1. A Derived Gabriel–Popescu Theorem for t-Structures via Derived Injectives
- Author
-
Univerzita Karlova - Matematicko-fyzikální fakulta, Katedra Algebry, UCL - SST/IRMP - Institut de recherche en mathématique et physique, Genovese, Francesco, Ramos González, Julia, Univerzita Karlova - Matematicko-fyzikální fakulta, Katedra Algebry, UCL - SST/IRMP - Institut de recherche en mathématique et physique, Genovese, Francesco, and Ramos González, Julia
- Abstract
We prove a derived version of the Gabriel–Popescu theorem in the framework of dg-categories and t-structures. This exhibits any pretriangulated dg-category with a suitable t-structure (such that its heart is a Grothendieck abelian category) as a t-exact localization of a derived dg-category of dg-modules. We give an original proof based on a generalization of Mitchell’s argument in "A quick proof of the Gabriel-Popesco theorem" that involves derived injective objects. As an application, we provide a short proof of the fact that derived categories of Grothendieck abelian categories have a unique dg-enhancement.
- Published
- 2022