26 results on '"R P Breton"'
Search Results
2. Einstein@Home discovery of the gamma-ray millisecond pulsar PSR J2039–5617 confirms its predicted redback nature
- Author
-
C J Clark, L Nieder, G Voisin, B Allen, C Aulbert, O Behnke, R P Breton, C Choquet, A Corongiu, V S Dhillon, H B Eggenstein, H Fehrmann, L Guillemot, A K Harding, M R Kennedy, B Machenschalk, T R Marsh, D Mata Sánchez, R P Mignani, J Stringer, Z Wadiasingh, and J Wu
- Published
- 2020
- Full Text
- View/download PDF
3. Optical spectra of FO Aquarii during low and high accretion rates
- Author
-
M R Kennedy, P M Garnavich, C Littlefield, T R Marsh, P Callanan, R P Breton, T Augusteijn, R M Wagner, R P Ashley, and M Neric
- Published
- 2020
- Full Text
- View/download PDF
4. Optical, X-ray, and γ-ray observations of the candidate transitional millisecond pulsar 4FGL J0427.8-6704
- Author
-
M R Kennedy, R P Breton, C J Clark, V S Dhillon, M Kerr, D A H Buckley, S B Potter, D Mata Sánchez, J G Stringer, and T R Marsh
- Published
- 2020
- Full Text
- View/download PDF
5. PSR J1012+5307: a millisecond pulsar with an extremely low-mass white dwarf companion
- Author
-
D Mata Sánchez, A G Istrate, M H van Kerkwijk, R P Breton, and D L Kaplan
- Published
- 2020
- Full Text
- View/download PDF
6. Neutron star mass estimates from gamma-ray eclipses in spider millisecond pulsar binaries
- Author
-
C. J. Clark, M. Kerr, E. D. Barr, B. Bhattacharyya, R. P. Breton, P. Bruel, F. Camilo, W. Chen, I. Cognard, H. T. Cromartie, J. Deneva, V. S. Dhillon, L. Guillemot, M. R. Kennedy, M. Kramer, A. G. Lyne, D. Mata Sánchez, L. Nieder, C. Phillips, S. M. Ransom, P. S. Ray, M. S. E. Roberts, J. Roy, D. A. Smith, R. Spiewak, B. W. Stappers, S. Tabassum, G. Theureau, and G. Voisin
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Reliable neutron star mass measurements are key to determining the equation-of-state of cold nuclear matter, but these are rare. "Black Widows" and "Redbacks" are compact binaries consisting of millisecond pulsars and semi-degenerate companion stars. Spectroscopy of the optically bright companions can determine their radial velocities, providing inclination-dependent pulsar mass estimates. While inclinations can be inferred from subtle features in optical light curves, such estimates may be systematically biased due to incomplete heating models and poorly-understood variability. Using data from the Fermi Large Area Telescope, we have searched for gamma-ray eclipses from 49 spider systems, discovering significant eclipses in 7 systems, including the prototypical black widow PSR B1957$+$20. Gamma-ray eclipses require direct occultation of the pulsar by the companion, and so the detection, or significant exclusion, of a gamma-ray eclipse strictly limits the binary inclination angle, providing new robust, model-independent pulsar mass constraints. For PSR B1957$+$20, the eclipse implies a much lighter pulsar ($M_{\rm psr} = 1.81 \pm 0.07\,M_{\odot}$) than inferred from optical light curve modelling., Comment: 31 pages, 4 figures, includes supplementary tables; published in Nature Astronomy
- Published
- 2023
- Full Text
- View/download PDF
7. A black widow population dissection through HiPERCAM multiband light-curve modelling
- Author
-
D Mata Sánchez, M R Kennedy, C J Clark, R P Breton, V S Dhillon, G Voisin, F Camilo, S Littlefair, T R Marsh, and J Stringer
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Black widows are extreme millisecond pulsar binaries where the pulsar wind ablates their low-mass companion stars. Their optical light curves vary periodically due to the high irradiation and tidal distortion of the companion, which allows us to infer the binary parameters. We present simultaneous multi-band observations obtained with the HIPERCAM instrument at the 10.4-m GTC telescope for six of these systems. The combination of this five-band fast photometer with the world's largest optical telescope enables us to inspect the light curve range near minima. We present the first light curve for PSR J1641+8049, as well as attain a significant increase in signal-to-noise and cadence compared with previous publications for the remaining 5 targets: PSR J0023+0923, PSR J0251+2606, PSR J0636+5129, PSR J0952-0607 and PSR J1544+4937. We report on the results of the light curve modelling with the Icarus code for all six systems, which reveals some of the hottest and densest companion stars known. We compare the parameters derived with the limited but steadily growing black widow population for which optical modelling is available. We find some expected correlations, such as that between the companion star mean density and the orbital period of the system, but also a puzzling positive correlation between the orbital inclination and the irradiation temperature of the companion. We propose such a correlation would arise if pulsars with magnetic axis orthogonal to their spin axis are capable of irradiating their companions to a higher degree., 18 pages (+12 pages for appendix), 12 figures (+13 in the appendix), 3 tables (1 in the appendix). Accepted for publication in MNRAS on 2023 January 17th
- Published
- 2023
- Full Text
- View/download PDF
8. Tied-array beam localization of radio transients and pulsars
- Author
-
M C Bezuidenhout, C J Clark, R P Breton, B W Stappers, E D Barr, M Caleb, W Chen, F Jankowski, M Kramer, K Rajwade, and M Surnis
- Abstract
Multi-element interferometers such as MeerKAT, which observe with high time resolution and have a wide field of view, provide an ideal opportunity to perform real-time, untargeted transient and pulsar searches. However, because of data storage limitations, it is not always feasible to store the baseband data required to image the field of a discovered transient or pulsar. This limits the ability of surveys to effectively localize their discoveries and may restrict opportunities for follow-up science, especially of one-off events like some fast radio bursts. Here, we present a novel maximum-likelihood estimation approach to localizing transients and pulsars detected in multiple MeerKAT tied-array beams at once, which we call tied-array beam localization, as well as a Python implementation of the method named SeeKAT. We provide real-world examples of SeeKAT’s use as well as a Monte Carlo analysis to show that it is capable of localizing single pulses detected in beamformed MeerKAT data to (sub)arcsec precision.
- Published
- 2023
- Full Text
- View/download PDF
9. Four pulsar discoveries in NGC 6624 by TRAPUM using MeerKAT
- Author
-
F Abbate, A Ridolfi, E D Barr, S Buchner, M Burgay, D J Champion, W Chen, P C C Freire, T Gautam, J M Grießmeier, L Künkel, M Kramer, P V Padmanabh, A Possenti, S Ransom, M Serylak, B W Stappers, V Venkatraman Krishnan, J Behrend, R P Breton, L Levin, and Y Men
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,stars: neutron ,Space and Planetary Science ,pulsars: general ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,globular clusters: individual: NGC - Abstract
We report 4 new pulsars discovered in the core-collapsed globular cluster (GC) NGC 6624 by the TRAPUM Large Survey Project with the MeerKAT telescope. All of the new pulsars found are isolated. PSR J1823$-$3021I and PSR J1823$-$3021K are millisecond pulsars with period of respectively 4.319 ms and 2.768 ms. PSR J1823$-$3021J is mildly recycled with a period of 20.899 ms, and PSR J1823$-$3022 is a long period pulsar with a period of 2.497 s. The pulsars J1823$-$3021I, J1823$-$3021J, and J1823$-$3021K have position and dispersion measure (DM) compatible with being members of the GC and are therefore associated with NGC 6624. Pulsar J1823$-$3022 is the only pulsar bright enough to be re-detected in archival observations of the cluster. This allowed the determination of a timing solution that spans over two decades. It is not possible at the moment to claim the association of pulsar J1823$-$3022 with the GC given the long period and large offset in position ($\sim 3$ arcminutes) and DM (with a fractional difference of 11 percent compared the average of the pulsars in NGC 6624). The discoveries made use of the beamforming capability of the TRAPUM backend to generate multiple beams in the same field of view which allows sensitive searches to be performed over a few half-light radii from the cluster center and can simultaneously localise the discoveries. The discoveries reflect the properties expected for pulsars in core-collapsed GCs., Accepted for publication on Monthly Notices of the Royal Astronomical Society. 11 pages, 6 figures
- Published
- 2022
- Full Text
- View/download PDF
10. The peculiar chemical abundance of the transitional millisecond pulsar PSR J1023+0038 – Li enhancement
- Author
-
T Shahbaz, J I González-Hernández, R P Breton, M R Kennedy, D Mata Sánchez, and M Linares
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Individual: PSR J1023+0038 [Stars] ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Individual: PSR J1023+0038 [Pulsars] ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,Binaries [X-rays] ,Fundamental parameters [Stars] ,Astrophysics::Solar and Stellar Astrophysics ,Close [Binaries] ,Astrophysics::Earth and Planetary Astrophysics ,Neutron [Stars] ,Astrophysics - High Energy Astrophysical Phenomena ,Solar and Stellar Astrophysics (astro-ph.SR) ,Astrophysics::Galaxy Astrophysics - Abstract
Using high-resolution optical spectroscopy we determine the chemical abundance of the secondary star in the binary millisecond pulsar PSR J1023+0038. We measure a metallicity of [Fe/H] = 0.48 +/- 0.04 which is higher than the Solar value and in general find that the element abundances are different compared to the secondary stars in X-ray binaries and stars in the solar neighbourhood of similar Fe content. Our results suggest that the pulsar was formed in a supernova explosion. We find that supernova models, where matter that has been processed in the supernova is captured by the secondary star leading to abundance anomalies, qualitatively agree with the observations. We measure Li abundance of A(Li) = 3.66 +/- 0.20, which is anomalously high compared to the Li abundance of stars with the same effective temperature, irrespective of the age of the system. Furthermore, the Li abundance in PSR J1023+0038 is higher than the Cosmic value and what is observed in young Population I stars and so provides unambiguous evidence for fresh Li production. The most likely explanation is the interaction of high energy gamma-rays or relativistic protons from the pulsar wind or intrabinary shock with the CNO nuclei in the secondary star's atmosphere via spallation which leads to substantial Li enrichment in the secondary star's atmosphere., Accepted for publication in Monthly Notices of the Royal Astronomical Society. 19 pages, 12 figures
- Published
- 2022
- Full Text
- View/download PDF
11. A MeerKAT, e-MERLIN, HESS, and Swift search for persistent and transient emission associated with three localized FRBs
- Author
-
J O Chibueze, M Caleb, L Spitler, H Ashkar, F Schüssler, B W Stappers, C Venter, I Heywood, A M S Richards, D R A Williams, M Kramer, R Beswick, M C Bezuidenhout, R P Breton, L N Driessen, F Jankowski, E F Keane, M Malenta, M Mickaliger, V Morello, H Qiu, K Rajwade, S Sanidas, M Surnis, T W Scragg, C R H Walker, N Wrigley, H E S S Collaboration: F Aharonian, F Ait Benkhali, E O Angüner, M Backes, V Baghmanyan, V Barbosa Martins, R Batzofin, Y Becherini, D Berge, M Böttcher, C Boisson, J Bolmont, M de Bony de Lavergne, M Breuhaus, R Brose, F Brun, T Bulik, F Cangemi, S Caroff, S Casanova, J Catalano, M Cerruti, T Chand, A Chen, O U Chibueze, G Cotter, P Cristofari, J Damascene Mbarubucyeye, J Devin, A Djannati-Ataï, A Dmytriiev, K Egberts, J-P Ernenwein, A Fiasson, G Fichet de Clairfontaine, G Fontaine, S Funk, S Gabici, S Ghafourizadeh, G Giavitto, D Glawion, M-H Grondin, M Hörbe, C Hoischen, T L Holch, Zhiqiu Huang, M Jamrozy, F Jankowsky, V Joshi, I Jung-Richardt, E Kasai, K Katarzyński, U Katz, B Khélifi, W Kluźniak, Nu Komin, K Kosack, D Kostunin, A Lemière, J-P Lenain, F Leuschner, T Lohse, A Luashvili, I Lypova, J Mackey, D Malyshev, V Marandon, P Marchegiani, A Marcowith, G Martí-Devesa, R Marx, A Mitchell, R Moderski, L Mohrmann, E Moulin, J Muller, K Nakashima, M de Naurois, A Nayerhoda, J Niemiec, A Priyana Noel, P O’Brien, S Ohm, L Olivera-Nieto, E de Ona Wilhelmi, M Ostrowski, S Panny, R D Parsons, S Pita, V Poireau, D A Prokhorov, H Prokoph, G Pühlhofer, A Quirrenbach, P Reichherzer, A Reimer, O Reimer, G Rowell, B Rudak, E Ruiz-Velasco, V Sahakian, S Sailer, H Salzmann, D A Sanchez, A Santangelo, M Sasaki, H M Schutte, U Schwanke, J N S Shapopi, A Specovius, S Spencer, R Steenkamp, S Steinmassl, T Takahashi, T Tanaka, C Thorpe-Morgan, N Tsuji, C van Eldik, J Veh, J Vink, S J Wagner, A Wierzcholska, Yu Wun Wong, A Yusafzai, M Zacharias, D Zargaryan, A A Zdziarski, A Zech, S J Zhu, S Zouari, N Żywucka, High Energy Astrophys. & Astropart. Phys (API, FNWI), Centre de Physique des Particules de Marseille (CPPM), Aix Marseille Université (AMU)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), AstroParticule et Cosmologie (APC (UMR_7164)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire Univers et Théories (LUTH (UMR_8102)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Annecy de Physique des Particules (LAPP), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), Laboratoire Univers et Particules de Montpellier (LUPM), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
- Subjects
radio continuum: galaxies ,High Energy Astrophysical Phenomena (astro-ph.HE) ,) fast radio burst [(transients] ,FOS: Physical sciences ,Astronomy and Astrophysics ,radiation mechanisms: non-thermal ,non-thermal [radiation mechanisms] ,Astrophysics - Astrophysics of Galaxies ,galaxies [radio continuum] ,fast radio bursts ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Astrophysics of Galaxies (astro-ph.GA) ,(transients:) fast radio burst ,ddc:520 ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
Monthly notices of the Royal Astronomical Society 515(1), 1365 - 1379 (2022). doi:10.1093/mnras/stac1601, We report on a search for persistent radio emission from the one-off fast radio burst (FRB) 20190714A, as well as from two repeating FRBs, 20190711A and 20171019A, using the MeerKAT radio telescope. For FRB 20171019A, we also conducted simultaneous observations with the High-Energy Stereoscopic System (H.E.S.S.) in very high-energy gamma rays and searched for signals in the ultraviolet, optical, and X-ray bands. For this FRB, we obtain a UV flux upper limit of |$1.39 \times 10^{-16}~{\rm erg\, cm^{-2}\, s^{-1}}$|Å^−1, X-ray limit of |$\sim 6.6 \times 10^{-14}~{\rm erg\, cm^{-2}\, s^{-1}}$| and a limit on the very high energy gamma-ray flux |$\Phi (E\gt 120\, {\rm GeV}) \lt 1.7\times 10^{-12}\, \mathrm{erg\, cm^{-2}\, s^{-1}}$|. We obtain a radio upper limit of ∼15 |$\mu$|Jy beam^−1 for persistent emission at the locations of both FRBs 20190711A and 20171019A with MeerKAT. However, we detected an almost unresolved (ratio of integrated flux to peak flux is ∼1.7 beam) radio emission, where the synthesized beam size was ∼ 8 arcsec size with a peak brightness of |$\sim 53\, \mu$|Jy beam^−1 at MeerKAT and |$\sim 86\, \mu$|Jy beam^−1 at e-MERLIN, possibly associated with FRB 20190714A at z = 0.2365. This represents the first detection of persistent continuum radio emission potentially associated with a (as-yet) non-repeating FRB. If the association is confirmed, one of the strongest remaining distinction between repeaters and non-repeaters would no longer be applicable. A parallel search for repeat bursts from these FRBs revealed no new detections down to a fluence of 0.08 Jy ms for a 1 ms duration burst., Published by Oxford Univ. Press, Oxford
- Published
- 2023
- Full Text
- View/download PDF
12. A rapid optical and X-ray timing study of the neutron star X-ray binary Swift J1858.6-0814
- Author
-
T Shahbaz, J A Paice, K M Rajwade, A Veledina, P Gandhi, V S Dhillon, T R Marsh, S Littlefair, M R Kennedy, R P Breton, and C J Clark.
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We present a rapid timing analysis of optical (HiPERCAM and ULTRACAM) and X-ray (NICER) observations of the X-ray transient Swift J1858.6-0814 during 2018 and 2019. The optical light curves show relatively slow, large amplitude (~1 mags in g$_s$) `blue' flares (i.e. stronger at shorter wavelengths) on time-scales of ~minutes as well as fast, small amplitude (~0.1 mag in g$_s$) `red' flares (i.e. stronger at longer wavelengths) on time-scales of ~seconds. The `blue' and `red' flares are consistent with X-ray reprocessing and optically thin synchrotron emission, respectively, similar to what is observed in other X-ray binaries. The simultaneous optical versus soft- and hard-band X-ray light curves show time- and energy dependent correlations. The 2019 March 4 and parts of the June data show a nearly symmetric positive cross correlations (CCFs) at positive lags consistent with simple X-ray disc reprocessing. The soft- and hard-band CCFs are similar and can be reproduced if disc reprocessing dominates in the optical and one component (disc or synchrotron Comptonization) dominates both the soft and hard X-rays. A part of the 2019 June data shows a very different CCFs. The observed positive correlation at negative lag in the soft-band can be reproduced if the optical synchrotron emission is correlated with the hot flow X-ray emission. The observed timing properties are in qualitative agreement with the hybrid inner hot accretion flow model, where the relative role of the different X-ray and optical components that vary during the course of the outburst, as well as on shorter time-scales, govern the shape of the optical/X-ray CCFs., Accepted for publication in Monthly Notices of the Royal Astronomical Society. 18 pages, 14 figures
- Published
- 2023
13. MeerKAT discovery of 13 new pulsars in Omega Centauri
- Author
-
W Chen, P C C Freire, A Ridolfi, E D Barr, B Stappers, M Kramer, A Possenti, S M Ransom, L Levin, R P Breton, M Burgay, F Camilo, S Buchner, D J Champion, F Abbate, V Venkatraman Krishnan, P V Padmanabh, T Gautam, L Vleeschower, M Geyer, J-M Grießmeier, Y P Men, V Balakrishnan, and M C Bezuidenhout
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,FOS: Physical sciences ,ddc:520 ,Binary ,Pulsar ,Astronomy and Astrophysics ,Globular cluster ,Astrophysics - High Energy Astrophysical Phenomena ,Dewey Decimal Classification::500 | Naturwissenschaften::520 | Astronomie, Kartographie - Abstract
The most massive globular cluster in our Galaxy, Omega Centauri, is an interesting target for pulsar searches, because of its multiple stellar populations and the intriguing possibility that it was once the nucleus of a galaxy that was absorbed into the Milky Way. The recent discoveries of pulsars in this globular cluster and their association with known X-ray sources was a hint that, given the large number of known X-ray sources, there is a much larger undiscovered pulsar population. We used the superior sensitivity of the MeerKAT radio telescope to search for pulsars in Omega Centauri. In this paper, we present some of the first results of this survey, including the discovery of 13 new pulsars; the total number of known pulsars in this cluster currently stands at 18. At least half of them are in binary systems and preliminary orbital constraints suggest that most of the binaries have light companions. We also discuss the ratio between isolated and binaries pulsars, and how they were formed in this cluster.
- Published
- 2023
- Full Text
- View/download PDF
14. The TRAPUM L-band survey for pulsars in Fermi-LAT gamma-ray sources
- Author
-
C J Clark, R P Breton, E D Barr, M Burgay, T Thongmeearkom, L Nieder, S Buchner, B Stappers, M Kramer, W Becker, M Mayer, A Phosrisom, A Ashok, M C Bezuidenhout, F Calore, I Cognard, P C C Freire, M Geyer, J-M Grießmeier, R Karuppusamy, L Levin, P V Padmanabh, A Possenti, S Ransom, M Serylak, V Venkatraman Krishnan, L Vleeschower, J Behrend, D J Champion, W Chen, D Horn, E F Keane, L Künkel, Y Men, A Ridolfi, V S Dhillon, T R Marsh, M A Papa, and HEP, INSPIRE
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,stars ,Space and Planetary Science ,J1526-2744 ,J1803-6707-gamma rays ,general - pulsars ,FOS: Physical sciences ,Astronomy and Astrophysics ,J1036-4353 ,individual ,binaries ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
More than 100 millisecond pulsars (MSPs) have been discovered in radio observations of gamma-ray sources detected by the Fermi Large Area Telescope (LAT), but hundreds of pulsar-like sources remain unidentified. Here we present the first results from the targeted survey of Fermi-LAT sources being performed by the Transients and Pulsars with MeerKAT (TRAPUM) Large Survey Project. We observed 79 sources identified as possible gamma-ray pulsar candidates by a Random Forest classification of unassociated sources from the 4FGL catalogue. Each source was observed for 10 minutes on two separate epochs using MeerKAT's L-band receiver (856-1712 MHz), with typical pulsed flux density sensitivities of $\sim$100$\,\mu$Jy. Nine new MSPs were discovered, eight of which are in binary systems, including two eclipsing redbacks and one system, PSR J1526$-$2744, that appears to have a white dwarf companion in an unusually compact 5 hr orbit. We obtained phase-connected timing solutions for two of these MSPs, enabling the detection of gamma-ray pulsations in the Fermi-LAT data. A follow-up search for continuous gravitational waves from PSR J1526$-$2744 in Advanced LIGO data using the resulting Fermi-LAT timing ephemeris yielded no detection, but sets an upper limit on the neutron star ellipticity of $2.45\times10^{-8}$. We also detected X-ray emission from the redback PSR J1803$-$6707 in data from the first eROSITA all-sky survey, likely due to emission from an intra-binary shock., Comment: 17 pages, 8 figures, accepted for publication in MNRAS
- Published
- 2022
15. TRAPUM upper limits on pulsed radio emission for SMC X-ray pulsar J0058-7218
- Author
-
E Carli, L Levin, B W Stappers, E D Barr, R P Breton, S Buchner, M Burgay, M Kramer, P V Padmanabh, A Possenti, V Venkatraman Krishnan, J Behrend, D J Champion, W Chen, and Y P Men
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
The TRAPUM collaboration has used the MeerKAT telescope to conduct a search for pulsed radio emission from the young Small Magellanic Cloud pulsar J0058-7218 located in the supernova remnant IKT 16, following its discovery in X-rays with XMM-Newton. We report no significant detection of dispersed, pulsed radio emission from this source in three 2-hour L-band observations using the core dishes of MeerKAT, setting an upper limit of 7.0 {\mu}Jy on its mean flux density at 1284 MHz. This is nearly 7 times deeper than previous radio searches for this pulsar in Parkes L-band observations. This suggests that the radio emission of PSR J0058-7218 is not beamed towards Earth or that PSR J0058-7218 is similar to a handful of Pulsar Wind Nebulae systems that have a very low radio efficiency, such as PSR B0540-6919, the Large Magellanic Cloud Crab pulsar analogue. We have also searched for bright, dispersed, single radio pulses and found no candidates above a fluence of 93 mJy ms at 1284 MHz., Comment: 7 pages, 2 figures, 1 table. Accepted for publication in Monthly Notices of the Royal Astronomical Society
- Published
- 2022
- Full Text
- View/download PDF
16. Searching for pulsars associated with polarised point sources using LOFAR: Initial discoveries from the TULIPP project
- Author
-
C. Sobey, C. G. Bassa, S. P. O’Sullivan, J. R. Callingham, C. M. Tan, J. W. T. Hessels, V. I. Kondratiev, B. W. Stappers, C. Tiburzi, G. Heald, T. Shimwell, R. P. Breton, M. Kirwan, H. K. Vedantham, E. Carretti, J.-M. Grießmeier, M. Haverkorn, A. Karastergiou, Astronomy, and High Energy Astrophys. & Astropart. Phys (API, FNWI)
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Galaxy: stellar content ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Surveys ,Methods - data analysis ,methods: data analysis ,Radio continuum - stars ,Pulsars - general ,Astrophysics - Solar and Stellar Astrophysics ,Space and Planetary Science ,pulsars: general ,Polarization ,Galaxy - stellar content ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Instrumentation and Methods for Astrophysics ,radio continuum: stars ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,Solar and Stellar Astrophysics (astro-ph.SR) - Abstract
Discovering radio pulsars, particularly millisecond pulsars (MSPs), is important for a range of astrophysical applications, such as testing theories of gravity or probing the magneto-ionic interstellar medium. We aim to discover pulsars that may have been missed in previous pulsar searches by leveraging known pulsar observables (primarily polarisation) in the sensitive, low-frequency radio images from the Low-Frequency Array (LOFAR) Two-metre Sky Survey (LoTSS), and have commenced the Targeted search, using LoTSS images, for polarised pulsars (TULIPP) survey. For this survey, we identified linearly and circularly polarised point sources with flux densities brighter than 2 mJy in LoTSS images at a centre frequency of 144 MHz with a 48 MHz bandwidth. Over 40 known pulsars, half of which are MSPs, were detected as polarised sources in the LoTSS images and excluded from the survey. We have obtained beam-formed LOFAR observations of 30 candidates, which were searched for pulsations using coherent de-dispersion. Here, we present the results of the first year of the TULIPP survey. We discovered two pulsars, PSRs J1049+5822 and J1602+3901, with rotational periods of P=0.73 s and 3.7 ms, respectively. We also detected a further five known pulsars (two slowly-rotating pulsars and three MSPs) for which accurate sky positions were not available to allow a unique cross-match with LoTSS sources. This targeted survey presents a relatively efficient method by which pulsars, particularly MSPs, may be discovered using the flexible observing modes of sensitive radio telescopes such as the Square Kilometre Array and its pathfinders/precursors, particularly since wide-area all-sky surveys using coherent de-dispersion are currently computationally infeasible., 15 pages, 7 figures, 3 tables. Accepted for publication in A&A
- Published
- 2022
17. Irradiated but not eclipsed, the case of PSR J0610−2100
- Author
-
E. van der Wateren, C. G. Bassa, C. J. Clark, R. P. Breton, I. Cognard, L. Guillemot, G. H. Janssen, A. G. Lyne, B. W. Stappers, and G. Theureau
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,Astronomy ,Astrophysics::High Energy Astrophysical Phenomena ,FOS: Physical sciences ,Astrophysics::Solar and Stellar Astrophysics ,Astronomy and Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena - Abstract
We report on radio timing observations of the black widow binary pulsar J0610$-$2100 and optical observations of its binary companion. The radio timing observations extend the timing baseline to 16yr and reveal a marginal detection of the orbital period derivative, but they show no significant evidence of orbital variations such as those seen in other black widow pulsars. Furthermore, no eclipses are seen in the observations at observing frequencies ranging from 310 to 2700MHz. The optical VRI light curves were modulated with the orbital period, reaching maximum brightness of $V=26.8$, $R=25.4$, and $I=23.8$ at superior conjunction of the companion, confirming irradiation of the companion by the pulsar. Modelling the light curves indicates that the companion is likely not filling its Roche lobe, while having a moderate inclination ($i > 54\degr$). We find an unusually low temperature and a low irradiation for the irradiated hemisphere of the companion. We investigate the absence of radio eclipses in PSR J0610-2100 and in other black widow systems in relation to their binary, pulsar, and companion properties. We also discuss the suitability of PSR J0610-2100 for pulsar timing array observations aimed at detecting nano-Hertz gravitational waves., 9 pages, 5 figures, accepted for publication by A&A
- Published
- 2022
18. The Gravitational-wave Optical Transient Observer (GOTO): prototype performance and prospects for transient science
- Author
-
D Steeghs, D K Galloway, K Ackley, M J Dyer, J Lyman, K Ulaczyk, R Cutter, Y-L Mong, V Dhillon, P O’Brien, G Ramsay, S Poshyachinda, R Kotak, L K Nuttall, E Pallé, R P Breton, D Pollacco, E Thrane, S Aukkaravittayapun, S Awiphan, U Burhanudin, P Chote, A Chrimes, E Daw, C Duffy, R Eyles-Ferris, B Gompertz, T Heikkilä, P Irawati, M R Kennedy, T Killestein, H Kuncarayakti, A J Levan, S Littlefair, L Makrygianni, T Marsh, D Mata-Sanchez, S Mattila, J Maund, J McCormac, D Mkrtichian, J Mullaney, K Noysena, M Patel, E Rol, U Sawangwit, E R Stanway, R Starling, P Strøm, S Tooke, R West, D J White, and K Wiersema
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,Space and Planetary Science ,Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Instrumentation and Methods for Astrophysics ,Astrophysics - High Energy Astrophysical Phenomena ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,QC ,QB - Abstract
The Gravitational-wave Optical Transient Observer (GOTO) is an array of wide-field optical telescopes, designed to exploit new discoveries from the next generation of gravitational wave detectors (LIGO, Virgo, KAGRA), study rapidly evolving transients, and exploit multi-messenger opportunities arising from neutrino and very high energy gamma-ray triggers. In addition to a rapid response mode, the array will also perform a sensitive, all-sky transient survey with few day cadence. The facility features a novel, modular design with multiple 40-cm wide-field reflectors on a single mount. In June 2017 the GOTO collaboration deployed the initial project prototype, with 4 telescope units, at the Roque de los Muchachos Observatory (ORM), La Palma, Canary Islands. Here we describe the deployment, commissioning, and performance of the prototype hardware, and discuss the impact of these findings on the final GOTO design. We also offer an initial assessment of the science prospects for the full GOTO facility that employs 32 telescope units across two sites., 19 pages, 16 Figures, accepted for publication in Monthly Notices of the Royal Astronomical Society
- Published
- 2021
19. TRAPUM discovery of 13 new pulsars in NGC 1851 using MeerKAT
- Author
-
A. Ridolfi, P. C. C. Freire, T. Gautam, S. M. Ransom, E. D. Barr, S. Buchner, M. Burgay, F. Abbate, V. Venkatraman Krishnan, L. Vleeschower, A. Possenti, B. W. Stappers, M. Kramer, W. Chen, P. V. Padmanabh, D. J. Champion, M. Bailes, L. Levin, E. F. Keane, R. P. Breton, M. Bezuidenhout, J.-M. Grießmeier, L. Künkel, Y. Men, F. Camilo, M. Geyer, B. V. Hugo, A. Jameson, A. Parthasarathy, and M. Serylak
- Subjects
Space and Planetary Science ,Astronomy and Astrophysics - Abstract
We report the discovery of 13 new pulsars in the globular cluster NGC 1851 by the TRAPUM Large Survey Project using the MeerKAT radio telescope. The discoveries consist of six isolated millisecond pulsars (MSPs) and seven binary pulsars, of which six are MSPs and one is mildly recycled. For all the pulsars, we present the basic kinematic, astrometric, and orbital parameters, where applicable, as well as their polarimetric properties, when these are measurable. Two of the binary MSPs (PSR J0514−4002D and PSR J0514−4002E) are in wide and extremely eccentric (e > 0.7) orbits with a heavy white dwarf and a neutron star as their companion, respectively. With these discoveries, NGC 1851 is now tied with M28 as the cluster with the third largest number of known pulsars (14). Its pulsar population shows remarkable similarities with that of M28, Terzan 5, and other clusters with comparable structural parameters. The newly found pulsars are all located in the innermost regions of NGC 1851 and will likely enable, among other things, detailed studies of the cluster structure and dynamics.
- Published
- 2022
- Full Text
- View/download PDF
20. The LOFAR Multifrequency Snapshot Sky Survey (MSSS): I. Survey description and first results
- Author
-
G. H. Heald, R. F. Pizzo, E. Orrú, R. P. Breton, D. Carbone, C. Ferrari, M. J. Hardcastle, W. Jurusik, G. Macario, D. Mulcahy, D. Rafferty, A. Asgekar, M. Brentjens, R. A. Fallows, W. Frieswijk, M. C. Toribio, B. Adebahr, M. Arts, M. R. Bell, A. Bonafede, J. Bray, J. Broderick, T. Cantwell, P. Carroll, Y. Cendes, A. O. Clarke, J. Croston, S. Daiboo, F. de Gasperin, J. Gregson, J. Harwood, T. Hassall, V. Heesen, A. Horneffer, A. J. van der Horst, M. Iacobelli, V. Jelić, D. Jones, D. Kant, G. Kokotanekov, P. Martin, J. P. McKean, L. K. Morabito, B. Nikiel-Wroczyński, A. Offringa, V. N. Pandey, M. Pandey-Pommier, M. Pietka, L. Pratley, C. Riseley, A. Rowlinson, J. Sabater, A. M. M. Scaife, L. H. A. Scheers, K. Sendlinger, A. Shulevski, M. Sipior, C. Sobey, A. J. Stewart, A. Stroe, J. Swinbank, C. Tasse, J. Trüstedt, E. Varenius, S. van Velzen, N. Vilchez, R. J. van Weeren, S. Wijnholds, W. L. Williams, A. G. de Bruyn, R. Nijboer, M. Wise, A. Alexov, J. Anderson, I. M. Avruch, R. Beck, M. E. Bell, I. van Bemmel, M. J. Bentum, G. Bernardi, P. Best, F. Breitling, W. N. Brouw, M. Brüggen, H. R. Butcher, B. Ciardi, J. E. Conway, E. de Geus, A. de Jong, M. de Vos, A. Deller, R.-J. Dettmar, S. Duscha, J. Eislöffel, D. Engels, H. Falcke, R. Fender, M. A. Garrett, J. Grießmeier, A. W. Gunst, J. P. Hamaker, J. W. T. Hessels, M. Hoeft, J. Hörandel, H. A. Holties, H. Intema, N. J. Jackson, E. Jütte, A. Karastergiou, W. F. A. Klijn, V. I. Kondratiev, L. V. E. Koopmans, M. Kuniyoshi, G. Kuper, C. Law, J. van Leeuwen, M. Loose, P. Maat, S. Markoff, R. McFadden, D. McKay-Bukowski, M. Mevius, J. C. A. Miller-Jones, R. Morganti, H. Munk, A. Nelles, J. E. Noordam, M. J. Norden, H. Paas, A. G. Polatidis, W. Reich, A. Renting, H. Röttgering, A. Schoenmakers, D. Schwarz, J. Sluman, O. Smirnov, B. W. Stappers, M. Steinmetz, M. Tagger, Y. Tang, S. ter Veen, S. Thoudam, R. Vermeulen, C. Vocks, C. Vogt, R. A. M. J. Wijers, O. Wucknitz, S. Yatawatta, P. Zarka, Heald, G.H., Pizzo, R.F., Orrú, E., Breton, R.P., Carbone, D., Ferrari, C., Hardcastle, M.J., Jurusik, W., Macario, G., Mulcahy, D., Rafferty, D., Asgekar, A., Brentjens, M., Fallows, R.A., Frieswijk, W., Toribio, M.C., Adebahr, B., Arts, M., Bell, M.R., Bonafede, A., Bray, J., Broderick, J., Cantwell, T., Carroll, P., Cendes, Y., Clarke, A.O., Croston, J., Daiboo, S., De Gasperin, F., Gregson, J., Harwood, J., Hassall, T., Heesen, V., Horneffer, A., Van Der Horst, A.J., Iacobelli, M., Jelić, V., Jones, D., Kant, D., Kokotanekov, G., Martin, P., McKean, J.P., Morabito, L.K., Nikiel-Wroczyński, B., Offringa, A., Pandey, V.N., Pandey-Pommier, M., Pietka, M., Pratley, L., Riseley, C., Rowlinson, A., Sabater, J., Scaife, A.M.M., Scheers, L.H.A., Sendlinger, K., Shulevski, A., Sipior, M., Sobey, C., Stewart, A.J., Stroe, A., Swinbank, J., Tasse, C., Trüstedt, J., Varenius, E., Van Velzen, S., Vilchez, N., Van Weeren, R.J., Wijnholds, S., Williams, W.L., De Bruyn, A.G., Nijboer, R., Wise, M., Alexov, A., Anderson, J., Avruch, I.M., Beck, R., Bell, M.E., Van Bemmel, I., Bentum, M.J., Bernardi, G., Best, P., Breitling, F., Brouw, W.N., Brüggen, M., Butcher, H.R., Ciardi, B., Conway, J.E., De Geus, E., De Jong, A., De Vos, M., Deller, A., Dettmar, R.-J., Duscha, S., Eislöffel, J., Engels, D., Falcke, H., Fender, R., Garrett, M.A., Grießmeier, J., Gunst, A.W., Hamaker, J.P., Hessels, J.W.T., Hoeft, M., Hörandel, J., Holties, H.A., Intema, H., Jackson, N.J., Jütte, E., Karastergiou, A., Klijn, W.F.A., Kondratiev, V.I., Koopmans, L.V.E., Kuniyoshi, M., Kuper, G., Law, C., Van Leeuwen, J., Loose, M., Maat, P., Markoff, S., McFadden, R., McKay-Bukowski, D., Mevius, M., Miller-Jones, J.C.A., Morganti, R., Munk, H., Nelles, A., Noordam, J.E., Norden, M.J., Paas, H., Polatidis, A.G., Reich, W., Renting, A., Röttgering, H., Schoenmakers, A., Schwarz, D., Sluman, J., Smirnov, O., Stappers, B.W., Steinmetz, M., Tagger, M., Tang, Y., Ter Veen, S., Thoudam, S., Vermeulen, R., Vocks, C., Vogt, C., Wijers, R.A.M.J., Wucknitz, O., Yatawatta, S., Zarka, P., High Energy Astrophys. & Astropart. Phys (API, FNWI), Netherlands Institute for Radio Astronomy (ASTRON), Jodrell Bank Centre for Astrophysics (JBCA), University of Manchester [Manchester], University of Hertfordshire [Hatfield] (UH), Uniwersytet Jagielloński w Krakowie = Jagiellonian University (UJ), Joseph Louis LAGRANGE (LAGRANGE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), University of Southampton, Jacobs University [Bremen], Astronomical Institute Anton Pannekoek (AI PANNEKOEK), University of Amsterdam [Amsterdam] (UvA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Hamburger Sternwarte/Hamburg Observatory, Universität Hamburg (UHH), School of Physics and Astronomy [Southampton], Leiden Observatory, Leiden University (Leiden Observatory), Centre de Recherche Astrophysique de Lyon (CRAL), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), CSIRO Astronomy and Space Science, Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO), Max-Planck-Institut für Radioastronomie (MPIFR), Laboratory for Atmospheric and Space Physics [Boulder] (LASP), University of Colorado [Boulder], Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Harvard-Smithsonian Center for Astrophysics (CfA), Harvard University-Smithsonian Institution, Leiden Observatory [Leiden], Universiteit Leiden, SRON Netherlands Institute for Space Research (SRON), Leibniz-Institut für Astrophysik Potsdam (AIP), Research School of Astronomy and Astrophysics [Canberra] (RSAA), Australian National University (ANU), Max Planck Institute for Astrophysics, Max-Planck-Gesellschaft, Los Alamos National Laboratory (LANL), Astronomisches Institut der Ruhr-Universität Bochum, Ruhr-Universität Bochum [Bochum], Thüringer Landessternwarte Tautenburg (TLS), Radboud University [Nijmegen], Unité Scientifique de la Station de Nançay (USN), Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH / Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures (DSMZ), Institute for Mathematics, Astrophysics and Particle Physics (IMAPP), ANR-09-JCJC-0001,OPALES(2009), European Project: 247295,EC:FP7:ERC,ERC-2009-AdG,AARTFAAC(2010), European Project: 267697,EC:FP7:ERC,ERC-2010-AdG_20100224,4PI-SKY(2011), ITA, GBR, FRA, DEU, NLD, Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre d'études européennes et de politique comparée (CEE), Sciences Po (Sciences Po)-Centre National de la Recherche Scientifique (CNRS), École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Harvard University [Cambridge]-Smithsonian Institution, Universiteit Leiden [Leiden], Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585)), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Radboud university [Nijmegen], Centre National de la Recherche Scientifique (CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Université Paris sciences et lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO), Astronomy, Kapteyn Astronomical Institute, Jodrell Bank Centre for Astrophysics, Jagiellonian University [Krakow] (UJ), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC), PSL Research University (PSL)-PSL Research University (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Smithsonian Institution-Harvard University [Cambridge], Université d'Orléans (UO)-Observatoire des Sciences de l'Univers en région Centre (OSUC), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Orléans (UO)-Observatoire de Paris, PSL Research University (PSL)-PSL Research University (PSL)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, PSL Research University (PSL)-Centre National de la Recherche Scientifique (CNRS), PSL Research University (PSL)-PSL Research University (PSL)-Centre National d’Études Spatiales [Paris] (CNES), ANR-09-JCJC-0001,OPALES,nOn-thermal Processes in gALaxy cluStErs(2009), and Database Architectures
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,Astronomy ,media_common.quotation_subject ,FOS: Physical sciences ,METIS-315082 ,01 natural sciences ,Radio spectrum ,Radio continuum: general ,surveys ,0103 physical sciences ,radio continuum: general ,Survey ,GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries) ,010303 astronomy & astrophysics ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,0105 earth and related environmental sciences ,Remote sensing ,media_common ,Giant Metrewave Radio Telescope ,[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph] ,Astronomy and Astrophysics ,LOFAR ,Astronomy and Astrophysic ,Square kilometre array ,IR-98663 ,Sky ,[SDU]Sciences of the Universe [physics] ,Space and Planetary Science ,Experimental High Energy Physics ,EWI-26540 ,Snapshot (computer storage) ,general [radio continuum] ,Astrophysics - Instrumentation and Methods for Astrophysics - Abstract
We present the Multifrequency Snapshot Sky Survey (MSSS), the first northern-sky LOFAR imaging survey. In this introductory paper, we first describe in detail the motivation and design of the survey. Compared to previous radio surveys, MSSS is exceptional due to its intrinsic multifrequency nature providing information about the spectral properties of the detected sources over more than two octaves (from 30 to 160 MHz). The broadband frequency coverage, together with the fast survey speed generated by LOFAR's multibeaming capabilities, make MSSS the first survey of the sort anticipated to be carried out with the forthcoming Square Kilometre Array (SKA). Two of the sixteen frequency bands included in the survey were chosen to exactly overlap the frequency coverage of large-area Very Large Array (VLA) and Giant Metrewave Radio Telescope (GMRT) surveys at 74 MHz and 151 MHz respectively. The survey performance is illustrated within the "MSSS Verification Field" (MVF), a region of 100 square degrees centered at J2000 (RA,Dec)=(15h,69deg). The MSSS results from the MVF are compared with previous radio survey catalogs. We assess the flux and astrometric uncertainties in the catalog, as well as the completeness and reliability considering our source finding strategy. We determine the 90% completeness levels within the MVF to be 100 mJy at 135 MHz with 108" resolution, and 550 mJy at 50 MHz with 166" resolution. Images and catalogs for the full survey, expected to contain 150,000-200,000 sources, will be released to a public web server. We outline the plans for the ongoing production of the final survey products, and the ultimate public release of images and source catalogs., Comment: 23 pages, 19 figures. Accepted for publication in Astronomy & Astrophysics. MSSS Verification Field images and catalog data may be downloaded from http://vo.astron.nl
- Published
- 2015
- Full Text
- View/download PDF
21. The evolution of PSR J0737−3039B and a model for relativistic spin precession
- Author
-
B. B. P. Perera, M. A. McLaughlin, M. Kramer, I. H. Stairs, R. D. Ferdman, P. C. C. Freire, A. Possenti, R. P. Breton, R. N. Manchester, M. Burgay, A. G. Lyne, F. Camilo, Marta Burgay, Nicolò D’Amico, Paolo Esposito, Alberto Pellizzoni, and Andrea Possenti
- Subjects
Physics ,Neutron star ,Pulsar ,Millisecond pulsar ,Astrophysics::High Energy Astrophysical Phenomena ,Precession ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Spin (physics) ,Binary pulsar ,Beam (structure) ,Pulse (physics) - Abstract
We present the evolution of the radio emission from the 2.8‐s pulsar of the double pulsar system PSR J0737−3039A/B. We describe the changes in the pulse profile and flux density over five years of observations, culminating in the B pulsar’s radio disappearance in 2008 March. Over this time, the flux density decreased by 0.177 mJy yr−1 at the brightest orbital phases and the pulse profile evolved from a single to a double peak. Relativistic spin precession, coupled with an elliptical beam, can model the pulse profile evolution well and the reappearance is expected to happen in ∼2035 with the same part of the beam or in ∼2014 if we assume a symmetric beam shape.
- Published
- 2011
- Full Text
- View/download PDF
22. The double pulsar: evolutionary constraints from the system geometry
- Author
-
R. D. Ferdman, I. H. Stairs, M. Kramer, R. N. Manchester, A. G. Lyne, R. P. Breton, M. A. McLaughlin, A. Possenti, M. Burgay, C. Bassa, Z. Wang, A. Cumming, and V. M. Kaspi
- Subjects
Physics ,Angular momentum ,Proper motion ,Astrophysics::High Energy Astrophysical Phenomena ,media_common.quotation_subject ,Astrophysics (astro-ph) ,FOS: Physical sciences ,Geometry ,Astrophysics ,Orbital period ,Neutron star ,Supernova ,Pulsar ,Eccentricity (behavior) ,media_common ,Spin-½ - Abstract
The double pulsar system PSR J0737-3039A/B is a highly relativistic double neutron star (DNS) binary, with a 2.4-hour orbital period. The low mass of the second-formed NS, as well the low system eccentricity and proper motion, point to a different evolutionary scenario compared to other known DNS systems. We describe analysis of the pulse profile shape over 6 years of observations, and present the resulting constraints on the system geometry. We find the recycled pulsar in this system, PSR J0737-3039A, to have a low misalignment between its spin and orbital angular momentum axes, with a 68.3% upper limit of 6.1 degrees, assuming emission from both magnetic poles. This tight constraint lends credence to the idea that the supernova that formed the second pulsar was relatively symmetric, possibly involving electron-capture onto an O-Ne-Mg core., Comment: 5 page, 2 figures; To appear in the conference proceedings "40 Years of Pulsars: Millisecond Pulsars, Magnetars, and More", August 12-17, 2007, at McGill University, Montreal, Canada. Version with full-resolution figures can be found at http://www.phas.ubc.ca/~ferdman/ferdman.0737_geo.full.ps.gz; typos corrected, some rewording, and references added
- Published
- 2008
- Full Text
- View/download PDF
23. PSR J1744–3922: Hint of a New Binary Pulsar Class
- Author
-
R. P. Breton, M. S. E. Robert, S. M. Ransom, V. M. Kaspi, M. Durant, P. Bergeron, A. J. Faulkner, C. Bassa, Z. Wang, and A. Cumming
- Subjects
Physics ,Astrophysics::High Energy Astrophysical Phenomena ,Pulsar planet ,X-ray binary ,Astronomy ,Astrophysics ,Binary pulsar ,Common envelope ,Neutron star ,Pulsar ,Millisecond pulsar ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics ,X-ray pulsar - Abstract
Standard binary evolution models of pulsars in very circular orbits can explain systems with lighter companions and weaker magnetic fields: they are descended from long-lived Low Mass X-ray Binaries with Roche-lobe overflow. By contrast, those having more massive companions and larger magnetic fields are descendants of Intermediate Mass systems, that experienced a common envelope phase. PSR J1744-3922 is a Galactic field binary pulsar exhibiting an unusual combination of characteristics compared to other binary pulsars with low-mass members in circular orbits: it has a relatively long spin period (172 ms), a relatively high magnetic field (1.7??1010 G), a short orbital period (4.6 h) and a light companion (Mmin = 0.08Msolar). These properties are not self-consistently explained by standard evolution models and so suggest that PSR J1744-3922 has a peculiar evolutionary history. We identify some other previously catalogued Galactic field binary pulsars with similar properties and propose they are potential members of a new class of binary pulsars. Such pulsars could possibly be formed by the recycling of a pulsar originally having a magnetar-strength magnetic field, accretion-induced collapse of a massive white dwarf or a special case of common envelope accretion from a low-mass star.
- Published
- 2008
- Full Text
- View/download PDF
24. Detection and Timing of Gamma-Ray Pulsations from the 707 Hz Pulsar J0952−0607.
- Author
-
L. Nieder, C. J. Clark, C. G. Bassa, J. Wu, A. Singh, J. Y. Donner, B. Allen, R. P. Breton, V. S. Dhillon, H.-B. Eggenstein, J. W. T. Hessels, M. R. Kennedy, M. Kerr, S. Littlefair, T. R. Marsh, D. Mata Sánchez, M. A. Papa, P. S. Ray, B. Steltner, and J. P. W. Verbiest
- Subjects
RADIO telescopes ,MAGNETIC flux density ,PULSARS ,GRAVITATIONAL waves ,BINARY pulsars ,FLUX (Energy) - Abstract
The Low-Frequency Array radio telescope discovered the 707 Hz binary millisecond pulsar (MSP) J0952−0607 in a targeted radio pulsation search of an unidentified Fermi gamma-ray source. This source shows a weak energy flux of F
γ = 2.6 × 10−12 erg cm−2 s−1 in the energy range between 100 MeV and 100 GeV. Here we report the detection of pulsed gamma-ray emission from PSR J0952−0607 in a very sensitive gamma-ray pulsation search. The pulsar’s rotational, binary, and astrometric properties are measured over 7 years of Fermi-Large Area Telescope data. For this we take into account the uncertainty on the shape of the gamma-ray pulse profile. We present an updated radio-timing solution now spanning more than 2 years and show results from optical modeling of the black-widow-type companion based on new multiband photometric data taken with HiPERCAM on the Gran Telescopio Canarias on La Palma and ULTRACAM on the New Technology Telescope at ESO La Silla (based on observations collected at the European Southern Observatory, Chile; programme 0101.D-0925, PI: Clark, C. J.). PSR J0952−0607 is now the fastest-spinning pulsar for which the intrinsic spin-down rate has been reliably constrained (). The inferred surface magnetic field strength of is among the 10 lowest of all known pulsars. This discovery is another example of an extremely fast spinning black-widow pulsar hiding within an unidentified Fermi gamma-ray source. In the future such systems might help to pin down the maximum spin frequency and the minimum surface magnetic field strength of MSPs. [ABSTRACT FROM AUTHOR]- Published
- 2019
- Full Text
- View/download PDF
25. LOFAR Discovery of the Fastest-spinning Millisecond Pulsar in the Galactic Field.
- Author
-
C. G. Bassa, Z. Pleunis, J. W. T. Hessels, E. C. Ferrara, R. P. Breton, N. V. Gusinskaia, V. I. Kondratiev, S. Sanidas, L. Nieder, C. J. Clark, T. Li, A. S. van Amesfoort, T. H. Burnett, F. Camilo, P. F. Michelson, S. M. Ransom, P. S. Ray, and K. Wood
- Published
- 2017
- Full Text
- View/download PDF
26. Formation of Double Neutron Star Systems.
- Author
-
T. M. Tauris, M. Kramer, P. C. C. Freire, N. Wex, H.-T. Janka, N. Langer, Ph. Podsiadlowski, E. Bozzo, S. Chaty, M. U. Kruckow, E. P. J. van den Heuvel, J. Antoniadis, R. P. Breton, and D. J. Champion
- Subjects
SUPERNOVAE ,NEUTRON stars ,X-ray binaries ,CATACLYSMIC variable stars ,COMPACT objects (Astronomy) - Abstract
Double neutron star (DNS) systems represent extreme physical objects and the endpoint of an exotic journey of stellar evolution and binary interactions. Large numbers of DNS systems and their mergers are anticipated to be discovered using the Square Kilometre Array searching for radio pulsars, and the high-frequency gravitational wave detectors (LIGO/VIRGO), respectively. Here we discuss all key properties of DNS systems, as well as selection effects, and combine the latest observational data with new theoretical progress on various physical processes with the aim of advancing our knowledge on their formation. We examine key interactions of their progenitor systems and evaluate their accretion history during the high-mass X-ray binary stage, the common envelope phase, and the subsequent Case BB mass transfer, and argue that the first-formed NSs have accreted at most . We investigate DNS masses, spins, and velocities, and in particular correlations between spin period, orbital period, and eccentricity. Numerous Monte Carlo simulations of the second supernova (SN) events are performed to extrapolate pre-SN stellar properties and probe the explosions. All known close-orbit DNS systems are consistent with ultra-stripped exploding stars. Although their resulting NS kicks are often small, we demonstrate a large spread in kick magnitudes that may, in general, depend on the past interaction history of the exploding star and thus correlate with the NS mass. We analyze and discuss NS kick directions based on our SN simulations. Finally, we discuss the terminal evolution of close-orbit DNS systems until they merge and possibly produce a short γ-ray burst. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.