured molecular components obtained from 15 laboratory OA formation experiments with constraints on their effective saturation vapor concentrations to attribute the VOC precursors and subsequent chemical pathways giving rise to the vast majority of OA mass measured in two forested regions. We find that precursors and chemical pathways regulating OA composition and volatility are dynamic over hours to days, with their variations driven by coupled interactions between multiple oxidants. The extent of physical and photochemical aging, and its modulation by NO
x , were key to a uniquely comprehensive combined composition-volatility description of OA. Our findings thus provide some of the most complete mechanistic-level guidance to the development of OA descriptions in air quality and Earth system models.- Published
- 2020
- Full Text
- View/download PDF
36. Toward the improvement of total nitrogen deposition budgets in the United States.
- Author
-
Walker JT, Beachley G, Amos HM, Baron JS, Bash J, Baumgardner R, Bell MD, Benedict KB, Chen X, Clow DW, Cole A, Coughlin JG, Cruz K, Daly RW, Decina SM, Elliott EM, Fenn ME, Ganzeveld L, Gebhart K, Isil SS, Kerschner BM, Larson RS, Lavery T, Lear GG, Macy T, Mast MA, Mishoe K, Morris KH, Padgett PE, Pouyat RV, Puchalski M, Pye HOT, Rea AW, Rhodes MF, Rogers CM, Saylor R, Scheffe R, Schichtel BA, Schwede DB, Sexstone GA, Sive BC, Sosa Echeverría R, Templer PH, Thompson T, Tong D, Wetherbee GA, Whitlow TH, Wu Z, Yu Z, and Zhang L
- Abstract
Frameworks for limiting ecosystem exposure to excess nutrients and acidity require accurate and complete deposition budgets of reactive nitrogen (Nr). While much progress has been made in developing total Nr deposition budgets for the U.S., current budgets remain limited by key data and knowledge gaps. Analysis of National Atmospheric Deposition Program Total Deposition (NADP/TDep) data illustrates several aspects of current Nr deposition that motivate additional research. Averaged across the continental U.S., dry deposition contributes slightly more (55%) to total deposition than wet deposition and is the dominant process (>90%) over broad areas of the Southwest and other arid regions of the West. Lack of dry deposition measurements imposes a reliance on models, resulting in a much higher degree of uncertainty relative to wet deposition which is routinely measured. As nitrogen oxide (NO
x ) emissions continue to decline, reduced forms of inorganic nitrogen (NHx = NH3 + NH4 + ) now contribute >50% of total Nr deposition over large areas of the U.S. Expanded monitoring and additional process-level research are needed to better understand NHx deposition, its contribution to total Nr deposition budgets, and the processes by which reduced N deposits to ecosystems. Urban and suburban areas are hotspots where routine monitoring of oxidized and reduced Nr deposition is needed. Finally, deposition budgets have incomplete information about the speciation of atmospheric nitrogen; monitoring networks do not capture important forms of Nr such as organic nitrogen. Building on these themes, we detail the state of the science of Nr deposition budgets in the U.S. and highlight research priorities to improve deposition budgets in terms of monitoring and flux measurements, leaf- to regional-scale modeling, source apportionment, and characterization of deposition trends and patterns., (Published by Elsevier B.V.)- Published
- 2019
- Full Text
- View/download PDF
37. Vapor-pressure pathways initiate but hydrolysis products dominate the aerosol estimated from organic nitrates.
- Author
-
Zare A, Fahey KM, Sarwar G, Cohen RC, and Pye HOT
- Abstract
Organic nitrates contribute significantly to the total organic aerosol burden. However, the formation and loss mechanisms of particulate organic nitrates (PONs) remain poorly understood. In this study, with the CMAQ modeling system, we implement a detailed biogenic volatile organic carbon gas phase oxidation mechanism and an explicit representation of multiphase organic nitrate formation and loss, including both aqueous-phase uptake and vapor-pressure driven partitioning into organic aerosol as well as condensed-phase reactions. We find vapor-pressure dependent partitioning is the leading mechanism for formation of PONs and hydrolysis is a major loss mechanism for PON resulting in substantial amounts of organic aerosol that originate as an organic nitrate. Partitioning and hydrolysis together can produce high concentrations (up to 5 μg/m
3 ) of PON-derived aerosols over the southeast United States. The main source of PON-derived aerosols is monoterpene nitrates that have been chemically processed to lose their nitrate functionality through aqueous chemistry. In contrast, the major portion of aqueous aerosol and in-cloud PON, which retains its nitrate moiety, are soluble isoprene nitrates. We evaluate the model using the observations from the Southern Oxidant and Aerosol Study (SOAS) campaign in the Southeast US in summer 2013 and show implementing aerosol-phase pathways for organic nitrates dramatically improves the magnitude of total alkyl nitrates (ANs) in CMAQ. The contribution of PONs to the total ANs at the SOAS site is estimated to be ~20%, a value in the range of the measurements. The predicted AN composition is shifted from monoterpene to isoprene and anthropogenic organic nitrates.- Published
- 2019
- Full Text
- View/download PDF
38. Increasing Isoprene Epoxydiol-to-Inorganic Sulfate Aerosol Ratio Results in Extensive Conversion of Inorganic Sulfate to Organosulfur Forms: Implications for Aerosol Physicochemical Properties.
- Author
-
Riva M, Chen Y, Zhang Y, Lei Z, Olson NE, Boyer HC, Narayan S, Yee LD, Green HS, Cui T, Zhang Z, Baumann K, Fort M, Edgerton E, Budisulistiorini SH, Rose CA, Ribeiro IO, E Oliveira RL, Dos Santos EO, Machado CMD, Szopa S, Zhao Y, Alves EG, de Sá SS, Hu W, Knipping EM, Shaw SL, Duvoisin Junior S, de Souza RAF, Palm BB, Jimenez JL, Glasius M, Goldstein AH, Pye HOT, Gold A, Turpin BJ, Vizuete W, Martin ST, Thornton JA, Dutcher CS, Ault AP, and Surratt JD
- Subjects
- Aerosols, Butadienes, Hemiterpenes, Sulfates, Tennessee, Atmosphere, Pentanes
- Abstract
Acid-driven multiphase chemistry of isoprene epoxydiols (IEPOX), key isoprene oxidation products, with inorganic sulfate aerosol yields substantial amounts of secondary organic aerosol (SOA) through the formation of organosulfur compounds. The extent and implications of inorganic-to-organic sulfate conversion, however, are unknown. In this article, we demonstrate that extensive consumption of inorganic sulfate occurs, which increases with the IEPOX-to-inorganic sulfate concentration ratio (IEPOX/Sulf
inorg ), as determined by laboratory measurements. Characterization of the total sulfur aerosol observed at Look Rock, Tennessee, from 2007 to 2016 shows that organosulfur mass fractions will likely continue to increase with ongoing declines in anthropogenic Sulfinorg , consistent with our laboratory findings. We further demonstrate that organosulfur compounds greatly modify critical aerosol properties, such as acidity, morphology, viscosity, and phase state. These new mechanistic insights demonstrate that changes in SO2 emissions, especially in isoprene-dominated environments, will significantly alter biogenic SOA physicochemical properties. Consequently, IEPOX/Sulfinorg will play an important role in understanding the historical climate and determining future impacts of biogenic SOA on the global climate and air quality.- Published
- 2019
- Full Text
- View/download PDF
39. Anthropogenic enhancements to production of highly oxygenated molecules from autoxidation.
- Author
-
Pye HOT, D'Ambro EL, Lee BH, Schobesberger S, Takeuchi M, Zhao Y, Lopez-Hilfiker F, Liu J, Shilling JE, Xing J, Mathur R, Middlebrook AM, Liao J, Welti A, Graus M, Warneke C, de Gouw JA, Holloway JS, Ryerson TB, Pollack IB, and Thornton JA
- Abstract
Atmospheric oxidation of natural and anthropogenic volatile organic compounds (VOCs) leads to secondary organic aerosol (SOA), which constitutes a major and often dominant component of atmospheric fine particulate matter (PM
2.5 ). Recent work demonstrates that rapid autoxidation of organic peroxy radicals (RO2 ) formed during VOC oxidation results in highly oxygenated organic molecules (HOM) that efficiently form SOA. As NOx emissions decrease, the chemical regime of the atmosphere changes to one in which RO2 autoxidation becomes increasingly important, potentially increasing PM2.5 , while oxidant availability driving RO2 formation rates simultaneously declines, possibly slowing regional PM2.5 formation. Using a suite of in situ aircraft observations and laboratory studies of HOM, together with a detailed molecular mechanism, we show that although autoxidation in an archetypal biogenic VOC system becomes more competitive as NOx decreases, absolute HOM production rates decrease due to oxidant reductions, leading to an overall positive coupling between anthropogenic NOx and localized biogenic SOA from autoxidation. This effect is observed in the Atlanta, Georgia, urban plume where HOM is enhanced in the presence of elevated NO, and predictions for Guangzhou, China, where increasing HOM-RO2 production coincides with increases in NO from 1990 to 2010. These results suggest added benefits to PM2.5 abatement strategies come with NOx emission reductions and have implications for aerosol-climate interactions due to changes in global SOA resulting from NOx interactions since the preindustrial era., Competing Interests: The authors declare no conflict of interest.- Published
- 2019
- Full Text
- View/download PDF
40. Assessing PM 2.5 Model Performance for the Conterminous U.S. with Comparison to Model Performance Statistics from 2007-2015.
- Author
-
Kelly JT, Koplitz SN, Baker KR, Holder AL, Pye HOT, Murphy BN, Bash JO, Henderson BH, Possiel N, Simon H, Eyth AM, Jang C, Phillips S, and Timin B
- Abstract
Previous studies have proposed that model performance statistics from earlier photochemical grid model (PGM) applications can be used to benchmark performance in new PGM applications. A challenge in implementing this approach is that limited information is available on consistently calculated model performance statistics that vary spatially and temporally over the U.S. Here, a consistent set of model performance statistics are calculated by year, season, region, and monitoring network for PM
2.5 and its major components using simulations from versions 4.7.1-5.2.1 of the Community Multiscale Air Quality (CMAQ) model for years 2007-2015. The multi-year set of statistics is then used to provide quantitative context for model performance results from the 2015 simulation. Model performance for PM2.5 organic carbon in the 2015 simulation ranked high (i.e., favorable performance) in the multi-year dataset, due to factors including recent improvements in biogenic secondary organic aerosol and atmospheric mixing parameterizations in CMAQ. Model performance statistics for the Northwest region in 2015 ranked low (i.e., unfavorable performance) for many species in comparison to the 2007-2015 dataset. This finding motivated additional investigation that suggests a need for improved speciation of wildfire PM2.5 emissions and modeling of boundary layer dynamics near water bodies. Several limitations were identified in the approach of benchmarking new model performance results with previous results. Since performance statistics vary widely by region and season, a simple set of national performance benchmarks (e.g., one or two targets per species and statistic) as proposed previously are inadequate to assess model performance throughout the U.S. Also, trends in model performance statistics for sulfate over the 2007 to 2015 period suggest that model performance for earlier years may not be a useful reference for assessing model performance for recent years in some cases. Comparisons of results from the 2015 base case with results from five sensitivity simulations demonstrated the importance of parameterizations of NH3 surface exchange, organic aerosol volatility and production, and emissions of crustal cations for predicting PM2.5 species concentrations., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.- Published
- 2019
- Full Text
- View/download PDF
41. α-Pinene-Derived Organic Coatings on Acidic Sulfate Aerosol Impacts Secondary Organic Aerosol Formation from Isoprene in a Box Model.
- Author
-
Schmedding R, Ma M, Zhang Y, Farrell S, Pye HOT, Chen Y, Wang CT, Rasool QZ, Budisulistiorini SH, Ault AP, Surratt JD, and Vizuete W
- Abstract
Fine particulate matter (PM
2.5 ) is known to have an adverse impact on public health and is an important climate forcer. Secondary organic aerosol (SOA) contributes up to 80% of PM2.5 worldwide and multiphase reactions are an important pathway to form SOA. Aerosol-phase state is thought to influence the reactive uptake of gas-phase precursors to aerosol particles by altering diffusion rates within particles. Current air quality models do not include the impact of diffusion-limiting organic coatings on SOA formation. This work examines how α -pinene-derived organic coatings change the predicted formation of SOA from the acid-catalyzed multiphase reactions of isoprene epoxydiols (IEPOX). A box model, with inputs provided from field measurements taken at the Look Rock (LRK) site in Great Smokey Mountains National Park during the 2013 Southern Oxidant and Aerosol Study (SOAS), was modified to incorporate the latest laboratory-based kinetic data accounting for organic coating influences. Including an organic coating influence reduced the modeled reactive uptake when relative humidity was in the 55-80% range, with predicted IEPOX-derived SOA being reduced by up to 33%. Only sensitivity cases with a large increase in Henry's Law values of an order of magnitude or more or in particle reaction rates resulted in the large statistically significant differences form base model performance. These results suggest an organic coating layer could have an impact on IEPOX-derived SOA formation and warrant consideration in regional and global scale models.- Published
- 2019
- Full Text
- View/download PDF
42. Quantitative constraints on autoxidation and dimer formation from direct probing of monoterpene-derived peroxy radical chemistry.
- Author
-
Zhao Y, Thornton JA, and Pye HOT
- Abstract
Organic peroxy radicals (RO
2 ) are key intermediates in the atmospheric degradation of organic matter and fuel combustion, but to date, few direct studies of specific RO2 in complex reaction systems exist, leading to large gaps in our understanding of their fate. We show, using direct, speciated measurements of a suite of RO2 and gas-phase dimers from O3 -initiated oxidation of α-pinene, that ∼150 gaseous dimers (C16-20 H24-34 O4-13 ) are primarily formed through RO2 cross-reactions, with a typical rate constant of 0.75-2 × 10-12 cm3 molecule-1 s-1 and a lower-limit dimer formation branching ratio of 4%. These findings imply a gaseous dimer yield that varies strongly with nitric oxide (NO) concentrations, of at least 0.2-2.5% by mole (0.5-6.6% by mass) for conditions typical of forested regions with low to moderate anthropogenic influence (i.e., ≤50-parts per trillion NO). Given their very low volatility, the gaseous C16-20 dimers provide a potentially important organic medium for initial particle formation, and alone can explain 5-60% of α-pinene secondary organic aerosol mass yields measured at atmospherically relevant particle mass loadings. The responses of RO2 , dimers, and highly oxygenated multifunctional compounds (HOM) to reacted α-pinene concentration and NO imply that an average ∼20% of primary α-pinene RO2 from OH reaction and 10% from ozonolysis autoxidize at 3-10 s-1 and ≥1 s-1 , respectively, confirming both oxidation pathways produce HOM efficiently, even at higher NO concentrations typical of urban areas. Thus, gas-phase dimer formation and RO2 autoxidation are ubiquitous sources of low-volatility organic compounds capable of driving atmospheric particle formation and growth., Competing Interests: The authors declare no conflict of interest.- Published
- 2018
- Full Text
- View/download PDF
43. Additional Benefits of Federal Air-Quality Rules: Model Estimates of Controllable Biogenic Secondary Organic Aerosol.
- Author
-
Carlton AG, Pye HOT, Baker KR, and Hennigan CJ
- Subjects
- Aerosols, Humans, Particulate Matter, Air Pollutants, Air Pollution, Environmental Pollutants
- Abstract
Atmospheric models that accurately describe the fate and transport of trace species for the right reasons aid in the development of effective air-quality management strategies that safeguard human health. Controllable emissions facilitate the formation of biogenic secondary organic aerosol (BSOA) to enhance the atmospheric fine particulate matter (PM
2.5 ) burden. Previous modeling with the EPA's Community Multiscale Air Quality (CMAQ) model predicted that anthropogenic primary organic aerosol (POA) emissions had the greatest impact on BSOA. That experiment included formation processes involving semivolatile partitioning but not aerosol liquid water (ALW), a ubiquitous PM constituent. We conduct 17 summertime CMAQ simulations with updated chemistry and evaluate changes in BSOA due to the removal of individual pollutants and source sectors for the contiguous U.S. CMAQ predicts SO2 from electricity generating units, and mobile source NOX emissions have the largest impacts on BSOA. The removal of anthropogenic NOX , SO2 , and POA emissions during the simulation reduces the nationally averaged BSOA by 23, 14, and 8% and PM2.5 by 9.2, 14, and 5.3%, respectively. ALW mass concentrations decrease by 10 and 35% in response to the removal of NOX and SO2 emissions. This work contributes chemical insight into ancillary benefits of Federal NOX and SO2 rules that concurrently reduce organic PM2.5 mass.- Published
- 2018
- Full Text
- View/download PDF
44. Monoterpenes are the largest source of summertime organic aerosol in the southeastern United States.
- Author
-
Zhang H, Yee LD, Lee BH, Curtis MP, Worton DR, Isaacman-VanWertz G, Offenberg JH, Lewandowski M, Kleindienst TE, Beaver MR, Holder AL, Lonneman WA, Docherty KS, Jaoui M, Pye HOT, Hu W, Day DA, Campuzano-Jost P, Jimenez JL, Guo H, Weber RJ, de Gouw J, Koss AR, Edgerton ES, Brune W, Mohr C, Lopez-Hilfiker FD, Lutz A, Kreisberg NM, Spielman SR, Hering SV, Wilson KR, Thornton JA, and Goldstein AH
- Subjects
- Southeastern United States, Time Factors, Aerosols chemistry, Air Pollutants chemistry, Monoterpenes chemistry, Seasons
- Abstract
The chemical complexity of atmospheric organic aerosol (OA) has caused substantial uncertainties in understanding its origins and environmental impacts. Here, we provide constraints on OA origins through compositional characterization with molecular-level details. Our results suggest that secondary OA (SOA) from monoterpene oxidation accounts for approximately half of summertime fine OA in Centreville, AL, a forested area in the southeastern United States influenced by anthropogenic pollution. We find that different chemical processes involving nitrogen oxides, during days and nights, play a central role in determining the mass of monoterpene SOA produced. These findings elucidate the strong anthropogenic-biogenic interaction affecting ambient aerosol in the southeastern United States and point out the importance of reducing anthropogenic emissions, especially under a changing climate, where biogenic emissions will likely keep increasing., Competing Interests: The authors declare no conflict of interest.
- Published
- 2018
- Full Text
- View/download PDF
45. Coupling of organic and inorganic aerosol systems and the effect on gas-particle partitioning in the southeastern US.
- Author
-
Pye HOT, Zuend A, Fry JL, Isaacman-VanWertz G, Capps SL, Appel KW, Foroutan H, Xu L, Ng NL, and Goldstein AH
- Abstract
Several models were used to describe the partitioning of ammonia, water, and organic compounds between the gas and particle phases for conditions in the southeastern US during summer 2013. Existing equilibrium models and frameworks were found to be sufficient, although additional improvements in terms of estimating pure-species vapor pressures are needed. Thermodynamic model predictions were consistent, to first order, with a molar ratio of ammonium to sulfate of approximately 1.6 to 1.8 (ratio of ammonium to 2× sulfate, R
N/2S ≈ 0.8 to 0.9) with approximately 70% of total ammonia and ammonium (NHx ) in the particle. Southeastern Aerosol Research and Characterization Network (SEARCH) gas and aerosol and Southern Oxidant and Aerosol Study (SOAS) Monitor for AeRosols and Gases in Ambient air (MARGA) aerosol measurements were consistent with these conditions. CMAQv5.2 regional chemical transport model predictions did not reflect these conditions due to a factor of 3 overestimate of the nonvolatile cations. In addition, gas-phase ammonia was overestimated in the CMAQ model leading to an even lower fraction of total ammonia in the particle. Chemical Speciation Network (CSN) and aerosol mass spectrometer (AMS) measurements indicated less ammonium per sulfate than SEARCH and MARGA measurements and were inconsistent with thermodynamic model predictions. Organic compounds were predicted to be present to some extent in the same phase as inorganic constituents, modifying their activity and resulting in a decrease in [H+ ]air (H+ in μgm-3 air), increase in ammonia partitioning to the gas phase, and increase in pH compared to complete organic vs. inorganic liquid-liquid phase separation. In addition, accounting for nonideal mixing modified the pH such that a fully interactive inorganic-organic system had a pH roughly 0.7 units higher than predicted using traditional methods (pH = 1.5 vs. 0.7). Particle-phase interactions of organic and inorganic compounds were found to increase partitioning towards the particle phase (vs. gas phase) for highly oxygenated (O : C≥0.6) compounds including several isoprene-derived tracers as well as levoglu-cosan but decrease particle-phase partitioning for low O: C, monoterpene-derived species., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.- Published
- 2018
- Full Text
- View/download PDF
46. Regional Similarities and NO x -related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern U.S.
- Author
-
Liu J, Russell LM, Ruggeri G, Takahama S, Claflin MS, Ziemann PJ, Pye HOT, Murphy BN, Xu L, Ng NL, McKinney KA, Budisulistiorini SH, Bertram TH, Nenes A, and Surratt JD
- Abstract
During the 2013 Southern Oxidant and Aerosol Study, Fourier Transform Infrared Spectroscopy (FTIR) and Aerosol Mass Spectrometer (AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass concentrations were 15-60% higher at CTR than at LRK but their time series had moderate correlations (r~0.5). However, NO
x had no correlation (r=0.08) between the two sites with nighttime-to-early-morning peaks 3~10 times higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at both sites: Fossil Fuel Combustion (FFC) related organic aerosols, Mixed Organic Aerosols (MOA), and Biogenic Organic Aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab-generated particle mass from the photochemical oxidation of both isoprene and monoterpenes under high NOx conditions from chamber experiments. The BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of factors at both sites and a third nighttime NOx -related factor (33% of OM) at CTR but a daytime nitrate-related factor (28% of OM) at LRK. NOx was correlated with BOA and LO-OOA for NOx concentrations higher than 1 ppb at both sites, producing 0.5 ± 0.1 μg m-3 for CTR-LO-OOA and 1.0 ± 0.3 μg m-3 for CTR-BOA above 1 ppb additional biogenic OM for each 1 ppb increase of NOx .- Published
- 2018
- Full Text
- View/download PDF
47. Experimental and model estimates of the contributions from biogenic monoterpenes and sesquiterpenes to secondary organic aerosol in the southeastern United States.
- Author
-
Xu L, Pye HOT, He J, Chen Y, Murphy BN, and Ng LN
- Abstract
Atmospheric organic aerosol (OA) has important impacts on climate and human health but its sources remain poorly understood. Biogenic monoterpenes and sesquiterpenes are important precursors of secondary organic aerosol (SOA), but the amounts and pathways of SOA generation from these precursors are not well constrained by observations. We propose that the less-oxidized oxygenated organic aerosol (LO-OOA) factor resolved from positive matrix factorization (PMF) analysis on aerosol mass spectrometry (AMS) data can be used as a surrogate for fresh SOA from monoterpenes and sesquiterpenes in the southeastern US. This hypothesis is supported by multiple lines of evidence, including lab-in-the-field perturbation experiments, extensive ambient ground-level measurements, and state-of-the-art modeling. We performed lab-in-the-field experiments in which the ambient air is perturbed by the injection of selected monoterpenes and sesquiterpenes, and the subsequent SOA formation is investigated. PMF analysis on the perturbation experiments provides an objective link between LO-OOA and fresh SOA from monoterpenes and sesquiterpenes as well as insights into the sources of other OA factors. Further, we use an upgraded atmospheric model and show that modeled SOA concentrations from monoterpenes and sesquiterpenes could reproduce both the magnitude and diurnal variation of LO-OOA at multiple sites in the southeastern US, building confidence in our hypothesis. We estimate the annual average concentration of SOA from monoterpenes and sesquiterpenes in the southeastern US to be roughly 2 μg m
-3 ., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.- Published
- 2018
- Full Text
- View/download PDF
48. Southeast Atmosphere Studies: learning from model-observation syntheses.
- Author
-
Mao J, Carlton A, Cohen RC, Brune WH, Brown SS, Wolfe GM, Jimenez JL, Pye HOT, Ng NL, Xu L, McNeill VF, Tsigaridis K, McDonald BC, Warneke C, Guenther A, Alvarado MJ, de Gouw J, Mickley LJ, Leibensperger EM, Mathur R, Nolte CG, Portmann RW, Unger N, Tosca M, and Horowitz LW
- Abstract
Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios. Efforts to properly identify and implement the fundamental and controlling mechanisms in atmospheric models benefit from intensive observation periods, during which collocated measurements of diverse, speciated chemicals in both the gas and condensed phases are obtained. The Southeast Atmosphere Studies (SAS, including SENEX, SOAS, NOMADSS and SEAC4RS) conducted during the summer of 2013 provided an unprecedented opportunity for the atmospheric modeling community to come together to evaluate, diagnose and improve the representation of fundamental climate and air quality processes in models of varying temporal and spatial scales. This paper is aimed at discussing progress in evaluating, diagnosing and improving air quality and climate modeling using comparisons to SAS observations as a guide to thinking about improvements to mechanisms and parameterizations in models. The effort focused primarily on model representation of fundamental atmospheric processes that are essential to the formation of ozone, secondary organic aerosol (SOA) and other trace species in the troposphere, with the ultimate goal of understanding the radiative impacts of these species in the southeast and elsewhere. Here we address questions surrounding four key themes: gas-phase chemistry, aerosol chemistry, regional climate and chemistry interactions, and natural and anthropogenic emissions. We expect this review to serve as a guidance for future modeling efforts., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.
- Published
- 2018
- Full Text
- View/download PDF
49. Simulating Aqueous-Phase Isoprene-Epoxydiol (IEPOX) Secondary Organic Aerosol Production During the 2013 Southern Oxidant and Aerosol Study (SOAS).
- Author
-
Budisulistiorini SH, Nenes A, Carlton AG, Surratt JD, McNeill VF, and Pye HOT
- Subjects
- Air Pollutants, Oxidants, Sulfates, Water, Aerosols, Atmosphere
- Abstract
The lack of statistically robust relationships between IEPOX (isoprene epoxydiol)-derived SOA (IEPOX SOA) and aerosol liquid water and pH observed during the 2013 Southern Oxidant and Aerosol Study (SOAS) emphasizes the importance of modeling the whole system to understand the controlling factors governing IEPOX SOA formation. We present a mechanistic modeling investigation predicting IEPOX SOA based on Community Multiscale Air Quality (CMAQ) model algorithms and a recently introduced photochemical box model, simpleGAMMA. We aim to (1) simulate IEPOX SOA tracers from the SOAS Look Rock ground site, (2) compare the two model formulations, (3) determine the limiting factors in IEPOX SOA formation, and (4) test the impact of a hypothetical sulfate reduction scenario on IEPOX SOA. The estimated IEPOX SOA mass variability is in similar agreement (r
2 ∼ 0.6) with measurements. Correlations of the estimated and measured IEPOX SOA tracers with observed aerosol surface area (r2 ∼ 0.5-0.7), rate of particle-phase reaction (r2 ∼ 0.4-0.7), and sulfate (r2 ∼ 0.4-0.5) suggest an important role of sulfate in tracer formation via both physical and chemical mechanisms. A hypothetical 25% reduction of sulfate results in ∼70% reduction of IEPOX SOA formation, reaffirming the importance of aqueous phase chemistry in IEPOX SOA production.- Published
- 2017
- Full Text
- View/download PDF
50. Chemical transport model simulations of organic aerosol in southern California: model evaluation and gasoline and diesel source contributions.
- Author
-
Jathar SH, Woody M, Pye HOT, Baker KR, and Robinson AL
- Abstract
Gasoline- and diesel-fueled engines are ubiquitous sources of air pollution in urban environments. They emit both primary particulate matter and precursor gases that react to form secondary particulate matter in the atmosphere. In this work, we updated the organic aerosol module and organic emissions inventory of a three-dimensional chemical transport model, the Community Multiscale Air Quality Model (CMAQ), using recent, experimentally derived inputs and parameterizations for mobile sources. The updated model included a revised volatile organic compound (VOC) speciation for mobile sources and secondary organic aerosol (SOA) formation from unspeciated intermediate volatility organic compounds (IVOCs). The updated model was used to simulate air quality in southern California during May and June 2010, when the California Research at the Nexus of Air Quality and Climate Change (CalNex) study was conducted. Compared to the Traditional version of CMAQ, which is commonly used for regulatory applications, the updated model did not significantly alter the predicted organic aerosol (OA) mass concentrations but did substantially improve predictions of OA sources and composition (e.g., POA-SOA split), as well as ambient IVOC concentrations. The updated model, despite substantial differences in emissions and chemistry, performed similar to a recently released research version of CMAQ (Woody et al., 2016) that did not include the updated VOC and IVOC emissions and SOA data. Mobile sources were predicted to contribute 30-40 % of the OA in southern California (half of which was SOA), making mobile sources the single largest source contributor to OA in southern California. The remainder of the OA was attributed to non-mobile anthropogenic sources (e.g., cooking, biomass burning) with biogenic sources contributing to less than 5 % to the total OA. Gasoline sources were predicted to contribute about 13 times more OA than diesel sources; this difference was driven by differences in SOA production. Model predictions highlighted the need to better constrain multi-generational oxidation reactions in chemical transport models., Competing Interests: Competing interests. The authors declare that they have no conflict of interest.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.