Transition metal catalysis is a powerful tool for chemical synthesis, a standard by which understanding of elementary chemical processes can be measured, and a source of awe for those who simply appreciate the difficulty of cleaving and forming chemical bonds. Each of these statements is amplified in cases where the transition metal catalyst controls the selectivity of a chemical reaction. Enantioselective catalysis is a challenging but well-established phenomenon, and regio- or site-selective catalysis is increasingly common. On the other hand, transition-metal-catalyzed reactions are typically conducted under highly optimized conditions. Rigorous exclusion of air and water is common, and it is taken for granted that only a single substrate (of a particular class) will be present in a reaction, a desired site selectivity can be achieved by installing a directing group, and undesired reactivity can be blocked with protecting groups. These are all reasonable synthetic strategies, but they also highlight limits to catalyst control. The utility of transition metal catalysis could be greatly expanded if catalysts possessed the ability to regulate which molecules they encounter and the relative orientation of those molecules. The rapid and widespread adoption of stoichiometric bioorthogonal reactions illustrates the utility of robust reactions that proceed with high selectivity and specificity under mild reaction conditions. Expanding this capability beyond preprogrammed substrate pairs via catalyst control could therefore have an enormous impact on molecular science. Many metalloenzymes exhibit this level of catalyst control, and directed evolution can be used to rapidly improve the catalytic properties of these systems. On the other hand, the range of reactions catalyzed by enzymes is limited relative to that developed by chemists. The possibility of imparting enzyme-like activity, selectivity, and evolvability to reactions catalyzed by synthetic transition metal complexes has inspired the creation of artificial metalloenzymes (ArMs). The increasing levels of catalyst control exhibited by ArMs developed to date suggest that these systems could constitute a powerful platform for bioorthogonal transition metal catalysis and for selective catalysis in general. This Account outlines the development of a new class of ArMs based on a prolyl oligopeptidase (POP) scaffold. Studies conducted on POP ArMs containing a covalently linked dirhodium cofactor have shown that POP can impart enantioselectivity to a range of dirhodium-catalyzed reactions, increase reaction rates, and improve the specificity for reaction of dirhodium carbene intermediates with targeted organic substrates over components of cell lysate, including bulk water. Several design features of these ArMs enabled their evolution via random mutagenesis, which revealed that mutations throughout the POP scaffold, beyond the second sphere of the dirhodium cofactor, were important for ArM activity and selectivity. While it was anticipated that the POP scaffold would be capable of encapsulating and thus controlling the selectivity of bulky cofactors, molecular dynamics studies also suggest that POP conformational dynamics plays a role in its unique efficacy. These advances in scaffold selection, bioconjugation, and evolution form the basis of our ongoing efforts to control transition metal reactivity using protein scaffolds with the goal of enabling unique synthetic capabilities, including bioorthogonal catalysis.