54 results on '"R D Monkhoev"'
Search Results
2. Cosmic Ray Study at the Astrophysical Complex TAIGA: Results and Plans
- Author
-
L. A. Kuzmichev, I. I. Astapov, P. A. Bezyazeekov, M. Blank, E. A. Bonvech, A. N. Borodin, M. Brueckner, N. M. Budnev, A. V. Bulan, D. V. Chernov, A. Chiavassa, A. N. Dyachok, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, D. Horns, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, A. A. Lagutin, M. V. Lavrova, Yu. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, A. D. Lukanov, D. Lukyantsev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, A. Pan, L. V. Pankov, A. D. Panov, A. A. Petrukhin, D. A. Podgrudkov, V. A. Poleschuk, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, A. Razumov, E. Rjabov, G. I. Rubtsov, Y. I. Sagan, V. S. Samoliga, A. Yu. Sidorenkov, A. A. Silaev, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, Y. Suvorkin, L. G. Sveshnikova, V. A. Tabolenko, A. B. Tanaev, B. A. Tarashansky, M. Ternovoy, L. G. Tkachev, M. Tluczykont, N. Ushakov, A. Vaidyanathan, P. A. Volchugov, N. V. Volkov, D. Voronin, R. Wischnewski, I. I. Yashin, A. V. Zagorodnikov, and D. P. Zhurov
- Subjects
Nuclear and High Energy Physics ,Atomic and Molecular Physics, and Optics - Published
- 2021
- Full Text
- View/download PDF
3. Detecting Gamma Rays with Energies Greater than 3–4 ТeV from the Crab Nebula and Blazar Markarian 421 by Imaging Atmospheric Cherenkov Telescopes in the TAIGA Experiment
- Author
-
L. G. Sveshnikova, I. I. Astapov, P. A. Bezyazeekov, M. Blank, A. N. Borodin, M. Brückner, N. M. Budnev, A. Bulan, A. Vaidyanathan, R. Wischnewski, P. Volchugov, D. Voronin, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryukhin, V. A. Kozhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. Chiavassa, M. Lavrova, A. A. Lagutin, Yu. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. Pan, M. I. Panasyuk, L. V. Pankov, A. L. Pakhorukov, A. A. Petrukhin, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, G. I. Rubtsov, E. V. Rjabov, Ya. I. Sagan, V. S. Samoliga, A. Yu. Sidorenkov, A. A. Silaev, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, Ya. Suvorkin, V. A. Tabolenko, A. Tanaev, B. A. Tarashansky, M. Ternovoy, L. G. Tkachev, M. Tluczykont, N. Ushakov, D. Horns, and I. I. Yashin
- Subjects
010302 applied physics ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,01 natural sciences - Published
- 2021
- Full Text
- View/download PDF
4. First Results from Operating a Prototype Wide-Angle Telescope for the TAIGA Installation
- Author
-
D. A. Podgrudkov, E. A. Bonvech, I. V. Vaiman, D. V. Chernov, I. I. Astapov, P. A. Bezyazeekov, M. Blank, A. N. Borodin, M. Brückner, N. M. Budnev, A. V. Bulan, A. Vaidyanathan, R. Wischnewski, P. A. Volchugov, D. M. Voronin, A. R. Gafarov, O. A. Gress, T. I. Gress, O. G. Grishin, A. Yu. Garmashi, V. M. Grebenyuk, A. V. Grinyuk, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, R. L. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. Chiavassa, M. Lavrova, A. A. Lagutin, Yu. E. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, A. Pan, M. I. Panasyuk, L. V. Pankov, A. A. Petrukhin, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, G. I. Rubtsov, E. V. Ryabov, Ya. I. Sagan, V. S. Samoliga, A. A. Silaev, A. Yu. Sidorenkov, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, L. G. Sveshnikova, Ya. V. Suvorkin, V. A. Tabolenko, A. V. Tanaev, B. A. Tarashansky, M. Yu. Ternovoy, L. G. Tkachev, M. Tluczykont, N. A. Ushakov, D. Horns, and I. V. Yashin
- Subjects
010302 applied physics ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,01 natural sciences - Published
- 2021
- Full Text
- View/download PDF
5. Experimental Complex TAIGA
- Author
-
N. Ushakov, N. B. Lubsandorzhiev, E. A. Kravchenko, Yu. Lemeshev, D. Chernykh, E. E. Korosteleva, Anatoly Lagutin, L. V. Pankov, A. Garmash, R. P. Kokoulin, A. V. Skurikhin, P. Volchugov, Andrey Sokolov, V. V. Prosin, D. A. Podgrudkov, A. L. Pakhorukov, Dmitry Chernov, M. Blank, A. Tanaev, L. G. Sveshnikova, L. G. Tkachev, E. A. Osipova, M. Slunechka, V.A. Tabolenko, Dieter Horns, M. Tluczykont, R. D. Monkhoev, I. I. Astapov, E. Popova, A. Chiavassa, A. Pushnin, M. Ternovoy, I. I. Yashin, A. N. Dyachok, Grigory Rubtsov, P. Bezyazykov, N. N. Kalmykov, D. Shipilov, M. Popesku, A. A. Petrukhin, A. Ivanova, Alexander Kryukov, Y. Sagan, A. Sidorenkov, Evgenii V Rjabov, V. Poleshchuk, D. Voronin, V. S. Ptuskin, Roman Raikin, B. A. Tarashchansky, Mikhail Panasyuk, O. A. Gress, V. Kiryukhin, A. Bulan, A. A. Grinyuk, V. A. Kozhin, V. V. Kindin, T. I. Gress, M. Brückner, R. R. Mirgazov, A. Pan, V. Samoliga, A. Vaidyanathan, Y. Kazarina, Oleg Fedorov, Dmitry Zhurov, A. Borodin, R. Mirzoyan, A. Porelli, A. Bonvech, K. G. Kompaniets, O. Grishin, Evgeny Postnikov, Aleksandr Gafarov, A. A. Silaev, A. V. Zagorodnikov, Bayarto Lubsandorzhiev, Y. Suvorkin, L. A. Kuzmichev, V. M. Grebenyuk, and R. Wischnewski
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,0103 physical sciences ,Taiga ,Astronomy ,010306 general physics ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Cherenkov radiation - Abstract
The astrophysical complex TAIGA (Tunka Advanced Instrument for cosmic-ray physics and Gamma-ray Astronomy), whose first phase is being completed in the Tunka valley 50 km from Lake Baikal, is described. Its research program, first results, and development prospects are discussed.
- Published
- 2020
- Full Text
- View/download PDF
6. Status of the TAIGA Experiment: From Cosmic-Ray Physics to Gamma Astronomy in Tunka Valley
- Author
-
Dmitry Chernov, A. V. Skurikhin, Andrey Sokolov, M. Slunecka, Grigory Rubtsov, N. N. Kalmykov, B. A. Tarashchansky, D. A. Podgrudkov, V. A. Poleschuk, Y. Suvorkin, P. Volchugov, A. L. Pakhorukov, Dieter Horns, N. M. Budnev, A. Tanaev, Roman Raikin, A. N. Dyachok, M. Tluczykont, A. A. Grinyuk, R. R. Mirgazov, A. Haungs, Evgeny Postnikov, N. B. Lubsandorzhiev, A. Pan, T. Marshalkina, Oleg Fedorov, V. Samoliga, V. S. Ptuskin, M. Kleifges, A. Chiavassa, Y. Sagan, R. Mirzoyan, A. Porelli, M. Brueckner, N. Ushakov, T. I. Gress, A. Borodin, V. Lenok, Aleksandr Gafarov, R. Togoo, A. Garmash, Dmitry Zhurov, A. A. Silaev, D. Kostyunin, L. G. Tkachev, A. V. Zagorodnikov, E. A. Osipova, V. Kiryuhin, E. V. Ryabov, Pavel Bezyazeekov, O. G. Grishin, D. Shipilov, A. Ivanova, E. Popova, O. A. Gress, L. G. Sveshnikova, A. Vaidyanathan, L. V. Pankov, B. K. Lubsandorzhiev, V. A. Kozhin, V. V. Kindin, M. Ternovoy, L. A. Kuzmichev, V. M. Grebenyuk, I. I. Astapov, R. Wischnewski, Mikhail Panasyuk, Frank G. Schröder, A. Pushnin, A. Bulan, A. Bonvech, K. G. Kompaniets, D. Voronin, V.A. Tabolenko, E. A. Kravchenko, D. Chernykh, E. E. Korosteleva, S. Malakhov, R. P. Kokoulin, A. A. Petrukhin, Yulia Kazarina, Ig. Yashin, Yu. Lemeshev, V. V. Prosin, Anatoly Lagutin, T. Huege, R. D. Monkhoev, Alexander Kryukov, and A. Sidorenkov
- Subjects
Physics ,Nuclear and High Energy Physics ,010308 nuclear & particles physics ,Observatory ,0103 physical sciences ,Taiga ,Astronomy ,Cosmic ray ,Radiation ,010306 general physics ,Hybrid approach ,01 natural sciences ,Atomic and Molecular Physics, and Optics - Abstract
The importance and advantages of the hybrid approach developed within the TAIGA project for studying the high-energy section of the spectrum of gamma radiation in the Universe are discussed. The pilot complex of the TAIGA gamma observatory with an area of 1 km $${}^{2}$$ is briefly described along with the lines of its development, and the first results obtained on this basis are given.
- Published
- 2020
- Full Text
- View/download PDF
7. Depth of the Maximum of Extensive Air Showers (EASes) and the Mean Mass Composition of Primary Cosmic Rays in the 1015–1018 eV Range of Energies, According to Data from the TUNKA-133 and TAIGA-HiSCORE Arrays for Detecting EAS Cherenkov Light in the Tunkinsk Valley
- Author
-
V. V. Prosin, I. I. Astapov, P. A. Bezyazeekov, A. N. Borodin, M. Brückner, N. M. Budnev, A. Bulan, A. Vaidyanathan, R. Wischnewski, P. Volchugov, D. Voronin, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, A. N. Dyachok, D. P. Zhurov, A. V. Zagorodnikov, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, V. A. Kozhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. Chiavassa, M. Lavrova, A. A. Lagutin, Yu. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. Pan, M. I. Panasyuk, L. V. Pankov, A. L. Pakhorukov, A. A. Petrukhin, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, G. I. Rubtsov, E. V. Ryabov, Ya. I. Sagan, V. S. Samoliga, L. G. Sveshnikova, A. Yu. Sidorenkov, A. A. Silaev, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, Y. Suvorkin, V. A. Tabolenko, A. Tanaev, B. A. Tarashansky, M. Ternovoy, L. G. Tkachev, M. Tluczykont, N. Ushakov, D. Horns, and I. I. Yashin
- Subjects
010302 applied physics ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,01 natural sciences - Published
- 2021
- Full Text
- View/download PDF
8. Gamma/Hadron Separation for a Ground Based IACT in Experiment TAIGA Using Machine Learning Methods
- Author
-
Maria Vasyutina, L. Sveshnikova, I. I. Astapov, P. A. Bezyazeekov, M. Blank, E. A. Bonvech, A. N. Borodin, M. Brueckner, N. M. Budnev, A. V. Bulan, D. V. Chernov, A. Chiavassa, A. N. Dyachok, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, Dieter Horns, A. L. Ivanova, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. A. Lagutin, M. V. Lavrova, Yu. Lemeshev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, A. D. Lukanov, D. Lukyantsev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, L. A. Panasenko, A. Pan, L. V. Pankov, A. D. Panov, A. A. Petrukhin, D. A. Podgrudkov, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin 𝑗, A. Razumov, E. Rjabov, G. I. Rubtsov, Y. I. Sagan, V. S. Samoliga, Andrei Sidorenkov, A. A. Silaev, A. A. Silaev jr, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, Y. Suvorkin, V. A. Tabolenko, A. B. Tanaev, B. A. Tarashansky, M. Ternovoy, L. G. Tkachev, M. Tluczykont, N. Ushakov, A. Vaidyanathan, P. A. Volchugov, N. V. Volkov, D. Voronin, R. Wischnewski, I. I. Yashin, A. V. Zagorodnikov, and D. P. Zhurov
- Subjects
Computer science ,Hadron ,Taiga ,Separation (aeronautics) ,IACT ,Random forest ,Remote sensing - Published
- 2021
- Full Text
- View/download PDF
9. Energy Spectrum of Primary Cosmic Rays, According to TUNKA-133 and TAIGA-HiSCORE EAS Cherenkov Light Data
- Author
-
Evgeny Postnikov, Yu. Lemeshev, Mihai Popescu, Roman Raikin, M. Slunecka, Bayarto Lubsandorzhiev, O. G. Grishin, S. Kiryuhin, K. G. Kompaniets, A. A. Grinyuk, E. A. Osipova, L. A. Kuzmichev, V. M. Grebenyuk, Pavel Bezyazeekov, V. Boreyko, A. V. Tkachenko, Dmitry Zhurov, L. V. Pankov, Andrey Sokolov, N. V. Gorbunov, A. Chiavassa, V. Prosin, L. G. Sveshnikova, M. Kunnas, Anatoly Lagutin, A. Pakhorukov, L. G. Tkachev, N. M. Budnev, A. Yu. Sidorenkov, A. A. Petrukhin, V. Samoliga, Aleksey Zagorodnikov, R. Wischnewski, R. R. Mirgazov, V. A. Poleschuk, A. Pushnin, E.G. Popova, Oleg Fedorov, Valery Zurbanov, Aleksandr Gafarov, B. M. Sabirov, A. V. Skurikhin, A. A. Silaev, A. Borodin, V.A. Tabolenko, P. Kirilenko, Evgenii V Rjabov, I. I. Yashin, Y. Kazarina, A. Yu. Garmash, I. I. Astapov, R. D. Monkhoev, T. I. Gress, Dieter Horns, A. N. Dyachok, M. Tluczykont, Grigory Rubtsov, N. N. Kalmykov, N. B. Lubsandorzhiev, C. Spiering, M. Brueckner, V. S. Ptuskin, A. Ivanova, Yu. A. Semeney, O. A. Gress, V. A. Kozhin, V. V. Kindin, Y. Sagan, V. V. Lenok, A. Porelli, E. A. Kravchenko, E. E. Korosteleva, R. P. Kokoulin, B.A. Tarashansky, Mikhail Panasyuk, and R. Mirzoyan
- Subjects
010302 applied physics ,Physics ,Range (particle radiation) ,010308 nuclear & particles physics ,Hadron ,General Physics and Astronomy ,Flux ,Cosmic ray ,01 natural sciences ,Spectral line ,Nuclear physics ,Primary (astronomy) ,0103 physical sciences ,Energy spectrum ,Cherenkov radiation - Abstract
The Tunka-133 Cherenkov complex for recording extensive air showers (EAS) collected data over seven winters from 2009 to 2017. The differential energy spectra of all particles was acquired in the 6 × 1015–3 × 1018 eV range of energies over 2175 h. The TAIGA-HiSCORE complex is continually being expanded and upgraded. Data acquired by 30 first-line stations over 35 days during the period 2017–2018 is analyzed in this work. As at the Tunka-133 setup, the primary particle energies above 1015 eV are measured using the density of the Cherenkov light flux at a distance of 200 m from a shower’s axis. Data on lower energies are collected by determining the energy of the light flux near a shower’s axis. This results in a spectrum of 2 × 1014–1017 eV. The combined spectrum for the two systems covers a range of 2 × 1014–2 × 1018 eV.
- Published
- 2019
- Full Text
- View/download PDF
10. First Season of Operation of the TAIGA Hybrid Cherenkov Array
- Author
-
M. Brueckner, A. Pakhorukov, E. A. Osipova, N. B. Lubsandorzhiev, L. G. Tkachev, Yu. Lemeshev, A. Ivanova, Y. Sagan, A. Yu. Garmash, Pavel Bezyazeekov, V. Boreyko, V. A. Poleschuk, S. Kiryuhin, A. Pushnin, A. V. Skurikhin, M. Kunnas, L. A. Kuzmichev, C. Spiering, V. M. Grebenyuk, Evgeny Postnikov, M. Tluczykont, N. V. Gorbunov, Grigory Rubtsov, N. N. Kalmykov, K. G. Kompaniets, Anatoly Lagutin, E. A. Kravchenko, Mikhail Panasyuk, Dieter Horns, O. A. Gress, A. A. Petrukhin, E. E. Korosteleva, A. V. Tkachenko, V. A. Kozhin, Yulia Kazarina, A. Yu. Sidorenkov, V. V. Kindin, Aleksey Zagorodnikov, R. P. Kokoulin, A. Chiavassa, V. Prosin, V. Samoliga, B.A. Tarashansky, Dmitry Zhurov, N. M. Budnev, R. Mirzoyan, M. Slunecka, B. M. Sabirov, Bayarto Lubsandorzhiev, I. I. Yashin, P. Kirilenko, Andrey Sokolov, V. S. Ptuskin, V.A. Tabolenko, I. I. Astapov, L. G. Sveshnikova, Yu. A. Semeney, V. V. Lenok, A. Porelli, O. G. Grishin, R. R. Mirgazov, Oleg Fedorov, A. Borodin, R. Wischnewski, Evgenii V Rjabov, Aleksandr Gafarov, A. A. Silaev, R. D. Monkhoev, T. I. Gress, Valery Zurbanov, Roman Raikin, E.G. Popova, A. A. Grinyuk, L. V. Pankov, A. N. Dyachok, and M. Popescu
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,General Physics and Astronomy ,Astronomy ,Cosmic ray ,IACT ,Radiation ,law.invention ,Telescope ,law ,Observatory ,Cherenkov radiation - Abstract
Work is currently under way in the Tunka Valley, 50 km from Lake Baikal, to create the TAIGA gamma observatory for studying gamma radiation and cosmic ray fluxes in the 1013–1018 eV range of energies. To detect gamma rays with energies above tens of TeV, a hybrid method of detecting showers is implemented. It is based on data obtained by the TAIGA Imaging Atmospheric Cherenkov Telescope (IACT) and the wide-angle TAIGA-HiSCORE array. The preliminary results from processing the telescope’s data for the low-energy region (>2–3 TeV) are presented. Joint events with energy more than 50 TeV are analyzed and compared to Monte Carlo calculations.
- Published
- 2019
- Full Text
- View/download PDF
11. Monte Carlo Simulation of the TAIGA Experiment
- Author
-
R. D. Monkhoev, T. I. Gress, Y. Sagan, R. R. Mirgazov, L. A. Kuzmichev, V. M. Grebenyuk, Oleg Fedorov, M. Brueckner, N. B. Lubsandorzhiev, A. V. Skurikhin, A. Borodin, A. Ivanova, Yu. Lemeshev, E.G. Popova, V.A. Tabolenko, Dmitry Zhurov, B.A. Tarashansky, S. Kiryuhin, A. V. Tkachenko, Mikhail Panasyuk, Dieter Horns, M. Tluczykont, V. S. Ptuskin, A. Pushnin, Roman Raikin, O. G. Grishin, Anatoly Lagutin, A. Chiavassa, A. A. Petrukhin, R. Mirzoyan, V. Prosin, Evgeny Postnikov, Valery Zurbanov, C. Spiering, A. A. Grinyuk, Yulia Kazarina, M. Kunnas, O. A. Gress, L. G. Sveshnikova, A. Pakhorukov, R. Wischnewski, L. G. Tkachev, A. N. Dyachok, V. A. Poleschuk, M. Slunecka, Bayarto Lubsandorzhiev, V. A. Kozhin, Andrey Sokolov, I. I. Astapov, M. Popescu, A. Yu. Garmash, E. A. Kravchenko, Evgenii V Rjabov, B. M. Sabirov, E. E. Korosteleva, V. V. Kindin, I. I. Yashin, Grigory Rubtsov, N. N. Kalmykov, R. P. Kokoulin, L. V. Pankov, N. M. Budnev, P. Kirilenko, V. V. Lenok, A. Porelli, Yu. A. Semeney, V. Samoliga, E. A. Osipova, Pavel Bezyazeekov, V. Boreyko, N. V. Gorbunov, Aleksandr Gafarov, A. A. Silaev, Aleksey Zagorodnikov, K. G. Kompaniets, and A. Yu. Sidorenkov
- Subjects
010302 applied physics ,Physics ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Cosmic ray ,01 natural sciences ,Software ,Air shower ,Observatory ,0103 physical sciences ,business ,Energy (signal processing) ,Cherenkov radiation ,Remote sensing - Abstract
The TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) experiment aims at observing gamma-rays in the energy range from 1 TeV to several 100 TeV. The operation of the observatory is based on a new hybrid approach that combines imaging air Cherenkov telescopes (IACTs) and wide-angle Cherenkov detectors (TAIGA-HiSCORE) for measuring times of extensive air shower (EAS) light front arrival. Monte Carlo simulations are compared to real data to determine the performance of the detector setup. Dedicated software and algorithms are described, model parameters are given, and an overview of the current status of model-based performance studies is presented.
- Published
- 2019
- Full Text
- View/download PDF
12. TAIGA: A Complex of Hybrid Systems of Cooperating Detectors for Gamma Astronomy and Cosmic Ray Physics in the Tunka Valley
- Author
-
Evgeny Postnikov, Roman Raikin, O. A. Gress, A. A. Grinyuk, V. A. Kozhin, V. V. Kindin, V. Samoliga, V. A. Poleschuk, M. Slunecka, Bayarto Lubsandorzhiev, A. Chiavassa, R. R. Mirgazov, V. S. Ptuskin, R. Mirzoyan, A. Yu. Garmash, V. Prosin, L. A. Kuzmichev, V. M. Grebenyuk, Anatoly Lagutin, Oleg Fedorov, M. Kunnas, L. V. Pankov, E. A. Osipova, Pavel Bezyazeekov, A. A. Petrukhin, Aleksandr Gafarov, Mihai Popescu, R. Wischnewski, A. A. Silaev, M. Tluczykont, A. V. Skurikhin, A. Borodin, Mikhail Panasyuk, R. D. Monkhoev, T. I. Gress, Aleksey Zagorodnikov, A. V. Tkachenko, Dieter Horns, N. B. Lubsandorzhiev, N. V. Gorbunov, Dmitry Zhurov, A. Ivanova, L. G. Sveshnikova, A. Tanaev, I. I. Yashin, N. I. Karpov, E.G. Popova, O. G. Grishin, A. N. Dyachok, R. Nakhtigal, A. Pakhorukov, L. G. Tkachev, V.A. Tabolenko, Y. Sagan, K. G. Kompaniets, A. Porelli, Valery Zurbanov, A. Pushnin, E. A. Kravchenko, A. Yu. Sidorenkov, E. E. Korosteleva, S. Kiryuhin, R. P. Kokoulin, V. P. Sulakov, B.A. Tarashansky, Y. Kazarina, P. Kirilenko, Andrey Sokolov, N. M. Budnev, V. V. Lenok, Grigory Rubtsov, N. N. Kalmykov, C. Spiering, and I. I. Astapov
- Subjects
010302 applied physics ,COSMIC cancer database ,010308 nuclear & particles physics ,Observatory ,0103 physical sciences ,Detector ,Taiga ,Gamma ray detectors ,General Physics and Astronomy ,Astronomy ,Cosmic ray ,Radiation ,01 natural sciences - Abstract
The relevance and benefits of the new TAIGA gamma observatory complex in the Tunka Valley (50 km from Lake Baikal) are discussed. The main aim of the TAIGA installation is to study high-energy gamma radiation and search for cosmic pevatrons. The first series of gamma stations was commissioned in 2019 and covers an area of 1 km2. Its expected integral gamma radiation sensitivity at an energy of 100 TeV over 300 h of source monitoring is (2–5) × 10−13 TeV cm−2 s−1. It is planned to expand the effective area of TAIGA gamma observation to 10 km2 in the future.
- Published
- 2019
- Full Text
- View/download PDF
13. TAIGA-IACT pointing control and monitoring software status
- Author
-
Dmitriy Zhurov, O. A. Gress, D. S. Lukyantsev, I. I. Astapov, A. K. Awad, P. A. Bezyazeekov, M. Blank, E. A. Bonvech, A. N. Borodin, A. V. Bulan, M. Brueckner, N. M. Budnev, A. Chiavassa, D. V. Chernov, A. N. Dyachok, A. R. Gafarov, A. Yu. Garmash, V. M. Grebenyuk, E. Gress, T. I. Gress, O. G. Grishin, A. A. Grinyuk, Dieter Horns, N. N. Kalmykov, V. V. Kindin, S. N. Kiryuhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. A. Kravchenko, A. P. Kryukov, L. A. Kuzmichev, A. A. Lagutin, M. Lavrova, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, A. D. Lukanov, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, A. Pan, L. V. Pankov, A. D. Panov, A. A. Petrukhin, D. A. Podgrudkov, V. A. Poleschuk, M. Popesku, E. G. Popova, A. Porelli, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, A. A. Pushnin, R. I. Raikin, A. Y. Razumov, G. I. Rubtsov, E. V. Ryabov, Y. I. Sagan, V. S. Samoliga, A. A. Silaev, A. A. junior Silaev, Andrei Sidorenkov, A. V. Skurikhin, M. Slunecka, A. V. Sokolov, L. G. Sveshnikova, V. A. Tabolenko, B. A. Tarashansky, L. G. Tkachev, R. Togoo, M. Tluczykont, N. Ushakov, A. Vaidyanathan, P. A. Volchugov, N. V. Volkov, D. Voronin, R. Wischnewski, A. V. Zagorodnikov, and I. I. Yashin
- Published
- 2021
- Full Text
- View/download PDF
14. TAIGA - an advanced hybrid detector complex for astroparticle physics, cosmic ray physics and gamma-ray astronomy
- Author
-
V. P. Sulakov, E. A. Kravchenko, Roman Raikin, A. A. Grinyuk, A. Chiavassa, E. E. Korosteleva, BayarJon Paul Lubsandorzhiev, E. Popova, R. R. Mirgazov, L. G. Sveshnikova, S. Malakhov, R. P. Kokoulin, R. Togoo, A. Petrukhin, Yu. Lemeshev, A.V. Igoshin, S. Kiryuhin, V. V. Prosin, A. Porelli, A. Borodin, M. Blank, A. Ivanova, M. Tluczykont, A. N. Dyachok, V.A. Tabolenko, L. G. Tkachev, V. Samoliga, V. A. Poleschuk, R. Wischnewski, A. Bulan, E. A. Osipova, N. Ushakov, Pavel Bezyazeekov, Evgeny Postnikov, D. Zhurov, L. V. Pankov, A. Garmash, M. Ternovoy, D. Voronin, O. A. Gress, T. I. Gress, V. V. Kindin, I. I. Astapov, V. A. Kozhin, K. G. Kompaniets, Andrey Sokolov, E. V. Ryabov, R. Mirzoyan, Grigory Rubtsov, N. N. Kalmykov, O. Grishin, M. Popesku, D. Lukyantsev, V. Slunecka, A. V. Skurikhin, Y. Sagan, Dieter Horns, V. S. Ptuskin, P. Volchugov, A. L. Pakhorukov, A. Tanaev, A. Pushnin, N. B. Lubsandorzhiev, Aleksandr Gafarov, A. A. Silaev, A. V. Zagorodnikov, N. M. Budnev, Y. Suvorkin, E. Gress, A. Zhaglova, L. A. Kuzmichev, V. M. Grebenyuk, B. A. Tarashchansky, A. Vaidyanathan, I. Poddubnyi, Anatoly Lagutin, V. Ponomareva, M. Brückner, R. D. Monkhoev, B. M. Sabirov, I. I. Yashin, Alexander Kryukov, and A. Sidorenkov
- Subjects
Astroparticle physics ,Physics ,Observatory ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Electron ,Gamma-ray astronomy ,Cherenkov radiation - Abstract
The physical motivations and performance of the TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) project are presented. The TAIGA observatory addresses ground-based gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV and astroparticle physics. The pilot TAIGA complex locates in the Tunka valley, ~50 km West from the southern tip of the lake Baikal. It includes integrating air Cherenkov TAIGA-HiSCORE array with 120 wide-angle optical stations distributed over on area 1 square kilometer about and three the 4-m class Imaging Atmospheric Cherenkov Telescopes of the TAIGA-IACT array. The latter array has a shape of triangle with side lengths of about 300m, 400m and 500m. The expected integral sensitivity of the 1 km2 TAIGA detector will be about 2,5 × 10-13 TeV cm-2 sec-1 for detection of E ≥ 100 TeV gamma-rays in 300 hours of source observations. The combination of the wide angle Cherenkov array and IACTs could offer a cost effective-way to build a really large (up to 10 km2) array for very high energy gamma-ray astronomy. The reconstruction of a given EAS energy, incoming direction and the core position, based on the TAIGA-HiSCORE data, allows one to increase the distance between the relatively expensive IACTs up to 600-800 m. These, together with the surface and underground electron/Muon detectors will be used for selection of gamma-ray induced EAS. Present status of the project, together with the current array description and the first experimental results and plans for the future will be reported.
- Published
- 2021
- Full Text
- View/download PDF
15. Application of New Approximations of the Lateral Distribution of EAS Cherenkov Light in the Atmosphere
- Author
-
R. R. Mirgazov, V. A. Poleschuk, N. B. Lubsandorzhiev, Oleg Fedorov, A. Pakhorukov, L. G. Tkachev, Evgeny Postnikov, A. V. Tkachenko, M. Slunecka, Bayarto Lubsandorzhiev, A. Borodin, Andrey Sokolov, E.G. Popova, O. A. Gress, L. G. Sveshnikova, Y. Sagan, R. D. Monkhoev, T. I. Gress, E. A. Osipova, V. V. Lenok, A. N. Dyachok, P. S. Kirilenko, O. G. Grishin, Pavel Bezyazeekov, V. Boreyko, M. Tluczykont, V. A. Kozhin, V. V. Kindin, K. G. Kompaniets, A. V. Skurikhin, R. Nachtigall, A. Porelli, R. Mirzoyan, A. Pushnin, L. V. Pankov, Valery Zurbanov, N. V. Gorbunov, B.A. Tarashansky, A. A. Lagutin, Roman Raikin, Aleksandr Gafarov, I. I. Yashin, V. P. Sulakov, M. Popesku, Dieter Horns, A. Sidorenkov, A. A. Grinyuk, A. A. Silaev, Yu. A. Semeney, V. Samoliga, C. Spiering, Mikhail Panasyuk, Aleksey Zagorodnikov, M. Kunnas, V. S. Ptuskin, A. Chiavassa, E. A. Kravchenko, V. Prosin, A. Ivanova, N. I. Karpov, R. Wischnewski, L. A. Kuzmichev, V. M. Grebenyuk, A. A. Petrukhin, A. Sh. M. Elshoukrofy, Yulia Kazarina, N. M. Budnev, S. Kiryuhin, V.A. Tabolenko, E. E. Korosteleva, A. Garmash, Hussein A. Motaweh, R. P. Kokoulin, I. I. Astapov, Grigory Rubtsov, and N. N. Kalmykov
- Subjects
Physics ,Nuclear and High Energy Physics ,Photon ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Probability density function ,01 natural sciences ,Electromagnetic radiation ,Atomic and Molecular Physics, and Optics ,Computational physics ,Massless particle ,Distribution function ,0103 physical sciences ,Range (statistics) ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
A new knee-like approximation of the lateral distribution function (LDF) of EAS Cherenkov light in the 30–3000 TeV energy range was proposed and tested with simulated showers in our earlier studies. This approximation fits the LDFs of individual showers accurately for all types of primary particles gamma-rays, protons, and nuclei) and is suitable for reconstructing the shower core, determining the energy, and separating gamma-induced showers from hadron-induced ones. In the present study, the knee-like fitting function is used to determine the parameters of real showers detected by TAIGA-HiSCORE. It is demonstrated that this approximation characterizes properly all types of individual LDFs of experimental events in the 300–1000 TeV range. The accuracy of fit is governed by fluctuations intrinsic to the process of measurement of the Cherenkov photon density. The probability density function of these fluctuations was reconstructed and introduced into simulations. Certain useful methodical applications of the knee-like approximation are con-sidered, and the possibility of shower sorting into nuclei groups is examined. The extensive statistical coverage and detailed LDF measurement data of HiSCORE have provided the first opportunity to examine in depth the LDF of Cherenkov radiation in the 300–1000 TeV range.
- Published
- 2018
- Full Text
- View/download PDF
16. TAIGA Gamma Observatory: Status and Prospects
- Author
-
M. Kunnas, Roman Raikin, Aleksey Zagorodnikov, A. A. Grinyuk, K. G. Kompaniets, V. Samoliga, A. V. Skurikhin, Evgeny Postnikov, A. N. Dyachok, Y. Sagan, B.A. Tarashansky, S. Kiryuhin, L. A. Kuzmichev, R. Wischnewski, V. M. Grebenyuk, L. V. Pankov, M. Slunecka, N. B. Lubsandorzhiev, Bayarto Lubsandorzhiev, A. V. Tkachenko, R. D. Monkhoev, T. I. Gress, V. A. Poleschuk, M. Popesku, L. G. Sveshnikova, V. S. Ptuskin, R. Nachtigall, E. A. Osipova, A. Chiavassa, V. Prosin, N. I. Karpov, O. A. Gress, M. Tluczykont, Pavel Bezyazeekov, V. Boreyko, O. G. Grishin, V. A. Kozhin, A. Pakhorukov, V. V. Kindin, L. G. Tkachev, Aleksandr Gafarov, N. V. Gorbunov, A. A. Silaev, Valery Zurbanov, A. Pushnin, R. R. Mirgazov, Oleg Fedorov, A. Borodin, E. A. Kravchenko, A. A. Petrukhin, E. E. Korosteleva, A. Sh. M. Elshoukrofy, A. Ivanova, Yulia Kazarina, A. Garmash, R. P. Kokoulin, V.A. Tabolenko, E.G. Popova, V. P. Sulakov, Yu. A. Semeney, A. D. Horns, V. V. Lenok, A. Porelli, P. Kirilenko, C. Spiering, Andrey Sokolov, I. I. Yashin, A. Sidorenkov, Anatoly Lagutin, Grigory Rubtsov, N. N. Kalmykov, I. I. Astapov, N. M. Budnev, R. Mirzoyan, and Mikhail Panasyuk
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,IACT ,Cosmic ray ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Particle detector ,Observatory ,0103 physical sciences ,Measuring instrument ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
Over the past few years, the TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) observatory has been being deployed in the Tunka Valley, Republic of Buryatia. It is designed for studying gamma rays of energy above 30 TeV and performing searches for sources of galactic cosmic rays with energies in the vicinity of 1 PeV, which is an energy region around the classic knee in the cosmic-ray energy spectrum. The first phase of the observatory will be situated at a distance of about 50 km from Lake Baikal at the site of the Tunka-133 array. The TAIGA gamma observatory will include a network of 500 wide-angle (0.6 sr) Cherenkov detectors (TAIGA-HiSCORE array) and up to 16 atmospheric Cherenkov telescopes (ACT) designed for analyzing the EAS images (imaging atmospheric Cherenkov telescopes, or IACT) and positioned within an area of 5 km2. The observatory will also include muon detectors of total area 2000 m2 distributed over an area of 1 km2. Within the next three years, it is planned to enhance the area of the TAIGA-HiSCORE array by a factor of four—from 0.25 km2 to 1 km2; to supplement the existing IACT with two new ones; and to deploy new muon detectors with a total coverage of 200 m2. The structure of the new observatory is described along with the data analysis techniques used. The most interesting physical results are presented, and the research program for the future is discussed.
- Published
- 2018
- Full Text
- View/download PDF
17. The TAIGA Experiment: From Cosmic Ray Physics to Gamma Astronomy in the Tunka Valley
- Author
-
L. V. Pankov, Evgeny Postnikov, E. A. Osipova, Yu. Lemeshev, V. S. Ptuskin, A. Pushnin, Pavel Bezyazeekov, V.A. Tabolenko, S. Kiryuhin, L. A. Kuzmichev, V. M. Grebenyuk, Yu. A. Semeney, V. Prosin, M. Slunecka, Bayarto Lubsandorzhiev, B.A. Tarashansky, V. A. Poleschuk, Mikhail Panasyuk, E. I. Kravchenko, N. B. Lubsandorzhiev, N. V. Gorbunov, K. G. Kompaniets, Grigory Rubtsov, N. N. Kalmykov, P. Kirilenko, E. E. Korosteleva, Dmitriy Kostunin, R. Mirzoyan, O. A. Gress, R. P. Kokoulin, A. Pakhorukov, Y. Kazarina, L. G. Tkachev, V. A. Kozhin, A. A. Petrukhin, V. V. Kindin, V. V. Lenok, E.G. Popova, V. Samoliga, A. Ivanova, A. Yu. Sidorenkov, N. M. Budnev, Aleksey Zagorodnikov, A. O. Skurikhin, Andrey Sokolov, I. I. Astapov, A. A. Grinyuk, Y. Sagan, A. V. Boreyko, A. N. Dyachok, L. G. Sveshnikova, A. Yu. Garmash, Dmitry Zhurov, O. G. Grishin, R. D. Monkhoev, T. I. Gress, A. V. Tkachenko, E. V. Ryabov, Aleksandr Gafarov, A. A. Silaev, R. R. Mirgazov, Valery Zurbanov, Oleg Fedorov, A. Borodin, B. M. Sabirov, and I. I. Yashin
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Hadron ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Electron ,Radiation ,01 natural sciences ,Observatory ,0103 physical sciences ,010303 astronomy & astrophysics ,Cherenkov radiation - Abstract
The article presents the relevance and advantages of the new gamma observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy), which is being constructed in the Tunka Valley 50 km from Lake Baikal. Various detectors of the six TAIGA gamma observatory arrays register the Cherenkov and radio radiation, as well as the electron and muon components of EAS. The primary objective of the TAIGA gamma observatory is to study the high-energy part of the gamma-ray spectrum, in particular, in order to search for Galactic PeVatrons. The energy, direction, and position of the EAS axis are reconstructed in the observatory based on the data of the wide-angle Cherenkov detectors of the TAIGA-HiSCORE experiment. Taking into account this information, the gamma quanta are distinguished from the hadron background using the data obtained by the muon detectors and telescopes that register the EAS image in the Cherenkov light. In this hybrid mode of operation, the atmospheric Cherenkov telescopes can operate in the mono-mode, and the distance between them can be increased to 800–1000 m, which makes it possible to construct an array with an area of 5 km2 and more at relatively low cost and in a short time. By 2019, the first stage of the gamma observatory with an area of 1 km2 will be constructed; its expected integral sensitivity for detecting the gamma radiation with an energy of 100 TeV at observation of the source for 300 hours will be approximately $$2 \times 5$$ 10–13 TeV cm–2s–1.
- Published
- 2018
- Full Text
- View/download PDF
18. The Search for Diffuse Gamma Rays Using Data from the Tunka-Grande Experiment
- Author
-
S. Kiryuhin, Valery Zurbanov, O. A. Gress, Aleksandr Gafarov, A. Pushnin, A. Chiavassa, V. Prosin, V. A. Kozhin, A. A. Silaev, E. A. Osipova, D. M. Voronin, A. Pakhorukov, R. D. Monkhoev, T. I. Gress, V. A. Poleschuk, Mikhail Panasyuk, R. R. Mirgazov, A. V. Skurikhin, Bayarto Lubsandorzhiev, L. G. Sveshnikova, N. B. Lubsandorzhiev, L. A. Kuzmichev, V. S. Ptuskin, E.G. Popova, Aleksey Zagorodnikov, V.A. Tabolenko, E. E. Korosteleva, N. N. Kalmykov, V. P. Sulakov, Yu. A. Semeney, C. Spiering, A. N. Dyachok, Y. Kazarina, N. M. Budnev, and L. V. Pankov
- Subjects
010302 applied physics ,Physics ,Range (particle radiation) ,010308 nuclear & particles physics ,0103 physical sciences ,Hadron ,Energy spectrum ,Gamma ray ,General Physics and Astronomy ,Cosmic ray ,Astrophysics ,Mass composition ,01 natural sciences - Abstract
The Tunka-Grande array is part of an experimental complex located in the Tunka Valley (Republic of Buryatia, Russia) about 50 km from Lake Baikal. This complex also contains the Tunka-133 and Tunka-Rex arrays. The aim of this complex is to study the primary cosmic ray energy spectrum and mass composition in the energy range of 1016–1018 eV, and to search for diffuse gamma rays in the energy range of 5 × 1016–5 × 1017 eV. The design of the Tunka-Grande array and the procedure for reconstructing the parameters of extensive air showers (EASes) are described, and preliminary results are presented from the search for diffuse gamma rays with energies of more than 5 × 1016 eV.
- Published
- 2019
- Full Text
- View/download PDF
19. Scintillation detectors for the TAIGA experiment
- Author
-
Evgeny Postnikov, Yu. A. Semeney, P. Kirilenko, V.A. Tabolenko, V. V. Lenok, Bayarto Lubsandorzhiev, A. Porelli, L. A. Kuzmichev, Aleksandr Gafarov, M. Kunnas, V. M. Grebenyuk, D. Zhurov, Andrey Sokolov, R. R. Mirgazov, E. A. Kravchenko, Valery Zurbanov, A. A. Petrukhin, Aleksey Zagorodnikov, A. A. Grinyuk, A. Chiavassa, V. Prosin, Mikhail Panasyuk, E. E. Korosteleva, B.A. Tarashansky, A. A. Silaev, V. Samoliga, A. Garmash, R. P. Kokoulin, M. Brueckner, Yulia Kazarina, R. D. Monkhoev, T. I. Gress, E. A. Osipova, L. G. Sveshnikova, V. A. Poleschuk, R. Mirzoyan, A. V. Skurikhin, Oleg Fedorov, Pavel Bezyazeekov, A. Ivanova, R. Nachtigall, A. Pakhorukov, L. G. Tkachev, N. M. Budnev, Yu. Lemeshev, E.G. Popova, N. V. Gorbunov, Dieter Horns, M. Tluczykont, K. G. Kompaniets, I. I. Astapov, A. Borodin, S. Kiryuhin, Grigory Rubtsov, N. N. Kalmykov, O. Grishin, L. V. Pankov, A. N. Dyachok, M. V. Lavrova, A. Vaidyanathan, C. Spiering, O. A. Gress, V. A. Kozhin, V. V. Kindin, Evgenii V Rjabov, R. Wischnewski, M. Popesku, V. Slunecka, V. S. Ptuskin, N. B. Lubsandorzhiev, B. M. Sabirov, I. I. Yashin, A. Sidorenkov, A. Pushnin, and Y. Sagan
- Subjects
Physics ,Nuclear and High Energy Physics ,Scintillation ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Detector ,Scintillator ,Wavelength shifter ,01 natural sciences ,030218 nuclear medicine & medical imaging ,03 medical and health sciences ,0302 clinical medicine ,0103 physical sciences ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Instrumentation ,Remote sensing - Abstract
It is planned that new TAIGA-Muon detectors will complement the existing Tunka-GRANDE facility of scintillation detectors of the TAIGA gamma-observatory in the Tunka valley, Russia. The new design of scintillation detector with wavelength shifting bars and PMTs is developed. The first prototype of the counter was installed and tested using infrastructure of the Tunka-GRANDE installation in 2017. The mass production of counters has begun in 2018 at the Novosibirsk State University.
- Published
- 2019
- Full Text
- View/download PDF
20. The TAIGA-HiSCORE array prototype: Status and first results
- Author
-
I. I. Astapov, N. S. Barbashina, A. G. Bogdanov, V. Boreyko, N. M. Budnev, R. Wischnewski, A. R. Gafarov, V. Grebenyuk, O. A. Gress, T. I. Gress, A. A. Grinyuk, O. G. Grishin, N. Gorbunov, A. N. Dyachok, S. N. Epimakhov, A. V. Zagorodnikov, V. L. Zurbanov, A. L. Ivanova, Y. A. Kazarina, N. N. Kalmykov, N. I. Karpov, V. V. Kindin, S. N. Kiryuhin, R. P. Kokoulin, K. G. Kompaniets, E. E. Korosteleva, V. A. Kozhin, E. Kravchenko, M. Kunnas, L. A. Kuzmichev, A. Chiavassa, V. V. Lenok, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. Mirzoyan, R. D. Monkhoev, R. Nachtigall, A. L. Pakhorukov, E. A. Osipova, M. I. Panasyuk, L. V. Pankov, A. A. Petrukhin, M. Popescu, A. Porelli, A. A. Pushnin, V. A. Poleschuk, E. G. Popova, E. B. Postnikov, V. V. Prosin, V. S. Ptuskin, G. I. Rubtsov, V. S. Samoliga, Y. A. Semeney, A. A. Silaev, A. V. Skurikhin, L. G. Sveshnikova, A. Sokolov, V. A. Tabolenko, B. A. Tarashchansky, L. G. Tkachev, A. V. Tkachenko, M. Tluczykont, O. L. Fedorov, D. Horns, C. Spiering, K. Yurin, and I. I. Yashin
- Subjects
010308 nuclear & particles physics ,Observatory ,0103 physical sciences ,Taiga ,Gamma ray ,General Physics and Astronomy ,010303 astronomy & astrophysics ,01 natural sciences ,Geology ,Remote sensing - Abstract
The design for the TAIGA-HiSCORE array, a part of the TAIGA Gamma Ray Observatory, is considered. The observatory is being constructed in the Tunka Valley, 50 km from Lake Baikal. Preliminary results obtained using the first 28 optical stations of the array are presented.
- Published
- 2017
- Full Text
- View/download PDF
21. Optimization of electromagnetic and hadronic extensive air shower identification using the muon detectors of the TAIGA experiment
- Author
-
K. G. Kompaniets, A. Chiavassa, V.A. Tabolenko, Valery Zurbanov, R. R. Mirgazov, E. A. Kravchenko, E. E. Korosteleva, R. P. Kokoulin, M. Kunnas, O. Grishin, Anatoly Lagutin, T. I. Gress, Oleg Fedorov, D. Voronin, Aleksandr Gafarov, L. G. Tkachev, A. V. Skurikhin, I. I. Astapov, R. Nachtigall, V. V. Lenok, A. A. Silaev, A. V. Zagorodnikov, A. Borodin, Evgeny Postnikov, B.A. Tarashansky, E. A. Osipova, V. Slunecka, A. Krykov, V. S. Ptuskin, A. Silaev junior, E.G. Popova, Dieter Horns, A. Porelli, R. D. Monkhoev, B. M. Sabirov, Pavel Bezyazeekov, V. Boreyko, I. I. Yashin, A. L. Pakhorukov, Mihai Popescu, R. Wischnewski, V. A. Poleschuk, D. Zhurov, M. Brueckner, A. Sidorenkov, L. A. Kuzmichev, V. M. Grebenyuk, A. Garmash, Yu. A. Semeney, Grigory Rubtsov, N. N. Kalmykov, A. Ivanova, Bayarto Lubsandorzhiev, N. V. Gorbunov, Evgenii V Rjabov, A. V. Tkachenko, Yu. Lemeshev, P. Kirilenko, Roman Raikin, N. M. Budnev, V. Samoliga, A. Vaidyanathan, S. Kiryuhin, V. V. Prosin, A. A. Grinyuk, O. A. Gress, C. Spiering, V. A. Kozhin, V. V. Kindin, A. A. Petrukhin, Y. Sagan, M. Tluczykont, Yulia Kazarina, L. G. Sveshnikova, Andrey Sokolov, A. Pushnin, N. B. Lubsandorzhiev, N. Ushakov, L. V. Pankov, A. N. Dyachok, Mikhail Panasyuk, and R. Mirzoyan
- Subjects
Physics ,Nuclear and High Energy Physics ,Range (particle radiation) ,TAIGA ,Muon ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Monte Carlo method ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Scintillator ,Wavelength shifter ,Nuclear physics ,Air shower ,Scintillation detectors ,High Energy Physics::Experiment ,Instrumentation - Abstract
The TAIGA experiment in the Tunka valley near Lake Baikal is planning an extension with new TAIGA-Muon scintillation detector stations. The main purpose of TAIGA is gamma-ray astronomy in the TeV to PeV energy range and cosmic ray physics. The purpose of the Taiga-Muon detectors is to measure the muon component of air showers for improving cosmic ray composition measurements as well as gamma–hadron separation above 100 TeV. Monte Carlo simulations of the experiment are done with the software packages CORSIKA and GEANT4. Extensive air showers of primary particles in the energy range 100–3000 TeV are created with CORSIKA. The trigger efficiency is calculated and used for optimization. The suppression factor of hadronic showers versus electromagnetic showers is studied, leading to an optimum depth of soil absorber (2 m), at the lowest energy range. Data on the identification efficiency for primary gamma-quanta and proton events are presented as well as the suppression factor.
- Published
- 2020
22. Cherenkov EAS arrays in the Tunka astrophysical center: From Tunka-133 to the TAIGA gamma and cosmic ray hybrid detector
- Author
-
R. R. Mirgazov, A. Chiavassa, V. Prosin, Oleg Fedorov, A. Borodin, L. G. Sveshnikova, A. V. Skurikhin, Evgeny Postnikov, E.G. Popova, O. G. Grishin, Dieter Horns, Martin Tluczykont, M. Slunecka, D. Zhurov, Bayarto Lubsandorzhiev, V.A. Tabolenko, A. V. Tkachenko, N. B. Lubsandorzhiev, A. Grinyuk, E. A. Kravchenko, V. Samoliga, E. A. Osipova, K. G. Kompaniets, Razmik Mirzoyan, E. E. Korosteleva, V. Kiryuhin, Pavel Bezyazeekov, Alexander Kryukov, A. Sidorenkov, A. Garmash, Valery Zurbanov, Aleksandr Gafarov, R. P. Kokoulin, Grigory Rubtsov, N. N. Kalmykov, A. A. Silaev, A. Pan, A. A. Petrukhin, Aleksey Zagorodnikov, M. Brückner, R. D. Monkhoev, T. I. Gress, A. Pushnin, Anatoly Lagutin, D. Voronin, E. V. Ryabov, Victor Grebenyuk, L. Tkachev, A. Pakharukov, I. I. Astapov, Roman Raikin, Ralf Wischnewski, L. A. Kuzmichev, V. V. Lenok, A. Porelli, Yu. A. Semeney, P. Kirilenko, A. N. Dyachok, Ch. Spiering, N. Ushakov, L. V. Pankov, Y. Sagan, I. V. Yashin, M. Popesku, V. S. Ptuskin, O. A. Gress, V. A. Kozhin, V. V. Kindin, V. A. Poleschuk, Mikhail Panasyuk, Y. Kazarina, B.A. Tarashansky, Andrey Sokolov, and N. M. Budnev
- Subjects
Physics ,Nuclear and High Energy Physics ,Gamma-ray astronomy ,Calorimeter (particle physics) ,010308 nuclear & particles physics ,Aperture ,Cosmic rays ,EAS Cherenkov light array ,Energy spectrum ,IACT ,Detector ,Gamma ray ,Astronomy ,Cosmic ray ,01 natural sciences ,7. Clean energy ,13. Climate action ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation ,Cherenkov radiation - Abstract
One of the most informative methods of cosmic ray studies is the detection of Cherenkov light from extensive air showers (EAS). The primary energy reconstruction is possible by using the Earth’s atmosphere as a huge calorimeter . The EAS Cherenkov light array Tunka-133, with ∼ 3 km 2 geometrical area, is taking data since 2009. Tunka-133 is located in the Tunka Astrophysical Center at ∼ 50 km west of Lake Baikal. This array allows us to perform a detailed study of the energy spectrum and the mass composition in the energy range from 6 ⋅ 1 0 15 eV to 1 0 18 eV . Most of the ongoing efforts are focused on the construction of the first stage of the detector TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy). The latter is designed for the study of gamma rays and charged cosmic rays in the energy range of 1 0 13 eV – 1 0 18 eV . The TAIGA prototype will consist of ∼ 100 wide angle timing Cherenkov stations (TAIGA-HiSCORE) and three IACTs deployed over an area of ∼ 1 km 2 . The installation of the array is planned to be finished in 2019 while the data-taking can start already during the commissioning phase. The joint reconstruction of energy, direction, and core position of the imaging and non-imaging detectors will allow us to increase the distance between the IACTs up to 800 m, therefore providing a low-cost, highly sensitive detector. The relatively low cost together with the high sensitivity for energies ≥ 30–50 TeV make this pioneering technique very attractive for exploring galactic PeVatrons and cosmic rays. In addition to the Cherenkov light detectors we intend to deploy surface and underground muon detectors over an area of 1 km 2 with a total area of about 1000 m 2 . The results of the first season of coincident operation of the first ∼ 4 m diameter IACT with an aperture of ∼ 10°with 30 stations of TAIGA-HiSCORE will be presented.
- Published
- 2020
23. The Tunka-Grande experiment: Status and prospects
- Author
-
N. M. Budnev, R. D. Monkhoev, T. I. Gress, S. Kiryuhin, Aleksandr Gafarov, Evgeny Postnikov, Y. Kazarina, A. A. Silaev, C. Spiering, E. A. Osipova, D. M. Voronin, Yu. A. Fomin, A. N. Dyachok, A. Chiavassa, V. Prosin, V. V. Lenok, Bayarto Lubsandorzhiev, N. B. Lubsandorzhiev, Aleksey Zagorodnikov, V.A. Tabolenko, O. G. Grishin, L. G. Sveshnikova, V. S. Ptuskin, A. Pushnin, Valery Zurbanov, A. V. Skurikhin, E.G. Popova, V. Samoliga, E. E. Korosteleva, A. Pakhorukov, V. P. Sulakov, O. A. Gress, Yu. A. Semeney, A. Ivanova, V. A. Kozhin, R. R. Mirgazov, Oleg Fedorov, V. A. Poleschuk, L. A. Kuzmichev, S. N. Epimakhov, Dmitry Zhurov, N. N. Kalmykov, L. V. Pankov, R. Mirzoyan, and Mikhail Panasyuk
- Subjects
Physics ,Scintillation ,Range (particle radiation) ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,General Physics and Astronomy ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Charged particle ,Nuclear physics ,0103 physical sciences ,Scintillation counter ,010306 general physics ,Cherenkov radiation ,Radio wave - Abstract
The Tunka-Grande scintillation array is described. The first results from its operation are presented. The prospects for studying primary cosmic rays in the energy range of 1016 to 1018 eV during simultaneous registration of the Cherenkov and charged particle components along with radio emissions from extensive air showers are discussed.
- Published
- 2017
- Full Text
- View/download PDF
24. Studying ultrahigh-energy cosmic rays with the Tunka Radio Extension
- Author
-
Dmitriy Kostunin, O. A. Gress, A. Haungs, N. B. Lubsandorzhiev, L. A. Kuzmichev, V. Kungel, F.G. Schröder, R. R. Mirgazov, E. A. Osipova, T. Marshalkina, O. Krömer, R. Wischnewski, A. L. Pakhorukov, Oleg Fedorov, Pavel Bezyazeekov, L. V. Pankov, R. Hiller, A. V. Zagorodnikov, M. Kleifges, Grigory Rubtsov, N. M. Budnev, E. E. Korosteleva, T. Huege, R. D. Monkhoev, V. V. Prosin, and Yulia Kazarina
- Subjects
Antenna array ,Physics ,Extension (metaphysics) ,010308 nuclear & particles physics ,0103 physical sciences ,General Physics and Astronomy ,Cosmic ray ,Ultrahigh energy ,Astrophysics ,010306 general physics ,01 natural sciences - Abstract
The Tunka Radio Extention (Tunka-Rex) is an array of radio antennas located at the TAIGA (Tunka Advanced Instrument for Cosmic Ray Physics and Gamma Astronomy) facility. The array occupies an area of approximately 3 km2 and contains 63 antennas. The results from the first two seasons of Tunka-Rex operation (2012–2014) and antenna array modernization (2015–2016) are presented.
- Published
- 2017
- Full Text
- View/download PDF
25. Tunka-Grande and TAIGA-Muon scintillation arrays: status and prospects
- Author
-
A. Porelli, Evgeny Postnikov, V. Chernykh, A. Petrukhin, E. A. Kravchenko, A. V. Skurikhin, E. E. Korosteleva, A. Pushnin, Y. Sagan, V. A. Poleschuk, Y. Suvorkin, Konstantin Ustinov, R. D. Monkhoev, R. P. Kokoulin, K. G. Kompaniets, Yu. Lemeshev, B. M. Sabirov, I. I. Astapov, V. V. Kindin, R. Mirzoyan, M. Popesku, Roman Raikin, Dieter Horns, M. Tluczykont, L. G. Tkachev, V. Samoliga, O. Grishin, A. A. Grinyuk, S. Kiryuhin, V. V. Prosin, V.A. Tabolenko, V. Slunecka, Grigory Rubtsov, N. N. Kalmykov, A. Chiavassa, BayarJon Paul Lubsandorzhiev, I. I. Yashin, V. S. Ptuskin, N. Ushakov, E. A. Osipova, Andrey Sokolov, N. B. Lubsandorzhiev, D. Zhurov, M. Ternovoy, M. Brueckner, Pavel Bezyazeekov, R. Wischnewski, D. Voronin, Yulia Kazarina, L. V. Pankov, A.V. Igoshin, O. A. Gress, A. Garmash, Alexander Kryukov, A. Pan, A. Sidorenkov, V. A. Kozhin, L. G. Sveshnikova, A. Ivanova, Aleksandr Gafarov, N. M. Budnev, B. A. Tarashchansky, A. Vaidyanathan, A. A. Silaev, A. V. Zagorodnikov, A. N. Dyachok, Anatoly Lagutin, P. Volchugov, L. A. Kuzmichev, A. L. Pakhorukov, V. M. Grebenyuk, Mikhail Panasyuk, A. Tanaev, E. Popova, R. R. Mirgazov, Oleg Fedorov, A. Borodin, T. I. Gress, and E. V. Ryabov
- Subjects
Physics ,History ,Scintillation ,Muon ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Computer Science Applications ,Education - Abstract
The Tunka-Grande and TAIGA-Muon arrays are the part of a single experimental complex, which also includes the Tunka-133 and TAIGA-HiSCORE (High Sensitivity COsmic Rays and gamma Explorer) wide-angle Cherenkov arrays, TAIGA-IACT array (Imaging Atmospheric Cherenkov Telescope) and Tunka-Rex radio antennas array (Tunka Radio Extension). This complex is located in the Tunka Valley (Buryatia Republic, Russia), 50 km from Lake Baikal. It is aimed at investigating the energy spectrum and mass composition of charged cosmic rays in the energy range 100 TeV - 1000 PeV, searching for diffuse gamma rays above 100 TeV and studying local sources of gamma rays with energies above 30 TeV. This report outlines 3 key points. The first is a description of the Tunka-Grande and TAIGA-Muon scintillation arrays. The second part presents preliminary results of the search for diffuse gamma rays with energies above 50 PeV according to the Tunka-Grande data. The third part is devoted to the prospects of the search for diffuse gamma rays with energies above 100 TeV using the TAIGA-Muon array.
- Published
- 2020
- Full Text
- View/download PDF
26. First detection of gamma-ray sources at TeV energies with the first imaging air Cherenkov telescope of the TAIGA installation
- Author
-
M. Popesku, V. S. Ptuskin, A. Pushnin, M. Slunecka, M. V. Lavrova, A. Petrukhin, M. Tluczykont, A. Silaev junior, Andrey Sokolov, Grigory Rubtsov, A. N. Dyachok, N. N. Kalmykov, L. A. Kuzmichev, B.A. Tarashansky, V. M. Grebenyuk, M. Ternovoy, N. Ushakov, O. A. Gress, V. A. Kozhin, O. G. Grishin, R. R. Mirgazov, V. Samoliga, A. Ivanova, L. V. Pankov, T. I. Gress, L. G. Sveshikova, N. B. Lubsandorzhiev, Y. Suvorkin, A. Borodin, Aleksandr Gafarov, Evgeny Postnikov, V. A. Poleschuk, E. A. Osipova, Mikhail Panasyuk, A. Bulan, Pavel Bezyazeekov, A. A. Silaev, A. V. Zagorodnikov, D. Zhurov, D. Voronin, A. Chiavassa, A. Porelli, V. V. Kindin, B. K. Lubsandorzhiev, R. Mirzoyan, V.A. Tabolenko, Y. Sagan, A. Yu. Garmash, E. A. Kravchenko, E. E. Korosteleva, L. G. Tkachev, R. P. Kokoulin, K. G. Kompaniets, A. V. Skurikhin, P. Volchugov, A. Pan, A. L. Pakhorukov, Evgenii V Rjabov, N. M. Budnev, A. Tanaev, A. Yu. Sidorenkov, Dieter Horns, A. Vaidyanathan, Roman Raikin, E.G. Popova, A. A. Grinyuk, R. Wischnewski, R. D. Monkhoev, I. I. Yashin, Alexander Kryukov, M. Brückner, Anatoly Lagutin, Yu. Lemeshev, S. Kiryuhin, V. V. Prosin, M. Blank, and I. I. Astapov
- Subjects
Telescope ,Physics ,History ,law ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Cherenkov radiation ,Computer Science Applications ,Education ,law.invention - Abstract
TAIGA array addresses gamma-ray astronomy at energies from a few TeV to several PeV as well as cosmic ray physics from 100 TeV to several EeV. A 1 km2 TAIGA setup will consist of 120 wide-angle detectors of the Cherenkov timing array TAIGA-HiSCORE and three imaging air Cherenkov telescopes with the field of view diameter of 9.6°. In this paper, first experimental results of the first operation stage are presented: signal detection from two gamma-ray sources, the Crab Nebula and Markarian 421, by the first IACT in stand-alone mode. The detected signal is shown to be in agreement with the Monte Carlo expectation. In future, gamma-ray signal will be detected by a larger number of TAIGA telescopes as well as the TAIGA-HiSCORE array, that is, in combined operation mode.
- Published
- 2020
- Full Text
- View/download PDF
27. Development of a novel wide-angle gamma-ray imaging air Cherenkov telescope with SiPM-based camera for the TAIGA hybrid installation
- Author
-
A. Chiavassa, E. A. Bonvech, Anatoly Lagutin, T. I. Gress, Dmitry Chernov, R. D. Monkhoev, R. Mirzoyan, Mihai Popescu, I. I. Yashin, A. Sidorenkov, L. G. Sveshnikova, D. Zhurov, V. Samoliga, V. A. Poleschuk, A. V. Skurikhin, A. Garmash, L. G. Tkachev, N. B. Lubsandorzhiev, E. A. Osipova, R. R. Mirgazov, D. Chernukh, Roman Raikin, Aleksandr Gafarov, Grigory Rubtsov, Oleg Fedorov, Pavel Bezyazeekov, N. N. Kalmykov, D. Voronin, Y. Sagan, A. A. Silaev, A. V. Zagorodnikov, Dieter Horns, A. A. Grinyuk, Mikhail Panasyuk, D. A. Podgrudkov, V. Vorobiov, A. Borodin, A. N. Dyachok, E. A. Kravchenko, B. K. Lubsandorzhiev, M. Brueckner, E. E. Korosteleva, O. A. Gress, A. Pushnin, B.A. Tarashansky, E. Popova, A. A. Petrukhin, Evgeny Postnikov, R. P. Kokoulin, P. Volchugov, V. A. Kozhin, A. L. Pakhorukov, V. V. Kindin, M. Tluczykont, A. Tanaev, Yulia Kazarina, I. I. Astapov, V.A. Tabolenko, R. Wischnewski, Yu. Lemeshev, V. Slunecka, E. Rybov, V. S. Ptuskin, S. Kiryuhin, V. V. Prosin, N. Ushakov, L. V. Pankov, L. M. Ternovoy, Andrey Sokolov, K. G. Kompaniets, A. Ivanova, A. Vaidyanathan, O. Grishin, A. Porelli, A. Pan, N. M. Budnev, L. A. Kuzmichev, V. M. Grebenyuk, Y. Suvorkin, and A. Krykov
- Subjects
Physics ,Data processing ,business.industry ,Gamma ray ,Cosmic ray ,Electromagnetic radiation ,law.invention ,Telescope ,Optics ,Silicon photomultiplier ,Data acquisition ,law ,business ,Instrumentation ,Mathematical Physics ,Cherenkov radiation - Published
- 2020
- Full Text
- View/download PDF
28. An approach for identification of ultrahigh energy extensive air showers with scintillation detectors at TAIGA experiment
- Author
-
T. I. Gress, A. Chiavassa, E. Popova, Y. Suvorkin, E. A. Osipova, A. V. Skurikhin, Pavel Bezyazeekov, V. Slunecka, B.A. Tarashansky, V. A. Poleschuk, V. S. Ptuskin, V. Vorobyev, L. G. Tkachev, Mihai Popescu, Dieter Horns, D. Voronin, B. K. Lubsandorzhiev, M. Brueckner, Mikhail Panasyuk, D. Zhurov, D. Chernukh, A. Garmash, A. Ivanova, E. A. Kravchenko, E. E. Korosteleva, Y. Sagan, R. P. Kokoulin, N. B. Lubsandorzhiev, Andrey Sokolov, V. V. Lenok, V. Samoliga, L. G. Sveshnikova, A. Krykov, R. Wischnewski, R. Mirzoyan, A. Pushnin, A. Bulan, M. Tluczykont, P. Volchugov, A. L. Pakhorukov, Anatoly Lagutin, Roman Raikin, R. R. Mirgazov, A. Tanaev, O. A. Gress, L. A. Kuzmichev, V. M. Grebenyuk, A. Pan, Oleg Fedorov, V. A. Kozhin, V. V. Kindin, A. Porelli, N. M. Budnev, A. A. Grinyuk, A. Silaev junior, A. Borodin, R. D. Monkhoev, A. Vaidyanathan, K. G. Kompaniets, I. I. Yashin, A. Sidorenkov, O. Grishin, Aleksandr Gafarov, A. N. Dyachok, A. A. Silaev, A. V. Zagorodnikov, Evgeny Postnikov, N. Ushakov, A. A. Petrukhin, L. V. Pankov, Yulia Kazarina, L. M. Ternovoy, Yu. Lemeshev, S. Kiryuhin, V. V. Prosin, I. I. Astapov, Grigory Rubtsov, N. N. Kalmykov, E. Rybov, and V.A. Tabolenko
- Subjects
Scintillation ,Detector ,Scintillation counter ,Taiga ,Measuring instrument ,Environmental science ,Cosmic ray ,Ultrahigh energy ,Instrumentation ,Mathematical Physics ,Particle detector ,Remote sensing - Published
- 2020
- Full Text
- View/download PDF
29. First analysis of inclined air showers detected by Tunka-Rex
- Author
-
R. R. Mirgazov, V. V. Prosin, A. Pakhorukov, V. Lenok, Frank G. Schröder, T. Marshalkina, E. A. Osipova, Aleksey Zagorodnikov, R. D. Monkhoev, Pavel Bezyazeekov, R. Hiller, Andreas Haungs, Dmitriy Kostunin, Matthias Kleifges, O. A. Gress, L. V. Pankov, L. A. Kuzmichev, Tim Huege, E. E. Korosteleva, O. Fedorov, N. B. Lubsandorzhiev, D. Chernykh, N. M. Budnev, D. Shipilov, and Y. Kazarina
- Subjects
Physics ,010308 nuclear & particles physics ,business.industry ,Frequency band ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,QC1-999 ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Cosmic ray ,01 natural sciences ,Magnetic field ,Antenna array ,Optics ,0103 physical sciences ,Physics::Accelerator Physics ,ddc:530 ,010306 general physics ,business ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Zenith - Abstract
The Tunka Radio Extension (Tunka-Rex) is a digital antenna array for the detection of radio emission from cosmic-ray air showers in the frequency band of 30 to 80 MHz and for primary energies above 100 PeV. The standard analysis of Tunka-Rex includes events with zenith angle of up to 50$^\circ$. This cut is determined by the efficiency of the external trigger. However, due to the air-shower footprint increasing with zenith angle and due to the more efficient generation of radio emission (the magnetic field in the Tunka valley is almost vertical), there are a number of ultra-high-energy inclined events detected by Tunka-Rex. In this work we present a first analysis of a subset of inclined events detected by Tunka-Rex. We estimate the energies of the selected events and test the efficiency of Tunka-Rex antennas for detection of inclined air showers., ARENA2018 proceedings
- Published
- 2019
- Full Text
- View/download PDF
30. Present status and prospects of the Tunka Radio Extension
- Author
-
R. D. Monkhoev, A. Pakhorukov, Andreas Haungs, Matthias Kleifges, V. V. Prosin, E. A. Osipova, Pavel Bezyazeekov, R. Hiller, L. V. Pankov, Dmitriy Kostunin, T. Marshalkina, Tim Huege, N. B. Lubsandorzhiev, O. A. Gress, V. Lenok, D. Chernykh, D. Shipilov, O. Fedorov, Frank G. Schröder, Y. Kazarina, N. M. Budnev, E. E. Korosteleva, L. A. Kuzmichev, and Aleksey Zagorodnikov
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Physics ,Muon ,Physics::Instrumentation and Detectors ,Frequency band ,QC1-999 ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy ,Cosmic ray ,Digital radio ,Particle detector ,Observatory ,Physics::Accelerator Physics ,ddc:530 ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Radio wave - Abstract
The Tunka Radio Extension (Tunka-Rex) is a digital radio array operating in the frequency band of 30-80 MHz and detecting radio emission from air-showers produced by cosmic rays with energies above 100 PeV. The experiment is installed at the site of the TAIGA (Tunka Advanced Instrument for cosmic rays and Gamma Astronomy) observatory and performs joint measurements with the co-located particle and air-Cherenkov detectors in passive mode receiving a trigger from the latter. Tunka-Rex collects data since 2012, and during the last five years went through several upgrades. As a result the density of the antenna field was increased by three times since its commission. In this contribution we present the latest results of Tunka-Rex experiment, particularly an updated analysis and efficiency study, which have been applied to the measurement of the mean shower maximum as a function of energy for cosmic rays of energies up to EeV. The future plans are also discussed: investigations towards an energy spectrum of cosmic rays with Tunka-Rex and their mass composition using a combination of Tunka-Rex data with muon measurements by the particle detector Tunka-Grande., Comment: ARENA2018 proceedings
- Published
- 2019
- Full Text
- View/download PDF
31. TAIGA—A hybrid array for high-energy gamma astronomy and cosmic-ray physics
- Author
-
A. A. Petrukhin, E. A. Osipova, A. V. Skurikhin, A. Grinyuk, E. A. Kravchenko, D. Chernykh, E. E. Korosteleva, A. Garmash, R. P. Kokoulin, Dmitry Zhurov, Pavel Bezyazeekov, R. R. Mirgazov, B. A. Tarashchansky, Dieter Horns, Evgeny Postnikov, M. Popesku, Y. Suvorkin, Martin Tluczykont, S. Kiryuhin, Razmik Mirzoyan, O. Fedorov, V.A. Tabolenko, Konstantin Ustinov, A. Pakhorukov, A. Borodin, Aleksey Zagorodnikov, A. Chiavassa, V. Prosin, Valery Zurbanov, Bayarto Lubsandorzhiev, M. Slunecka, Y. Kazarina, L. G. Sveshnikova, I. V. Yashin, V. S. Ptuskin, Yaroslav Sagan, A. Pushnin, R. D. Monkhoev, Victor Grebenyuk, T. I. Gress, Dmitriy Kostunin, O. A. Gress, V. A. Poleschuk, N. M. Budnev, A. Silaev junior, E.G. Popova, A. Pan, D. Voronin, V. A. Kozhin, E. V. Ryabov, I. I. Astapov, V. V. Kindin, L. Tkachev, Roman Raikin, V. Samoliga, Ralf Wischnewski, L. A. Kuzmichev, A. Porelli, A. N. Dyachok, O. G. Grishin, Grigory Rubtsov, N. N. Kalmykov, Ch. Spiering, N. B. Lubsandorzhiev, A. Vaidyanathan, N. Ushakov, L. V. Pankov, K. Komponiets, A. Ivanova, Mikhail Panasyuk, Aleksandr Gafarov, A. A. Silaev, Alexander Kryukov, A. Sidorenkov, M. Brückner, Anatoly Lagutin, and A. Sokolov
- Subjects
Physics ,Nuclear and High Energy Physics ,High energy ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,7. Clean energy ,01 natural sciences ,Observatory ,Hybrid array ,0103 physical sciences ,010306 general physics ,Instrumentation ,Cherenkov radiation - Abstract
The combination of a wide angle timing Cherenkov array and Imaging Atmospheric Cherenkov Telescopes operated in mono mode offers a cost-effective way to construct a few square kilometers array for ultrahigh-energy gamma astronomy. The first stage of the TAIGA Observatory (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) is described here. It will comprise TAIGA-HiSCORE - 120 wide angle Cherenkov stations distributed over an area of 1.0 km2 and three IACTs (TAIGA-IACT).
- Published
- 2020
- Full Text
- View/download PDF
32. Status of the Tunka Advanced Instrument for Cosmic Ray Physics and Gamma Astronomy (TAIGA)
- Author
-
R. D. Monkhoev, T. I. Gress, E. A. Kravchenko, Yu. Lemeshev, E. E. Korosteleva, E. A. Osipova, M. Kunnas, Pavel Bezyazeekov, R. P. Kokoulin, S. Kiryuhin, Aleksandr Gafarov, R. R. Mirgazov, K. G. Kompaniets, V. A. Poleschuk, M. Popesku, A. A. Silaev, A. Pakhorukov, A. Chiavassa, V. Prosin, D. Zhurov, L. G. Tkachev, V. V. Lenok, Oleg Fedorov, B. M. Sabirov, Valery Zurbanov, R. Wischnewski, A. Borodin, V. Slunecka, O. Grishin, A. Porelli, Aleksey Zagorodnikov, A. N. Dyachok, V. S. Ptuskin, Ch. Spiering, A. A. Petrukhin, A. V. Skurikhin, I. I. Yashin, R. Nachtigall, B.A. Tarashansky, Yulia Kazarina, V.A. Tabolenko, A. V. Tkachenko, Yu. A. Semeney, A. Sidorenkov, L. G. Sveshnikova, Andrey Sokolov, R. Mirzoya, Grigory Rubtsov, L. V. Pankov, N. N. Kalmykov, Evgenii V Rjabov, E.G. Popova, M. Tluczykont, A. A. Grinyuk, O. A. Gress, V. A. Kozhin, I. I. Astapov, V. V. Kindin, N. M. Budnev, V. Samoliga, Y. Sagan, Mikhail Panasyuk, L. A. Kuzmichev, V. M. Grebenyuk, N. B. Lubsandorzhiev, M. Brueckner, A. Ivanova, A. Pushnin, Evgeny Postnikov, and Bayarto Lubsandorzhiev
- Subjects
Physics ,Gamma ray ,Astronomy ,Cosmic ray ,Cherenkov radiation ,Muon detector - Published
- 2018
- Full Text
- View/download PDF
33. Reconstruction of cosmic ray air showers with Tunka-Rex data using template fitting of radio pulses
- Author
-
N. M. Budnev, T. Huege, L. A. Kuzmichev, R. D. Monkhoev, A. L. Pakhorukov, R. R. Mirgazov, Dmitriy Kostunin, O. A. Gress, Oleg Fedorov, A. Haungs, N. B. Lubsandorzhiev, Frank G. Schröder, A. V. Zagorodnikov, V. V. Lenok, L. V. Pankov, V. V. Prosin, E. A. Osipova, Pavel Bezyazeekov, R. Hiller, T. Marshalkina, Yulia Kazarina, M. Kleifges, D. Chernykh, E. E. Korosteleva, and D. Shipilov
- Subjects
Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Frequency band ,Detector ,FOS: Physical sciences ,Cosmic ray ,Scintillator ,01 natural sciences ,Computational physics ,0103 physical sciences ,Scintillation counter ,Calibration ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Energy (signal processing) ,Radio wave - Abstract
We present an improved method for the precise reconstruction of cosmic ray air showers above $10^{17}$ eV with sparse radio arrays. The method is based on the comparison of predictions for radio pulse shapes by CoREAS simulations to measured pulses. We applied our method to the data of Tunka-Rex, a 1 km$^2$ radio array in Siberia operating in the frequency band of 30-80 MHz. Tunka-Rex is triggered by the air-Cherenkov detector Tunka-133 and by scintillators (Tunka-Grande). The instrument collects air-shower data since 2012. The present paper describes updated data and signal analyses of Tunka-Rex and details of a new method applied. After efficiency cuts, when Tunka-Rex reaches its full efficiency, the energy resolution of about 10% given by the new method has reached the limit of systematic uncertainties due to the calibration uncertainty and shower-to-shower fluctuations. At the same time the shower maximum reconstruction is significantly improved up to an accuracy of 35 g/cm$^2$ compared to the previous method based on the slope of the lateral distribution. We also define and now achieved conditions of the measurements, at which the shower maximum resolution of Tunka-Rex reaches a value of 25 g/cm$^2$ and becomes competitive to optical detectors. To check and validate our reconstruction and efficiency cuts we compare individual events to the reconstruction of Tunka-133. Furthermore, we compare the mean of shower maximum as a function of primary energy to the measurements of other experiments., Comment: published version
- Published
- 2018
- Full Text
- View/download PDF
34. First results from the operation of the prototype Tunka-HiSCORE array
- Author
-
S. F. Berezhnev, N. M. Budnev, M. Büker, M. Brückner, R. Wischnewski, A. V. Gafarov, O. A. Gress, T. Gress, A. N. Dyachok, S. N. Epimakhov, A. V. Zagorodnikov, V. L. Zurbanov, N. N. Kalmykov, N. I. Karpov, E. N. Konstantinov, E. E. Korosteleva, V. A. Kozhin, M. Kunnas, L. A. Kuzmichev, A. Chiavassa, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. D. Monkhoev, R. Nachtigall, A. L. Pakhorukov, M. I. Panasyuk, L. V. Pankov, A. Porelli, V. A. Poleshchuk, E. G. Popova, V. V. Prosin, V. S. Ptuskin, M. Rueger, G. I. Rubtsov, Yu. A. Semeney, A. A. Silaev, A. V. Skurikhin, L. G. Sveshnikova, M. Tluczykont, D. Hampf, D. Horns, and O. A. Chvalaev
- Subjects
Physics ,Data processing ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,General Physics and Astronomy ,Astronomy ,Cosmic ray ,Differential spectrum ,Observatory ,Angle of arrival ,Cherenkov radiation ,Energy (signal processing) ,Remote sensing - Abstract
The Tunka-HISCORE wide-angle Cherenkov array, one part of the planned TAIGA integrated gamma observatory intended for investigations in the field of high-energy (>30 TeV) gamma-ray astronomy and cosmic-ray physics, is deployed in the Tunka Valley (Buryat Republic). The first results from operating a prototype array composed of nine stations spread over an area of ∼0.1 square kilometers during the winter of 2013–2014 are presented. Data processing techniques are described, along with data on the accuracy of reconstructing the position of a shower’s axis, energy, and angle of arrival. The differential spectrum of all cosmic-ray particles in a shower in the energy range of 2 × 1014 to 2 × 1016 eV is presented and compared to the available data.
- Published
- 2015
- Full Text
- View/download PDF
35. Energy spectrum and mass composition of cosmic rays, by the data of the Tunka-133 array
- Author
-
S. F. Berezhnev, N. M. Budnev, O. A. Gress, A. N. Dyachok, S. N. Epimakhov, A. V. Zagorodnikov, N. N. Kalmykov, N. I. Karpov, V. A. Kozhin, E. N. Konstantinov, A. V. Korobchenko, E. E. Korosteleva, L. A. Kuzmichev, A. Chiavassa, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. D. Monkhoev, E. A. Osipova, M. I. Panasyuk, L. V. Pankov, A. L. Pakhorukov, E. G. Popova, V. V. Prosin, V. S. Ptuskin, L. G. Sveshnikova, Yu. A. Semeney, A. A. Silaev, A. V. Skurikhin, O. A. Chvalaev, C. Spiering, and I. V. Yashin
- Subjects
Core (optical fiber) ,Physics ,Range (particle radiation) ,Air shower ,Primary energy ,General Physics and Astronomy ,Direction of arrival ,Cosmic ray ,Astrophysics ,Energy (signal processing) ,Cherenkov radiation ,Computational physics - Abstract
The Tunka-133 Cherenkov light array for the detection of extensive air showers (EAS) acquires data over the five winters from 2009 to 2014. The direction of arrival, the shower core coordinates on the plane of observation, the primary energy, and the depth of the shower maximum are reconstructed for each EAS. A differential all-particle energy spectrum is obtained in the energy range of 6 × 1015–3 × 1018 eV over 1540 h, along with the energy dependence of the average depth of the shower maximum in the range of 6 × 1016–3 × 1018 eV. Based on this dependence, the variation in the average composition of the primary cosmic rays is estimated as a function of energy.
- Published
- 2015
- Full Text
- View/download PDF
36. Improved measurements of the energy and shower maximum of cosmic rays with Tunka-Rex
- Author
-
R. R. Mirgazov, Oleg Fedorov, N. B. Lubsandorzhiev, A. Pakhorukov, Aleksey Zagorodnikov, Yulia Kazarina, E. A. Osipova, V. V. Lenok, T. Marshalkina, Pavel Bezyazeekov, R. Hiller, O. Krömer, L. A. Kuzmichev, N. M. Budnev, Frank Schroeder, D. Chernykh, E. E. Korosteleva, L. V. Pankov, Andreas Haungs, Matthias Kleifges, V. V. Prosin, Dmitriy Kostunin, O. A. Gress, and R. D. Monkhoev
- Subjects
Physics ,Antenna array ,Optics ,Amplitude ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Cosmic ray ,LOFAR ,Antenna (radio) ,business ,Maxima ,Energy (signal processing) - Abstract
The Tunka Radio Extension (Tunka-Rex) is an array of 63 antennas located in the Tunka Valley, Siberia. It detects radio pulses in the 30-80 MHz band produced during the air-shower development. As shown by Tunka-Rex, a sparse radio array with about 200 m spacing is able to reconstruct the energy and the depth of the shower maximum with satisfactory precision using simple methods based on parameters of the lateral distribution of amplitudes. The LOFAR experiment has shown that a sophisticated treatment of all individually measured amplitudes of a dense antenna array can make the precision comparable with the resolution of existing optical techniques. We develop these ideas further and present a method based on the treatment of time series of measured signals, i.e. each antenna station provides several points (trace) instead of a single one (amplitude or power). We use the measured shower axis and energy as input for CoREAS simulations: for each measured event we simulate a set of air-showers with proton, helium, nitrogen and iron as primary particle (each primary is simulated about ten times to cover fluctuations in the shower maximum due to the first interaction). Simulated radio pulses are processed with the Tunka-Rex detector response and convoluted with the measured signals. A likelihood fit determines how well the simulated event fits to the measured one. The positions of the shower maxima are defined from the distribution of chi-square values of these fits. When using this improved method instead of the standard one, firstly, the shower maximum of more events can be reconstructed, secondly, the resolution is increased. The performance of the method is demonstrated on the data acquired by the Tunka-Rex detector in 2012-2014.
- Published
- 2017
- Full Text
- View/download PDF
37. TAIGA-HiSCORE: results from the first two operation seasons
- Author
-
I. V. Yashin, Evgeny Postnikov, V. V. Kindin, Bayarto Lubsandorzhiev, A. A. Petrukhin, Mikhail Panasyuk, B.A. Tarashansky, Yulia Kazarina, V. V. Lenok, Razmik Mirzoyan, Yu. Semeney, E. M. Popescu, Valery Zurbanov, Yaroslav Sagan, B. M. Sabirov, A. Porelli, A. Chiavassa, V. Prosin, Grigory Rubtsov, N. N. Kalmykov, O. A. Gress, A. V. Tkachenko, V. A. Poleschuk, E.G. Popova, A. Sidorenkov, A. N. Dyachok, C. Spiering, V. A. Kozhin, Andrey Sokolov, L. G. Sveshnikova, N. M. Budnev, M. Brueckner, N. B. Lubsandorzhiev, Martin Tluczykont, Yu. Lemeshev, V.A. Tabolenko, S. Kiryuhin, R. D. Monkhoev, T. I. Gress, D. Zhurov, V. Slunecka, E. A. Kravchenko, I. I. Astapov, V. S. Ptuskin, E. E. Korosteleva, A.V. Skurihin, A. Ivanova, P. Kirilenko, L. V. Pankov, A. Garmash, Ralf Wischnewski, L. A. Kuzmichev, R. Nachtigall, R. R. Mirgazov, Dieter Horns, Oleg Fedorov, A. Borodin, A. Pushnin, E. A. Osipova, Pavel Bezyazeekov, V. Boreyko, N. V. Gorbunov, A. Pakhorukov, L. G. Tkachev, V. Samoliga, M. Kunnas, Evgenii V Rjabov, Aleksey Zagorodnikov, K. G. Kompaniets, O. Grishin, Victor Grebenyuk, A. A. Grinyuk, Aleksandr Gafarov, A. A. Silaev, and R. P. Kokoulin
- Subjects
Lidar ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Calibration ,Environmental science ,Cutoff ,Sampling (statistics) ,Cosmic ray ,Satellite ,Cherenkov radiation ,Remote sensing - Abstract
The very to ultra high energy gamma-ray regime up to several 100 TeV is the key to spectrally resolve the cutoff regime of the long-sought Pevatrons, the Galactic cosmic-ray PeV accelerators. One component of the TAIGA hybrid detector is the TAIGA-HiSCORE shower-front sampling timing array, which currently consists of 28 wide angle (0.6\,sr) air Cherenkov timing stations distributed on an area of 0.25 km$^{2}$, and which will be doubled in area by fall 2017. We report on the status and first results of the HiSCORE timing array after the first 2 operation seasons, including calibration studies on timing and pointing, cross calibration with data from the first TAIGA-IACT, observations with the timing array of a LIDAR operating on the ISS, a measurement of the Cosmic Ray spectrum, and a systematic search for high energy gamma-rays from Galactic sources such as the Crab.
- Published
- 2017
- Full Text
- View/download PDF
38. Detector efficiency and exposure of Tunka-Rex for cosmic-ray air showers
- Author
-
T. Marshalkina, Yulia Kazarina, R. R. Mirgazov, N. B. Lubsandorzhiev, Oleg Fedorov, V. V. Lenok, A. Pakhorukov, Dmitriy Kostunin, Andreas Haungs, Matthias Kleifges, O. A. Gress, O. Krömer, V. V. Prosin, N. M. Budnev, Frank Schroeder, L. A. Kuzmichev, E. A. Osipova, L. V. Pankov, Pavel Bezyazeekov, R. Hiller, Aleksey Zagorodnikov, D. Chernykh, E. E. Korosteleva, and R. D. Monkhoev
- Subjects
Antenna array ,Physics ,Data acquisition ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Monte Carlo method ,Antenna aperture ,Astrophysics::Instrumentation and Methods for Astrophysics ,Cosmic ray ,Event (particle physics) ,Energy (signal processing) ,Computational physics - Abstract
Tunka-Rex (Tunka Radio Extension) is an antenna array for cosmic-ray detection located in Siberia. Previous studies of cosmic rays with Tunka-Rex have shown high precision in determining the energy of the primary particle and the possibility to reconstruct the depth of the shower maximum. The next step is the reconstruction of the mass composition and the energy spectrum of cosmic rays. One of the main problems appearing within this task is to estimate the detection efficiency of the instrument, and the exposure of the observations. The detection efficiency depends on properties of the primary cosmic rays, such as energy and arrival direction, as well as on many parameters of the instrument: density of the array, efficiency of the receiving antennas, signal-detection threshold, data-acquisition acceptance, and trigger properties. More than that, the configuration of detector changes with time. During the measurements some parts of the detector can provide corrupted data or sometimes do not operate. All these features should be taken into account for an estimation of the detection efficiency. For each energy and arrival direction we estimate the detection probability and effective area of the instrument. To estimate the detection probability of a shower we use a simple Monte Carlo model, which predicts the size of the footprint of the radio emission as function of the primary energy and arrival direction (taking into account the geometry of Earth's magnetic field). Combining these approaches we calculate the event statistics and exposure for each run. This is the first accurate study of the exposure for irregular large-scale radio arrays taking into account most important features of detection, which will be used for the measurement of primary cosmic-ray spectra with Tunka-Rex.
- Published
- 2017
- Full Text
- View/download PDF
39. The HiSCORE Project
- Author
-
M. Brückner, Martin Tluczykont, L. G. Sveshnikova, Petr Satunin, S. Epimakhov, Grigory Rubtsov, N. N. Kalmykov, A. L. Pakhorukov, Bayarto Lubsandorzhiev, E. E. Korosteleva, V. S. Ptuskin, V. Kozin, V. V. Prosin, V. Zirakashvili, R. D. Monkhoev, V. A. Poleschuk, M. Kunnas, R. R. Mirgazov, A. N. Dyachok, Mikhail Panasyuk, O. A. Gress, Yu. Semeney, E. N. Konstantinov, A. Skukhin, N. M. Budnev, D. Hampf, Aleksey Zagorodnikov, A. Ivanova, O. Chvalaev, A. Porelli, D. Spitschan, R. Nachtigall, Dieter Horns, Ralf Wischnewski, and L. A. Kuzmichev
- Subjects
Astroparticle physics ,Physics ,COSMIC cancer database ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Cosmic ray ,Air shower ,lcsh:TA1-2040 ,General Earth and Planetary Sciences ,lcsh:Engineering (General). Civil engineering (General) ,General Environmental Science - Abstract
A central question of Astroparticle Physics, the origin of cosmic rays, still remains unsolved. HiSCORE (Hundred*i Square-km Cosmic ORigin Explorer) is a concept for a large-area wide-angle non-imaging air shower detector, addressing this question by searching for cosmic ray pevatrons in the energy range from 10TeV to few PeV and cosmic rays in the energy range above 100TeV. In the framework of the Tunka-HiSCORE project, first prototypes have been deployed on the site of the Tunka-133 experiment, where we plan to install an engineering array covering an area of the order of 1km2. On the same site, also imaging and particle detectors are planned, potentially allowing a future hybrid detector system. Here we present the HiSCORE detector principle, its potential for cosmic ray origin search and the status of ongoing activities in the framework of the Tunka-HiSCORE experiment.
- Published
- 2014
- Full Text
- View/download PDF
40. The TAIGA experiment: From cosmic-ray to gamma-ray astronomy in the Tunka valley
- Author
-
A. Haungs, N. B. Lubsandorzhiev, V. Samoliga, Grigory Rubtsov, N. N. Kalmykov, M. Brückner, A Saunkin, E. A. Osipova, D. Voronin, E.G. Popova, Pavel Bezyazeekov, V. Boreyko, O. G. Grishin, R. Hiller, B. K. Lubsandorzhiev, V. A. Poleschuk, A. N. Dyachok, N. V. Gorbunov, N Kirichkov, E. A. Kravchenko, L. Sveshnikova, E. E. Korosteleva, M. Kunnas, N. Karpov, E. Rybov, A. Pakhorukov, R. P. Kokoulin, R. D. Monkhoev, T. I. Gress, E. Fedoseev, A. V. Tkachenko, A. G. Bogdanov, R. Mirzoyan, A. Pushnin, Aleksandr Gafarov, M. Kleifges, R. R. Mirgazov, V.A. Tabolenko, A. Ivanova, Evgeny Postnikov, N. S. Barbashina, V Platonov, A. A. Silaev, A. V. Zagorodnikov, Oleg Fedorov, Y. Kazarina, K. O. Yurin, L. V. Pankov, A. A. Grinyuk, I. I. Astapov, Dmitriy Kostunin, O. A. Gress, V. Zirakashvili, B. A. Tarashchansky, V. A. Kozhin, O. Chvalaev, S.G. Pivovarov, Yu. A. Tikhonov, V. S. Ptuskin, F.G. Schröder, M. Tluczykont, R. Wischnewski, T. Huege, C. Spiering, Andrey Sokolov, N. M. Budnev, I. I. Yashin, A. Barnyakov, Valery Zurbanov, L. G. Tkachev, K. G. Kompaniets, Yu. A. Semeney, V. V. Lenok, A. Porelli, P. Kirilenko, A. V. Skurikhin, L. A. Kuzmichev, V. M. Grebenyuk, R. Nachtigall, Dieter Horns, A. Chiavassa, A. A. Perevalov, A. A. Petrukhin, S. Epimakhov, S. Kiryuhin, V. V. Prosin, and M. I. Panasyuk
- Subjects
Nuclear and High Energy Physics ,TAIGA ,Physics::Instrumentation and Detectors ,Cherenkov detector ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,IACT ,Astrophysics ,01 natural sciences ,law.invention ,Observatory ,law ,0103 physical sciences ,010303 astronomy & astrophysics ,Instrumentation ,Cherenkov radiation ,Physics ,Muon ,Gamma astronomy ,010308 nuclear & particles physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Astronomy ,Gamma-ray astronomy - Abstract
We present physical motivations and advantages of the new gamma-observatory TAIGA (Tunka Advanced Instrument for cosmic ray physics and gamma-ray astronomy). TAIGA will be located in the Tunka valley, 50 km to the west of Lake Baikal, at the same place as the integrating air Cherenkov detector for cosmic rays Tunka-133. The TAIGA array is a complex, hybrid detector for ground-based gamma-ray astronomy for energies from a few TeV to several PeV as well as for cosmic ray studies from 100 TeV to several EeV. The array will consist of a wide angle Cherenkov array – TAIGA-HiSCORE with 5km2 area, a net of 16 IACT telescopes (with FOV of about 9.72°×9.72°) as well as muon and other detectors. We present the current status of the array construction.
- Published
- 2017
41. The Primary CR Spectrum by the Data of the Tunka-133 Array
- Author
-
S. F. Berezhnev, N. M. Budnev, A. Chiavassa, O. A. Chvalaev, O. A. Gress, T. I. Gress, A. N. Dyachok, S. N. Epimakhov, N. I. Karpov, N. N. Kalmykov, E. N. Konstantinov, A. V. Korobchenko, E. E. Korosteleva, V. A. Kozhin, L. A. Kuzmichev, B. K. Lubsandorzhiev, N. B. Lubsandorzhiev, R. R. Mirgazov, R. D. Monkhoev, E. A. Osipova, A. L. Pakhorukov, M. I. Panasyuk, L. V. Pankov, E. G. Popova, V. V. Prosin, V. S. Ptuskin, Yu. A. Semeney, A. A. Silaev, A. V. Skurikhin, C. Spiering, L. G. Sveshnikova, and A. V. Zagorodnikov
- Subjects
Physics ,Data acquisition ,Calibration (statistics) ,Primary (astronomy) ,Energy spectrum ,Astronomy ,Astrophysics ,Spectrum (topology) - Published
- 2016
- Full Text
- View/download PDF
42. First results of the tracking system calibration of the TAIGA-IACT telescope
- Author
-
E. A. Osipova, Pavel Bezyazeekov, Dmitriy Zhurov, V. Boreyko, A. A. Petrukhin, A. V. Tkachenko, Yu. A. Semeney, Yulia Kazarina, A. Pushnin, N. V. Gorbunov, A. N. Dyachok, R. D. Monkhoev, B. M. Sabirov, Yu. Lemeshev, A. V. Skurikhin, S. Kiryuhin, K. G. Kompaniets, V. V. Prosin, R. Nachtigall, Valery Zurbanov, Denis Sidorov, Aleksandr Gafarov, I. I. Yashin, Andrey Sokolov, V. A. Poleschuk, L. G. Sveshnikova, L. V. Pankov, O. Grishin, R. Mirzoyan, M. Brueckner, A. Ivanova, Grigory Rubtsov, A. A. Silaev, N. N. Kalmykov, A. V. Zagorodnikov, Evgeny Postnikov, C. Spiering, P. Kirilenko, T. I. Gress, V. V. Lenok, A. Porelli, L. G. Tkachev, A. Silaev junior, M. Tluczykont, A. Sidorenkov, Y. Sagan, V. Samoliga, B.A. Tarashansky, L. A. Kuzmichev, V. M. Grebenyuk, Dieter Horns, R. R. Mirgazov, A. Chiavassa, BayarJon Paul Lubsandorzhiev, Evgenii V Rjabov, A. L. Pakhorukov, V. Slunecka, I. I. Astapov, V. S. Ptuskin, N. B. Lubsandorzhiev, Mikhail Panasyuk, O. A. Gress, Oleg Fedorov, N. M. Budnev, V. A. Kozhin, V. V. Kindin, A. Borodin, A. A. Grinyuk, M. Kunnas, E.G. Popova, Mihai Popescu, A. Garmash, V.A. Tabolenko, E. A. Kravchenko, R. Wischnewski, E. E. Korosteleva, and R. P. Kokoulin
- Subjects
Physics ,Rotary encoder ,History ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,IACT ,Tracking system ,Cosmic ray ,Computer Science Applications ,Education ,law.invention ,Telescope ,Observatory ,Sky ,law ,Astrophysics::Solar and Stellar Astrophysics ,business ,Astrophysics::Galaxy Astrophysics ,Cherenkov radiation ,Remote sensing ,media_common - Abstract
In TAIGA Observatory (Tunka Advanced Instrument for cosmic ray physics and Gamma-ray Astronomy) we are commissioning the first Imaging Atmospheric Cherenkov Telescope (IACT). The telescope has an alt-azimuth mount and 17-bit shaft encoder for each axis, stepper motors are used for axis control. For the pointing calibration of the telescope a CCD-camera is installed on the dish of the telescope and its position allows to capture simultaneously both the Cherenkov camera with LEDs and the sky with observed source. Since October 2017, the telescope has been operating in tracking mode. In this work the TAIGAIACT telescope pointing calibration approach and first results of the tracking operations are described.
- Published
- 2019
- Full Text
- View/download PDF
43. Signal recognition and background suppression by matched filters and neural networks for Tunka-Rex
- Author
-
E. E. Korosteleva, N. B. Lubsandorzhiev, D. Chernykh, Frank G. Schröder, E. A. Osipova, O. Fedorov, Pavel Bezyazeekov, V. V. Prosin, R. Hiller, T. Marshalkina, Dmitriy Kostunin, O. A. Gress, L. V. Pankov, N. M. Budnev, R. D. Monkhoev, Tim Huege, Y. Kazarina, Andreas Haungs, A. Pakhorukov, V. Lenok, Matthias Kleifges, D. Shipilov, L. A. Kuzmichev, and Aleksey Zagorodnikov
- Subjects
Signal Processing (eess.SP) ,FOS: Computer and information sciences ,Computer Science - Machine Learning ,Computer science ,QC1-999 ,FOS: Physical sciences ,01 natural sciences ,Signal ,Machine Learning (cs.LG) ,Antenna array ,0103 physical sciences ,FOS: Electrical engineering, electronic engineering, information engineering ,Detection theory ,Electrical Engineering and Systems Science - Signal Processing ,010306 general physics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,010308 nuclear & particles physics ,Signal reconstruction ,business.industry ,Noise (signal processing) ,Physics ,Matched filter ,Pattern recognition ,White noise ,Autoencoder ,Artificial intelligence ,Astrophysics - Instrumentation and Methods for Astrophysics ,business - Abstract
The Tunka Radio Extension (Tunka-Rex) is a digital antenna array, which measures the radio emission of the cosmic-ray air-showers in the frequency band of 30-80 MHz. Tunka-Rex is co-located with TAIGA experiment in Siberia and consists of 63 antennas, 57 of them are in a densely instrumented area of about 1 km\textsuperscript{2}. In the present work we discuss the improvements of the signal reconstruction applied for the Tunka-Rex. At the first stage we implemented matched filtering using averaged signals as template. The simulation study has shown that matched filtering allows one to decrease the threshold of signal detection and increase its purity. However, the maximum performance of matched filtering is achievable only in case of white noise, while in reality the noise is not fully random due to different reasons. To recognize hidden features of the noise and treat them, we decided to use convolutional neural network with autoencoder architecture. Taking the recorded trace as an input, the autoencoder returns denoised trace, i.e. removes all signal-unrelated amplitudes. We present the comparison between standard method of signal reconstruction, matched filtering and autoencoder, and discuss the prospects of application of neural networks for lowering the threshold of digital antenna arrays for cosmic-ray detection., Comment: ARENA2018 proceedings
- Published
- 2019
- Full Text
- View/download PDF
44. A comparison of the cosmic-ray energy scales of Tunka-133 and KASCADE-Grande via their radio extensions Tunka-Rex and LOPES
- Author
-
R. D. Monkhoev, Harald Schieler, Hermann-Josef Mathes, J.C. Arteaga-Velázquez, Kai Daumiller, V. V. Prosin, Alexandra Saftoiu, C. Grupen, A. Chiavassa, N. B. Lubsandorzhiev, I.M. Brancus, J. Zabierowski, G. Toma, P. Łuczak, N. Palmieri, M. E. Bertaina, R. Wischnewski, Jan Kuijpers, E. E. Korosteleva, J. Blümer, Andreas Weindl, J. Wochele, Dmitriy Kostunin, O. A. Gress, G.C. Trinchero, Octavian Sima, Julian Rautenberg, M. Kleifges, F. Di Pierro, W. D. Apel, Katrin Link, Tanguy Pierog, C. Rühle, Grigory Rubtsov, J. A. Zensus, H. Bozdog, E. A. Osipova, O. Krömer, M. Melissas, A. Schmidt, Yulia Kazarina, Pavel Bezyazeekov, A. L. Pakhorukov, R. Hiller, Markus Roth, Ralph Engel, Tim Huege, Jörg R. Hörandel, J. Oehlschläger, C. Morello, Andreas Haungs, H. Rebel, Peter L. Biermann, Paula Gina Isar, D. Huber, P. Doll, B. Fuchs, A. Horneffer, L. V. Pankov, L. Bähren, D. Kang, R. R. Mirgazov, M. Ludwig, Oleg Fedorov, S. Schoo, Karl-Heinz Kampert, Dieter Heck, V. de Souza, Heino Falcke, E. Cantoni, A. V. Zagorodnikov, F. G. Schröder, L. A. Kuzmichev, K. Bekk, H. Gemmeke, and N. M. Budnev
- Subjects
Nuclear and High Energy Physics ,Cosmic rays ,KASCADE-Grande ,LOPES ,Radio detection ,Tunka-133 ,Tunka-Rex ,Physics::Instrumentation and Detectors ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Cosmic ray ,Astrophysics ,01 natural sciences ,Air showers ,0103 physical sciences ,ddc:530 ,010306 general physics ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,010308 nuclear & particles physics ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Digital radio ,ASTROFÍSICA ,lcsh:QC1-999 ,Computational physics ,Air shower ,Amplitude ,KASCADE ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,lcsh:Physics ,Radio wave - Abstract
Physics letters / B 763, 179 - 185(2016). doi:10.1016/j.physletb.2016.10.031, The radio technique is a promising method for detection of cosmic-ray air showers of energies around View the MathML source100PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10%10% – limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level., Published by North-Holland Publ., Amsterdam
- Published
- 2016
- Full Text
- View/download PDF
45. The Tunka radio extension (Tunka-Rex): Radio measurements of cosmic rays in Siberia
- Author
-
Pavel Bezyazeekov, A. Haungs, N. B. Lubsandorzhiev, R. Hiller, Dmitriy Kostunin, O. A. Gress, E. E. Korosteleva, Y. Kazarina, V. V. Prosin, M. Kleifges, F.G. Schröder, R. Wischnewski, Grigory Rubtsov, L. A. Kuzmichev, N. M. Budnev, R. D. Monkhoev, R. R. Mirgazov, A. L. Pakhorukov, E. N. Konstantinov, A. V. Zagorodnikov, T. Huege, L. V. Pankov, and O. Krömer
- Subjects
Nuclear and High Energy Physics ,Photomultiplier ,air ,Cosmic ray ,primary [cosmic radiation] ,Baikal ,Scintillator ,01 natural sciences ,Extension (metaphysics) ,Observatory ,0103 physical sciences ,site ,ddc:530 ,Cherenkov ,010303 astronomy & astrophysics ,Instrumentation ,Cherenkov radiation ,scintillation counter ,Physics ,radio wave ,photomultiplier ,010308 nuclear & particles physics ,Detector ,Astronomy ,showers ,observatory ,statistics ,Radio detection - Abstract
The Tunka observatory is located close to Lake Baikal in Siberia, Russia. Its main detector, Tunka-133, is an array of photomultipliers measuring Cherenkov light of air showers initiated by cosmic rays in the energy range of approximately 10 16 − 10 18 eV . In the last years, several extensions have been built at the Tunka site, e.g., a scintillator array named Tunka-Grande, a sophisticated air-Cherenkov-detector prototype named HiSCORE, and the radio extension Tunka-Rex. Tunka-Rex started operation in October 2012 and currently features 44 antennas distributed over an area of about 3 km 2 , which measure the radio emission of the same air showers detected by Tunka-133 and Tunka-Grande. Tunka-Rex is a technological demonstrator that the radio technique can provide an economic extension of existing air-shower arrays. The main scientific goal is the cross-calibration with the air-Cherenkov measurements. By this cross-calibration, the precision for the reconstruction of the energy and mass of the primary cosmic-ray particles can be determined. Finally, Tunka-Rex can be used for cosmic-ray physics at energies close to 1 EeV, where the standard Tunka-133 analysis is limited by statistics. In contrast to the air-Cherenkov measurements, radio measurements are not limited to dark, clear nights and can provide an order of magnitude larger exposure.
- Published
- 2016
- Full Text
- View/download PDF
46. Amplitude calibration with the HiSCORE-9 array
- Author
-
Grigory Rubtsov, V. A. Poleschuk, M. Brückner, N. M. Budnev, R. R. Mirgazov, V Platonov, D Bogorodskii, Bayarto Lubsandorzhiev, L. G. Sveshnikova, R. Nachtigall, E. Konstantinov, R. Mirzoyan, L. A. Kuzmichev, O. A. Gress, P Satunin, R. D. Monkhoev, N. B. Lubsandorzhiev, M. Tluczykont, R. Wischnewski, A. Pakhorukov, V. Prosin, O. Chvalaev, Aleksey Zagorodnikov, A. Ivanova, Dieter Horns, M. Kunnas, E. E. Korosteleva, S. Epimakhov, M Rüger, S Kiruhin, A Saunkin, D. Voronin, Yu. A. Semeney, V.A. Tabolenko, A. N. Dyachok, and A. Porelli
- Subjects
Physics ,History ,Physics::Instrumentation and Detectors ,business.industry ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic ray ,Astrophysics ,530 Physik ,Computer Science Applications ,Education ,Optics ,Data acquisition ,Amplitude ,Calibration ,ddc:530 ,Ultrahigh energy ,business ,Cherenkov radiation ,Time synchronization - Abstract
HiSCORE is a non-imaging wide-angle Cherenkov array for the detection of extensive air showers induced by ultrahigh energy gamma-rays above 10 TeV and cosmic ray studies above 100 TeV. In October 2013 a 9-station engineering array has been deployed in Tunka valley. For HiSCORE-9, two DAQ systems are being used. The second system is a DRS4 based acquisition system with WhiteRabbit integrated time synchronization. We present the first results on the amplitude calibration from the data of this DAQ system.
- Published
- 2015
- Full Text
- View/download PDF
47. Measurement of cosmic-ray air showers with the Tunka Radio Extension (Tunka-Rex)
- Author
-
L. V. Pankov, Pavel Bezyazeekov, E. E. Korosteleva, R. Hiller, N. M. Budnev, C. Rühle, E. Levinson, O. Krömer, M. Kleifges, V. V. Prosin, Grigory Rubtsov, A. V. Zagorodnikov, L. A. Kuzmichev, Tim Huege, R. R. Mirgazov, Yulia Kazarina, E. N. Konstantinov, F.G. Schröder, R. Wischnewski, R. D. Monkhoev, A. Haungs, N. B. Lubsandorzhiev, A. L. Pakhorukov, Dmitriy Kostunin, and O. A. Gress
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics::Instrumentation and Detectors ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Particle detector ,Computational physics ,Nuclear physics ,Amplitude ,Earth's magnetic field ,Air shower ,Measuring instrument ,Calibration ,High Energy Physics::Experiment ,Astrophysics - Instrumentation and Methods for Astrophysics ,Instrumentation ,Instrumentation and Methods for Astrophysics (astro-ph.IM) - Abstract
Tunka-Rex is a radio detector for cosmic-ray air showers in Siberia, triggered by Tunka-133, a co-located air-Cherenkov detector. The main goal of Tunka-Rex is the cross-calibration of the two detectors by measuring the air-Cherenkov light and the radio signal emitted by the same air showers. This way we can explore the precision of the radio-detection technique, especially for the reconstruction of the primary energy and the depth of the shower maximum. The latter is sensitive to the mass of the primary cosmic-ray particles. In this paper we describe the detector setup and explain how electronics and antennas have been calibrated. The analysis of data of the first season proves the detection of cosmic-ray air showers and therefore, the functionality of the detector. We confirm the expected dependence of the detection threshold on the geomagnetic angle and the correlation between the energy of the primary cosmic-ray particle and the radio amplitude. Furthermore, we compare reconstructed amplitudes of radio pulses with predictions from CoREAS simulations, finding agreement within the uncertainties., Comment: Description and Calibration paper for Tunka-Rex
- Published
- 2015
- Full Text
- View/download PDF
48. TAIGA experiment: present status and perspectives
- Author
-
A. Chiavassa, V. Prosin, A. N. Dyachok, Aleksey Zagorodnikov, K. G. Kompaniets, M. Slunecka, V. Samoliga, Ch. Spiering, Aleksandr Gafarov, Grigory Rubtsov, N. N. Kalmykov, A. A. Petrukhin, A. A. Silaev, A. V. Tkachenko, R. D. Monkhoev, T. I. Gress, Martin Tluczykont, A. V. Skurikhin, R. Nachtigall, E.G. Popova, V. A. Poleschuk, R. R. Mirgazov, Evgenii V Rjabov, V.A. Tabolenko, Yu. Lemeshev, Oleg Fedorov, A. Ivanova, L. G. Sveshnikova, L. Tkachev, T. Huege, B.A. Tarashansky, S. Kiryuhin, A. Borodin, A. Pakhorukov, Evgeny Postnikov, Dieter Horns, L. V. Pankov, A. Grinyuk, I. I. Astapov, F.G. Schröder, E. A. Kravchenko, M. Brückner, E. E. Korosteleva, Bayarto Lubsandorzhiev, R. P. Kokoulin, Ralf Wischnewski, Razmik Mirzoyan, E. A. Osipova, L. A. Kuzmichev, V. V. Lenok, Valery Zurbanov, A. Porelli, Pavel Bezyazeekov, O. G. Grishin, A. Sidorenkov, V. Boreyko, Yu. Semeney, Dmitry Zhurov, M. Popesku, V. S. Ptuskin, Mikhail Panasyuk, Dmitriy Kostunin, O. A. Gress, V. A. Kozhin, V. V. Kindin, A. Haungs, N. B. Lubsandorzhiev, A. Pushnin, M. Kunnas, Victor Grebenyuk, Y. Kazarina, Andrey Sokolov, N. M. Budnev, Y. Sagan, and I. V. Yashin
- Subjects
Physics ,Muon ,Physics::Instrumentation and Detectors ,010308 nuclear & particles physics ,Astrophysics::High Energy Astrophysical Phenomena ,Taiga ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Measure (physics) ,Astronomy ,Cosmic ray ,Electron ,01 natural sciences ,Observatory ,0103 physical sciences ,High Energy Physics::Experiment ,010306 general physics ,Instrumentation ,Mathematical Physics ,Cherenkov radiation - Abstract
The TAIGA observatory addresses ground-based gamma-ray astronomy at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV . TAIGA will be located in the Tunka valley, ~ 50 km West from Lake Baikal. The different detectors of the TAIGA will be grouped in 6 arrays to measure Cherenkov and radio emission as well as electron and muon components of atmospheric showers. The combination of the wide angle Cherenkov detectors of the TAIGA-HiSCORE array and the 4-m Imaging Atmospheric Cherenkov Telescopes of the TAIGA-IACT array with their FoV of 10×10 degrees and underground muon detectors offers a very cost effective way to construct a 5 km2 array for gamma-ray astronomy.
- Published
- 2017
- Full Text
- View/download PDF
49. Latest results of the Tunka Radio Extension
- Author
-
Dmitriy Kostunin, O. A. Gress, L. V. Pankov, T. Huege, R. D. Monkhoev, R. R. Mirgazov, Oleg Fedorov, A. L. Pakhorukov, A. Haungs, N. B. Lubsandorzhiev, V. Kungel, E. A. Osipova, R. Wischnewski, O. Krömer, T. Marshalkina, Pavel Bezyazeekov, N. M. Budnev, A. V. Zagorodnikov, R. Hiller, Frank G. Schröder, M. Kleifges, E. E. Korosteleva, Grigory Rubtsov, Yulia Kazarina, V. V. Prosin, and L. A. Kuzmichev
- Subjects
Antenna array ,Physics ,010308 nuclear & particles physics ,QC1-999 ,0103 physical sciences ,Astronomy ,Cosmic ray ,Scintillator ,010303 astronomy & astrophysics ,01 natural sciences ,Energy (signal processing) ,Remote sensing - Abstract
The Tunka Radio Extension (Tunka-Rex) is an antenna array consisting of 63 antennas at the location of the TAIGA facility (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) in Eastern Siberia, nearby Lake Baikal. Tunka-Rex is triggered by the air-Cherenkov array Tunka-133 during clear and moonless winter nights and by the scintillator array Tunka-Grande during the remaining time. Tunka-Rex measures the radio emission from the same air-showers as Tunka-133 and Tunka-Grande, but with a higher threshold of about 100 PeV. During the first stages of its operation, Tunka-Rex has proven, that sparse radio arrays can measure air-showers with an energy resolution of better than 15\% and the depth of the shower maximum with a resolution of better than 40 g/cm\textsuperscript{2}. To improve and interpret our measurements as well as to study systematic uncertainties due to interaction models, we perform radio simulations with CORSIKA and CoREAS. In this overview we present the setup of Tunka-Rex, discuss the achieved results and the prospects of mass-composition studies with radio arrays.
- Published
- 2017
- Full Text
- View/download PDF
50. Hardware and first results of TUNKA-HiSCORE
- Author
-
M. Brückner, R. D. Monkhoev, M. Büker, Aleksey Zagorodnikov, Dieter Horns, A. N. Dyachok, A. Porelli, L. G. Sveshnikova, Bayarto Lubsandorzhiev, V. Prosin, E. E. Korosteleva, R. Wischnewski, A. Ivanova, D. Spitschan, Yu. A. Semeney, V. A. Poleschuk, Gavin Rowell, O. A. Gress, A. Pakhorukov, Grigory Rubtsov, P Satunin, R. Nachtigall, E. Konstantinov, M. Kunnas, O. Chvalaev, M. Tluczykont, N. M. Budnev, U. Einhaus, D. Hampf, R. R. Mirgazov, S. Epimakhov, and L. A. Kuzmichev
- Subjects
Physics ,Nuclear and High Energy Physics ,COSMIC cancer database ,Physics::Instrumentation and Detectors ,business.industry ,Cherenkov detector ,Astrophysics::High Energy Astrophysical Phenomena ,Detector ,Astrophysics::Instrumentation and Methods for Astrophysics ,Gamma ray ,Cosmic ray ,Cherenkov Telescope Array ,law.invention ,Air shower ,law ,ddc:530 ,business ,Instrumentation ,Computer hardware ,Cherenkov radiation - Abstract
As a non-imaging wide-angle Cherenkov air shower detector array with an area of up to 100 km 2 , the HiSCORE (Hundred⁎i Square km Cosmic ORigin Explorer) detector concept allows measurements of gamma rays and cosmic rays in an energy range of 10 TeV up to 1 EeV. In the framework of the Tunka-HiSCORE project we have started measurements with a small prototype array, and planned to build an engineering array (1 km 2 ) on the site of the Tunka experiment in Siberia. The first results and the most important hardware components are presented here.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.