107 results on '"R. M. Carey"'
Search Results
2. Measurement of the anomalous precession frequency of the muon in the Fermilab Muon <math><mi>g</mi><mo>−</mo><mn>2</mn></math> Experiment
- Author
-
P. Bloom, P. Kammel, Timothy Chupp, C. Schlesier, P. Girotti, M. J. Lee, A. Nath, Frederick Gray, C. Gabbanini, D. Shemyakin, C. C. Polly, L. Cotrozzi, V. N. Duginov, G. Venanzoni, T. Stuttard, G. Lukicov, M. Iacovacci, H. E. Swanson, T. P. Gorringe, B. C.K. Casey, J. Grange, N. H. Tran, K. W. Hong, K. T. Pitts, R. T. Chislett, Fabrizio Marignetti, A. Lucà, Martin Fertl, E. Barlas-Yucel, J. George, A. Kuchibhotla, Dariush Hampai, T. Walton, D. Cauz, G. Sweetmore, J. Bono, I. R. Bailey, Dinko Pocanic, J. L. Holzbauer, Gavin Grant Hesketh, J. L. Ritchie, Alexander Keshavarzi, H. P. Binney, A. García, Manolis Kargiantoulakis, A. Basti, Barry King, B. MacCoy, M. Kiburg, David Rubin, Alexey Anisenkov, V. Tishchenko, Marin Karuza, H. Nguyen, P. Di Meo, Claudio Ferrari, N. Kinnaird, Liang Li, L. K. Gibbons, N. Raha, R. Chakraborty, D. Flay, R. N. Pilato, M. Incagli, M. Lancaster, Michael Syphers, S. Baeßler, T. J. V. Bowcock, J. LaBounty, G. M. Piacentino, D. Vasilkova, S. Park, A. Lusiani, T. Albahri, R. Madrak, Z. Hodge, Dominik Stöckinger, A. Chapelain, Brad Plaster, R. M. Carey, Dongdong Li, J. D. Crnkovic, D. W. Hertzog, Selcuk Haciomeroglu, J. P. Miller, Andrzej Wolski, Tabitha Halewood-leagas, Franco Bedeschi, B. L. Roberts, S. Grant, J. Fry, Kyoko Makino, J.B. Hempstead, S. Di Falco, K. S. Khaw, W. Turner, Z. Chu, A. T. Herrod, J. D. Price, T. Barrett, N. V. Khomutov, M. Farooq, P. Winter, J. Stapleton, R. Fatemi, D. Kawall, S. Charity, L. Santi, A. Schreckenberger, E. Valetov, B. Quinn, Yannis K. Semertzidis, B. Li, K. L. Giovanetti, A. E. Tewsley-Booth, S. Lee, Ran Hong, S. Leo, M. D. Galati, A.T. Fienberg, Sultan B. Dabagov, S. P. Chang, L. Kelton, G. Pauletta, Rachel Osofsky, G. Di Sciascio, S. Ganguly, D.A. Sweigart, Meghna Bhattacharya, Thomas Teubner, A. Gioiosa, S. Miozzi, B. Kiburg, J. Esquivel, A. Lorente Campos, David Kessler, E. Bottalico, M. Sorbara, Christopher Stoughton, J. Mott, Kayleigh Anne Thomson, Giovanni Cantatore, A. Fioretti, A. Anastasi, Wanwei Wu, Karie Badgley, S. Mastroianni, O. Kim, William Morse, L. Welty-Rieger, A. L. Lyon, A. Hibbert, A. Weisskopf, P. T. Debevec, W. Gohn, E. J. Ramberg, R. Di Stefano, E. Kraegeloh, Martin Berz, Z. Khechadoorian, S. Ramachandran, D. Stratakis, S. Corrodi, D. A. Tarazona, V. A. Baranov, J. Choi, F. Han, Nicholas A. Pohlman, M. Eads, I. Logashenko, N. A. Kuchinskiy, M. W. Smith, Y. I. Kim, A. Driutti, J. Kaspar, K. R. Labe, N. S. Froemming, E. Frlež, Albahri, T., Anastasi, A., Anisenkov, A., Badgley, K., Baeßler, S., Bailey, I., Baranov, V. A., Barlas-Yucel, E., Barrett, T., Basti, A., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. M., Casey, B. C. K., Cauz, D., Chakraborty, R., Chang, S. P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. E., Corrodi, S., Cotrozzi, L., Crnkovic, J. D., Dabagov, S., Debevec, P. T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fienberg, A. T., Fioretti, A., Flay, D., Frlež, E., Froemming, N. S., Fry, J., Gabbanini, C., Galati, M. D., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Gioiosa, A., Giovanetti, K. L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. T., Hertzog, D. W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. L., Hong, K. W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. S., Khechadoorian, Z., Khomutov, N. V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. I., King, B., Kinnaird, N., Kraegeloh, E., Kuchibhotla, A., Kuchinskiy, N. A., Labe, K. R., Labounty, J., Lancaster, M., Lee, M. J., Lee, S., Leo, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Lucà, A., Lukicov, G., Lusiani, A., Lyon, A. L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. P., Miozzi, S., Morse, W. M., Mott, J., Nath, A., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. M., Pilato, R. N., Pitts, K. T., Plaster, B., Počanić, D., Pohlman, N., Polly, C. C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. L., Roberts, B. L., Rubin, D. L., Santi, L., Schlesier, C., Schreckenberger, A., Semertzidis, Y. K., Shemyakin, D., Smith, M. W., Sorbara, M., Stöckinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. E., Sweetmore, G., Sweigart, D. A., Syphers, M. J., Tarazona, D. A., Teubner, T., Tewsley-Booth, A. E., Thomson, K., Tishchenko, V., Tran, N. H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., and Wu, W.
- Subjects
Physics::Instrumentation and Detectors ,Measure (physics) ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,Omega ,High Energy Physics - Experiment ,Nuclear physics ,Nuclear Experiment ,High Energy Physics - Experiment (hep-ex) ,muon ,0103 physical sciences ,Fermilab ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Larmor precession ,Physics ,Muon ,010308 nuclear & particles physics ,Settore FIS/01 - Fisica Sperimentale ,anomalous magnetic moment ,3. Good health ,Magnetic field ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Storage ring ,Fermi Gamma-ray Space Telescope - Abstract
The Muon g-2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency $\omega_a$ to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment's muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of $a_{\mu}({\rm FNAL}) = 116\,592\,040(54) \times 10^{-11}$ (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the eleven separate determinations of \omega_a, and the systematic uncertainties on the result., Comment: 29 pages, 19 figures. Published in Physical Review D
- Published
- 2021
3. Measurement of the anomalous precession frequency of the muon in the Fermilab Muon Experiment
- Author
-
T. Albahri, A. Anastasi, A. Anisenkov, K. Badgley, S. Bae??ler, I. Bailey, V. ???A. Baranov, E. Barlas-Yucel, T. Barrett, A. Basti, F. Bedeschi, M. Berz, M. Bhattacharya, H. ???P. Binney, P. Bloom, J. Bono, E. Bottalico, T. Bowcock, G. Cantatore, R. ???M. Carey, B. ???C. ???K. Casey, D. Cauz, R. Chakraborty, S. ???P. Chang, A. Chapelain, S. Charity, R. Chislett, J. Choi, Z. Chu, T. ???E. Chupp, S. Corrodi, L. Cotrozzi, J. ???D. Crnkovic, S. Dabagov, P. ???T. Debevec, S. Di Falco, P. Di Meo, G. Di Sciascio, R. Di Stefano, A. Driutti, V. ???N. Duginov, M. Eads, J. Esquivel, M. Farooq, R. Fatemi, C. Ferrari, M. Fertl, A. ???T. Fienberg, A. Fioretti, D. Flay, E. Frle??, N. ???S. Froemming, J. Fry, C. Gabbanini, M. ???D. Galati, S. Ganguly, A. Garcia, J. George, L. ???K. Gibbons, A. Gioiosa, K. ???L. Giovanetti, P. Girotti, W. Gohn, T. Gorringe, J. Grange, S. Grant, F. Gray, S. Haciomeroglu, T. Halewood-Leagas, D. Hampai, F. Han, J. Hempstead, A. ???T. Herrod, D. ???W. Hertzog, G. Hesketh, A. Hibbert, Z. Hodge, J. ???L. Holzbauer, K. ???W. Hong, R. Hong, M. Iacovacci, M. Incagli, P. Kammel, M. Kargiantoulakis, M. Karuza, J. Kaspar, D. Kawall, L. Kelton, A. Keshavarzi, D. Kessler, K. ???S. Khaw, Z. Khechadoorian, N. ???V. Khomutov, B. Kiburg, M. Kiburg, O. Kim, Y. ???I. Kim, B. King, N. Kinnaird, E. Kraegeloh, A. Kuchibhotla, N. ???A. Kuchinskiy, K. ???R. Labe, J. LaBounty, M. Lancaster, M. ???J. Lee, S. Lee, S. Leo, B. Li, D. Li, L. Li, I. Logashenko, A. Lorente Campos, A. Luc??, G. Lukicov, A. Lusiani, A. ???L. Lyon, B. MacCoy, R. Madrak, K. Makino, F. Marignetti, S. Mastroianni, J. ???P. Miller, S. Miozzi, W. ???M. Morse, J. Mott, A. Nath, H. Nguyen, R. Osofsky, S. Park, G. Pauletta, G. ???M. Piacentino, R. ???N. Pilato, K. ???T. Pitts, B. Plaster, D. Po??ani??, N. Pohlman, C. ???C. Polly, J. Price, B. Quinn, N. Raha, S. Ramachandran, E. Ramberg, J. ???L. Ritchie, B. ???L. Roberts, D. ???L. Rubin, L. Santi, C. Schlesier, A. Schreckenberger, Y. ???K. Semertzidis, D. Shemyakin, M. ???W. Smith, M. Sorbara, D. St??ckinger, J. Stapleton, C. Stoughton, D. Stratakis, T. Stuttard, H. ???E. Swanson, G. Sweetmore, D. ???A. Sweigart, M. ???J. Syphers, D. ???A. Tarazona, T. Teubner, A. ???E. Tewsley-Booth, K. Thomson, V. Tishchenko, N. ???H. Tran, W. Turner, E. Valetov, D. Vasilkova, G. Venanzoni, T. Walton, A. Weisskopf, L. Welty-Rieger, P. Winter, A. Wolski, W. Wu, Albahri, T., Anastasi, A., Anisenkov, A., Badgley, K., Bae??ler, S., Bailey, I., Baranov, V. ???A., Barlas-Yucel, E., Barrett, T., Basti, A., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. ???P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. ???M., Casey, B. ???C. ???K., Cauz, D., Chakraborty, R., Chang, S. ???P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. ???E., Corrodi, S., Cotrozzi, L., Crnkovic, J. ???D., Dabagov, S., Debevec, P. ???T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. ???N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fienberg, A. ???T., Fioretti, A., Flay, D., Frle??, E., Froemming, N. ???S., Fry, J., Gabbanini, C., Galati, M. ???D., Ganguly, S., Garcia, A., George, J., Gibbons, L. ???K., Gioiosa, A., Giovanetti, K. ???L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. ???T., Hertzog, D. ???W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. ???L., Hong, K. ???W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. ???S., Khechadoorian, Z., Khomutov, N. ???V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. ???I., King, B., Kinnaird, N., Kraegeloh, E., Kuchibhotla, A., Kuchinskiy, N. ???A., Labe, K. ???R., Labounty, J., Lancaster, M., Lee, M. ???J., Lee, S., Leo, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Luc??, A., Lukicov, G., Lusiani, A., Lyon, A. ???L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. ???P., Miozzi, S., Morse, W. ???M., Mott, J., Nath, A., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. ???M., Pilato, R. ???N., Pitts, K. ???T., Plaster, B., Po??ani??, D., Pohlman, N., Polly, C. ???C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. ???L., Roberts, B. ???L., Rubin, D. ???L., Santi, L., Schlesier, C., Schreckenberger, A., Semertzidis, Y. ???K., Shemyakin, D., Smith, M. ???W., Sorbara, M., St??ckinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. ???E., Sweetmore, G., Sweigart, D. ???A., Syphers, M. ???J., Tarazona, D. ???A., Teubner, T., Tewsley-Booth, A. ???E., Thomson, K., Tishchenko, V., Tran, N. ???H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., and Wu, W.
- Abstract
The Muon g−2 Experiment at Fermi National Accelerator Laboratory (FNAL) has measured the muon anomalous precession frequency ωma to an uncertainty of 434 parts per billion (ppb), statistical, and 56 ppb, systematic, with data collected in four storage ring configurations during its first physics run in 2018. When combined with a precision measurement of the magnetic field of the experiment’s muon storage ring, the precession frequency measurement determines a muon magnetic anomaly of aμ(FNAL)=116592040(54)×10−11 (0.46 ppm). This article describes the multiple techniques employed in the reconstruction, analysis, and fitting of the data to measure the precession frequency. It also presents the averaging of the results from the 11 separate determinations of ωma, and the systematic uncertainties on the result.
- Published
- 2021
4. Magnetic Field Measurement and Analysis for the Muon g-2 Experiment at Fermilab
- Author
-
Z. Chu, M. Eads, M. Lancaster, T. Halewood-Leagas, D. Flay, I. Logashenko, N. A. Kuchinskiy, M. W. Smith, Y. I. Kim, S.B. Dabagov, B. MacCoy, N. H. Tran, K. W. Hong, Liang Li, L. Santi, A. Chapelain, K. S. Khaw, K. T. Pitts, R. Fatemi, I. R. Bailey, E. Bottalico, Andrzej Wolski, R. N. Pilato, P. Bloom, M. Iacovacci, G. Pauletta, M. Incagli, R. Di Stefano, Timothy Chupp, E. Barlas-Yucel, G. Di Sciascio, G. Sweetmore, D. Cauz, P. Girotti, H. Nguyen, Thomas Teubner, D.A. Sweigart, A. E. Tewsley-Booth, G. Piacentino, D. Stöckinger, Karie Badgley, L. Kelton, P. Winter, Brad Plaster, J. L. Holzbauer, R. Chislett, B. Quinn, R. M. Carey, A. Conway, Kyoko Makino, A. Hibbert, B. C. K. Casey, A. Driutti, J. George, A. Lorente Campos, W. Turner, A. Lucà, S. Ramachandran, W. Wu, G. Hesketh, E. Valetov, E. Kraegeloh, Franco Bedeschi, A. Gioiosa, P. T. Debevec, L. Cotrozzi, V. N. Duginov, S. Corrodi, S. Miozzi, Yannis K. Semertzidis, M. J. Lee, S. Mastroianni, P. Di Meo, Martin Berz, K. L. Giovanetti, D. Stratakis, G. Lukicov, C. Gabbanini, J.B. Hempstead, A. Weisskopf, V. Tishchenko, B. Kiburg, H. E. Swanson, O. Kim, Michael Syphers, R. Osofsky, T. Stuttard, J. Esquivel, Dariush Hampai, T. J. V. Bowcock, Adam L. Lyon, Z. Khechadoorian, Meghna Bhattacharya, T. Barrett, Martin Fertl, D. Shemyakin, V. A. Baranov, Manolis Kargiantoulakis, R. Madrak, Marin Karuza, D. Vasilkova, S. Park, N. Kinnaird, A. Lusiani, T. Albahri, E. Ramberg, Nicholas A. Pohlman, D. Kawall, A. Schreckenberger, J. L. Ritchie, A. T. Herrod, Selcuk Haciomeroglu, L. K. Gibbons, J. Stapleton, Fabrizio Marignetti, K. Thomson, J. LaBounty, W. Gohn, G. Venanzoni, B. Li, Claudio Ferrari, Dinko Pocanic, S. P. Chang, S. Charity, T. Walton, T. P. Gorringe, Benjamin T. King, A. Fioretti, A. Anastasi, Sudeshna Ganguly, S. Lee, Ran Hong, M. D. Galati, A.T. Fienberg, William Morse, L. Welty-Rieger, Alejandro Garcia, J. Grange, J. Choi, Dongdong Li, D. W. Hertzog, A. Keshavarzi, M. Sorbara, F. Han, J. Bono, J. Mott, P. Kammel, C. Schlesier, Giovanni Cantatore, S. Di Falco, R. Chakraborty, C. C. Polly, J. P. Miller, M. Kiburg, J. Kaspar, David Rubin, S. Baeßler, K. R. Labe, N. S. Froemming, H. P. Binney, B. L. Roberts, S. Grant, J. Price, N. Raha, Z. Hodge, N. V. Khomutov, M. Farooq, Jason Crnkovic, D. A. Tarazona, C. Stoughton, A. Nath, Frederick Gray, David Kessler, Albahri, T., Anastasi, A., Badgley, K., Baessler, S., Bailey, I., Baranov, V. A., Barlas-Yucel, E., Barrett, T., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. M., Casey, B. C. K., Cauz, D., Chakraborty, R., Chang, S. P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. E., Conway, A., Corrodi, S., Cotrozzi, L., Crnkovic, J. D., Dabagov, S., Debevec, P. T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fienberg, A. T., Fioretti, A., Flay, D., Froemming, N. S., Gabbanini, C., Galati, M. D., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Gioiosa, A., Giovanetti, K. L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. T., Hertzog, D. W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. L., Hong, K. W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. S., Khechadoorian, Z., Khomutov, N. V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. I., King, B., Kinnaird, N., Kraegeloh, E., Kuchinskiy, N. A., Labe, K. R., Labounty, J., Lancaster, M., Lee, M. J., Lee, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Luca, A., Lukicov, G., Lusiani, A., Lyon, A. L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. P., Miozzi, S., Morse, W. M., Mott, J., Nath, A., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. M., Pilato, R. N., Pitts, K. T., Plaster, B., Pocanic, D., Pohlman, N., Polly, C. C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. L., Roberts, B. L., Rubin, D. L., Santi, L., Schlesier, C., Schreckenberger, A., Semertzidis, Y. K., Shemyakin, D., Smith, M. W., Sorbara, M., Stockinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. E., Sweetmore, G., Sweigart, D. A., Syphers, M. J., Tarazona, D. A., Teubner, T., Tewsley-Booth, A. E., Thomson, K., Tishchenko, V., Tran, N. H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., Wu, W., Baeßler, S., Lucà, A., Počanić, D., and Stöckinger, D.
- Subjects
Field (physics) ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,7. Clean energy ,01 natural sciences ,Omega ,High Energy Physics - Experiment ,010305 fluids & plasmas ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,muon ,0103 physical sciences ,Proton spin crisis ,Fermilab ,Nuclear Experiment (nucl-ex) ,010306 general physics ,Nuclear Experiment ,Larmor precession ,Physics ,Muon ,Settore FIS/01 - Fisica Sperimentale ,VACUUM POLARIZATION CONTRIBUTIONSTEMPERATURE-DEPENDENCEPROTON NMRMOMENTSUSCEPTIBILITYTERMS ,anomalous magnetic moment ,Muon g-2 Experiment, anomalous precession frequency ,Magnetic field ,anomalous precession frequency ,Muon g-2 Experiment ,Fermi Gamma-ray Space Telescope - Abstract
The Fermi National Accelerator Laboratory has measured the anomalous precession frequency $a^{}_\mu = (g^{}_\mu-2)/2$ of the muon to a combined precision of 0.46 parts per million with data collected during its first physics run in 2018. This paper documents the measurement of the magnetic field in the muon storage ring. The magnetic field is monitored by nuclear magnetic resonance systems and calibrated in terms of the equivalent proton spin precession frequency in a spherical water sample at 34.7$^\circ$C. The measured field is weighted by the muon distribution resulting in $\tilde{\omega}'^{}_p$, the denominator in the ratio $\omega^{}_a$/$\tilde{\omega}'^{}_p$ that together with known fundamental constants yields $a^{}_\mu$. The reported uncertainty on $\tilde{\omega}'^{}_p$ for the Run-1 data set is 114 ppb consisting of uncertainty contributions from frequency extraction, calibration, mapping, tracking, and averaging of 56 ppb, and contributions from fast transient fields of 99 ppb., Comment: Added one citation and corrected missing normalization in Eqs (35) and (36)
- Published
- 2021
- Full Text
- View/download PDF
5. Beam dynamics corrections to the Run-1 measurement of the muon anomalous magnetic moment at Fermilab
- Author
-
K. S. Khaw, C. Schlesier, Diktys Stratakis, R. Fatemi, S. Corrodi, D. Newton, K. T. Pitts, R. T. Chislett, L. K. Gibbons, Kyoko Makino, E. Bottalico, A. Gioiosa, J. LaBounty, J. Bono, I. R. Bailey, P. Kammel, D. Kawall, T. J. V. Bowcock, H. P. Binney, W. Turner, A. T. Herrod, S. Miozzi, A. Schreckenberger, E. Valetov, N. H. Tran, K. W. Hong, J. Esquivel, M. Sorbara, Christopher Stoughton, Fabrizio Marignetti, A. Lucà, L. Kelton, M. Eads, D. Stöckinger, T. Barrett, G. Piacentino, J. Mott, S. Baeßler, Bck Casey, Kayleigh Anne Thomson, Giovanni Cantatore, Rachel Osofsky, M. Kiburg, E. Barlas-Yucel, Michael Syphers, C. C. Polly, J. Choi, R. Chakraborty, D. Flay, David Rubin, J. Grange, N. A. Kuchinskiy, M. W. Smith, G. Lukicov, M. Iacovacci, G. Pauletta, J. L. Ritchie, B. MacCoy, L. Cotrozzi, V. N. Duginov, A. Lorente Campos, S. Lee, Ran Hong, G. Sweetmore, D.A. Sweigart, M. Korostelev, Dongdong Li, D. W. Hertzog, Alexander Keshavarzi, G. Di Sciascio, Alejandro L. Garcia, Liang Li, F. Han, D. Sathyan, A.T. Fienberg, Sultan B. Dabagov, M. J. Lee, S. P. Chang, Benjamin T. King, Marin Karuza, R. N. Pilato, M. Incagli, J.B. Hempstead, B. Quinn, L. Santi, N. Kinnaird, F. Gray, P. Winter, L. Welty-Rieger, Meghna Bhattacharya, H. Nguyen, P. Di Meo, T. Stuttard, A. L. Lyon, David Kessler, A. Chapelain, J. Kaspar, B. Li, Galati, Sudeshna Ganguly, Andrzej Wolski, A. Driutti, D. A. Tarazona, Brad Plaster, R. M. Carey, D. Cauz, G. Venanzoni, J. Fry, B. Kiburg, J. P. Miller, W. Gohn, B. L. Roberts, S. Grant, V. A. Baranov, Nicholas A. Pohlman, N. V. Khomutov, M. Farooq, Jason Crnkovic, A. Hibbert, K. R. Labe, P. T. Debevec, Thomas Teubner, S. Di Falco, J. D. Price, Yi Kim, I.B. Logashenko, Yannis K. Semertzidis, K. L. Giovanetti, A. E. Tewsley-Booth, E. Frlež, Martin Berz, S. Charity, T. Walton, Z. Khechadoorian, S. Ramachandran, A. Fiedler, T. P. Gorringe, William Morse, A. Fioretti, A. Anastasi, O. Kim, A. Weisskopf, Wanwei Wu, Karie Badgley, S. Mastroianni, J. L. Holzbauer, Manolis Kargiantoulakis, S. Park, A. Lusiani, T. Albahri, R. Madrak, Selcuk Haciomeroglu, Z. Chu, Dariush Hampai, Gavin Grant Hesketh, J. George, Tishchenko, D. Vasilkova, Franco Bedeschi, P. Bloom, Timothy Chupp, P. Girotti, Nathan Froemming, J. Stapleton, Dinko Pocanic, M. Lancaster, C. Gabbanini, N. Raha, H. E. Swanson, Martin Fertl, Z. Hodge, Tabitha Halewood-leagas, E. J. Ramberg, A. Nath, R. Di Stefano, E. Kraegeloh, Claudio Ferrari, Albahri, T., Anastasi, A., Badgley, K., Baessler, S., Bailey, I., Baranov, V. A., Barlas-Yucel, E., Barrett, T., Bedeschi, F., Berz, M., Bhattacharya, M., Binney, H. P., Bloom, P., Bono, J., Bottalico, E., Bowcock, T., Cantatore, G., Carey, R. M., Casey, B. C. K., Cauz, D., Chakraborty, R., Chang, S. P., Chapelain, A., Charity, S., Chislett, R., Choi, J., Chu, Z., Chupp, T. E., Corrodi, S., Cotrozzi, L., Crnkovic, J. D., Dabagov, S., Debevec, P. T., Di Falco, S., Di Meo, P., Di Sciascio, G., Di Stefano, R., Driutti, A., Duginov, V. N., Eads, M., Esquivel, J., Farooq, M., Fatemi, R., Ferrari, C., Fertl, M., Fiedler, A., Fienberg, A. T., Fioretti, A., Flay, D., Frlez, E., Froemming, N. S., Fry, J., Gabbanini, C., Galati, M. D., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Gioiosa, A., Giovanetti, K. L., Girotti, P., Gohn, W., Gorringe, T., Grange, J., Grant, S., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Han, F., Hempstead, J., Herrod, A. T., Hertzog, D. W., Hesketh, G., Hibbert, A., Hodge, Z., Holzbauer, J. L., Hong, K. W., Hong, R., Iacovacci, M., Incagli, M., Kammel, P., Kargiantoulakis, M., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Keshavarzi, A., Kessler, D., Khaw, K. S., Khechadoorian, Z., Khomutov, N. V., Kiburg, B., Kiburg, M., Kim, O., Kim, Y. I., King, B., Kinnaird, N., Korostelev, M., Kraegeloh, E., Kuchinskiy, N. A., Labe, K. R., Labounty, J., Lancaster, M., Lee, M. J., Lee, S., Li, B., Li, D., Li, L., Logashenko, I., Lorente Campos, A., Luca, A., Lukicov, G., Lusiani, A., Lyon, A. L., Maccoy, B., Madrak, R., Makino, K., Marignetti, F., Mastroianni, S., Miller, J. P., Miozzi, S., Morse, W. M., Mott, J., Nath, A., Newton, D., Nguyen, H., Osofsky, R., Park, S., Pauletta, G., Piacentino, G. M., Pilato, R. N., Pitts, K. T., Plaster, B., Pocanic, D., Pohlman, N., Polly, C. C., Price, J., Quinn, B., Raha, N., Ramachandran, S., Ramberg, E., Ritchie, J. L., Roberts, B. L., Rubin, D. L., Santi, L., Sathyan, D., Schlesier, C., Schreckenberger, A., Semertzidis, Y. K., Smith, M. W., Sorbara, M., Stockinger, D., Stapleton, J., Stoughton, C., Stratakis, D., Stuttard, T., Swanson, H. E., Sweetmore, G., Sweigart, D. A., Syphers, M. J., Tarazona, D. A., Teubner, T., Tewsley-Booth, A. E., Thomson, K., Tishchenko, V., Tran, N. H., Turner, W., Valetov, E., Vasilkova, D., Venanzoni, G., Walton, T., Weisskopf, A., Welty-Rieger, L., Winter, P., Wolski, A., and Wu, W.
- Subjects
Larmor precession ,Physics ,Accelerator Physics (physics.acc-ph) ,Nuclear and High Energy Physics ,Muon ,Physics and Astronomy (miscellaneous) ,Anomalous magnetic dipole moment ,010308 nuclear & particles physics ,FOS: Physical sciences ,Surfaces and Interfaces ,01 natural sciences ,High Energy Physics - Experiment ,Magnetic field ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,muon magnetic anomaly ,0103 physical sciences ,Physics - Accelerator Physics ,Fermilab ,Pitch angle ,010306 general physics ,G-2 EXPERIMENTFREQUENCY ,Storage ring ,Beam (structure) - Abstract
This paper presents the beam dynamics systematic corrections and their uncertainties for the Run-1 data set of the Fermilab Muon g-2 Experiment. Two corrections to the measured muon precession frequency $\omega_a^m$ are associated with well-known effects owing to the use of electrostatic quadrupole (ESQ) vertical focusing in the storage ring. An average vertically oriented motional magnetic field is felt by relativistic muons passing transversely through the radial electric field components created by the ESQ system. The correction depends on the stored momentum distribution and the tunes of the ring, which has relatively weak vertical focusing. Vertical betatron motions imply that the muons do not orbit the ring in a plane exactly orthogonal to the vertical magnetic field direction. A correction is necessary to account for an average pitch angle associated with their trajectories. A third small correction is necessary because muons that escape the ring during the storage time are slightly biased in initial spin phase compared to the parent distribution. Finally, because two high-voltage resistors in the ESQ network had longer than designed RC time constants, the vertical and horizontal centroids and envelopes of the stored muon beam drifted slightly, but coherently, during each storage ring fill. This led to the discovery of an important phase-acceptance relationship that requires a correction. The sum of the corrections to $\omega_a^m$ is 0.50 $\pm$ 0.09 ppm; the uncertainty is small compared to the 0.43 ppm statistical precision of $\omega_a^m$., Comment: 35 pages, 29 figures. Accepted by Phys. Rev. Accel. Beams
- Published
- 2021
- Full Text
- View/download PDF
6. Dopaminergic Immunofluorescence Studies in Kidney Tissue
- Author
-
J J, Gildea, R E, Van Sciver, H E, McGrath, B A, Kemp, P A, Jose, R M, Carey, and R A, Felder
- Subjects
Kidney Tubules, Proximal ,Mice ,Animals ,Fluorescent Antibody Technique ,Humans ,Epithelial Cells ,Nephrons ,Kidney ,Rats - Abstract
The kidney is a highly integrated system of specialized differentiated cells that are responsible for fluid and electrolyte balance in the body. While much of today's research focuses on isolated nephron segments or cells from nephron segments grown in tissue culture, an often overlooked technique that can provide a unique view of many cell types in the kidney is slice culture. Here, we describe techniques that use freshly excised kidney tissue from rats to perform a variety of experiments shortly after isolating the tissue. By slicing the rat kidney in a "bread loaf" format, multiple studies can be performed on slices from the same tissue in parallel. Cryosectioning and staining of the tissue allow for the evaluation of physiological or biochemical responses in a wide variety of specific nephron segments. The procedures described within this chapter can also be extended to human or mouse kidney tissue.
- Published
- 2017
7. Statistical equations and methods applied to the precision muon experiment at BNL
- Author
-
H. N. Brown, S. Sedykh, Lawrence Sulak, F. J. M. Farley, J. M. Paley, G. zu Putlitz, S. I. Redin, Klaus-Peter Jungmann, F. Krienen, L. Duong, I. Kronkvist, Masahiko Iwasaki, T. Qian, P. T. Debevec, Alexei Trofimov, Wuzheng Meng, J. P. Miller, D. Kawall, M. Grosse-Perdekamp, R. Prigl, J. Mi, R. McNabb, E. Efstathiadis, A. Steinmetz, A. Yamamoto, Yannis K. Semertzidis, D. Nikas, G. Bunce, B. L. Roberts, B. Bousquet, J. Kindem, C. Ozben, G. W. Bennett, B.I. Khazin, Q. Peng, C. Timmermans, A. Lam, I. Logashenko, M. Kawamura, Frederick Gray, M. Deile, William Morse, Yu. F. Orlov, M. Sossong, V. W. Hughes, Yu. M. Shatunov, O. Rind, G.V. Fedotovich, D.N. Grigoriev, N.M. Ryskulov, P. M. Shagin, A. Grossmann, Y.Y. Lee, D. Warburton, J. Pretz, G. T. Danby, P. von Walter, Satish Dhawan, E. P. Sichtermann, V. P. Druzhinin, Rasmus Larsen, H. Deng, M. F. Hare, D. Winn, D. Urner, X. Huang, C. J. G. Onderwater, E. P. Solodov, R. M. Carey, D. Zimmerman, C. C. Polly, William Deninger, D. W. Hertzog, S. Giron, and P. Cushman
- Subjects
Physics ,Larmor precession ,Nuclear and High Energy Physics ,Muon ,Quality (physics) ,Nuclear magnetic resonance ,Minification ,Electron ,Function (mathematics) ,Instrumentation ,Spin-½ ,Computational physics ,Weighting - Abstract
In the muon ( g - 2 ) experiment at Brookhaven National Laboratory, the spin precession frequency ω a is obtained from a standard χ 2 minimization fit applied to the time distribution of decay electrons. The unusually high accuracy ( ∼ 0.5 ppm ) of the experiment puts stringent requirements on the quality of the fit and the level of understanding of the statistical properties of the fitted parameters. We discuss the properties of the fits and their implications on the derived value for ω a , including estimates of the effect of an imperfect fit function, methods of including additional external information to reduce the error, the effects of splitting the data into many smaller subsets of data, applying different weighting methods to the data using energy information, and various tests of data suitability.
- Published
- 2007
8. The Measurement of the Anomalous Magnetic Moment of the Muon at Fermilab
- Author
-
R. Chislett, J. Carroll, D. Cauz, Andrew Smith, M. Lee, A. Anastasi, E. Hazen, M. Eads, G. Pauletta, R. Osofsky, B. Quinn, R. Fatemi, I. Logashenko, S. Baessler, D.A. Sweigart, N. A. Kuchinskiy, M. W. Smith, D. Still, Yannis K. Semertzidis, W. Gohn, K. L. Giovanetti, V. Tishchenko, L. Welty-Rieger, R. Di Stefano, C. Fu, M. Iacovacci, E. Barzi, V. Volnykh, J. F. Ostiguy, D. W. Hertzog, T. Stuttard, V. A. Baranov, C. J. G. Onderwater, Michael Syphers, G. Luo, V. P. Druzhinin, E. Won, P. T. Debevec, C. Yoshikawa, J. Grange, Martin Fertl, Stephen Maxfield, F. Azfar, A. Epps, L Li, P. Winter, C. Johnstone, A. Fioretti, B. Drendel, K. T. Pitts, M R M Warren, L. K. Gibbons, D. Stöckinger, M. Whitley, Donald B. Rubin, M. Rominsky, J. Crnkovic, T. P. Gorringe, T. Walton, C. Ferrari, Z. Meadows, G. Venanzoni, Thomas Teubner, Nicholas A. Pohlman, S. Haciomeroglu, M. Gaisser, M. Wormald, B. Casey, Frederick Gray, H. Freidsam, Marin Karuza, K. R. Lynch, P. Kammel, S. Henry, S.B. Dabagov, A. L. Lyon, C. Schlesier, E. Motuk, Yuri F. Orlov, D. Allspach, N. Rider, T. J. V. Bowcock, B. Abi, N. Kinnaird, D. Babusci, A. Para, R. M. Carey, A. de Gouvea, J. Johnstone, J. P. Miller, S. Lee, A.T. Fienberg, G. Di Sciascio, Y. Kim, H. Schellman, L.P. Alonzi, H Yang, H. Kamal Sayed, B. L. Roberts, Edward J. Swanson, V. N. Duginov, E. Ramberg, E. Frlez, N. S. Froemming, I. Kourbanis, J. Mott, L. Santi, D. Kawall, Giovanni Cantatore, N. V. Khomutov, G. Corradi, D. Flay, C. C. Polly, Nicholas Eggert, S. Marignetti, R. Bjorkquist, S. Kim, Benjamin T. King, D. Moricciani, C. Gabbanini, A. Tewlsey-Booth, V. Krylov, Yu. M. Shatunov, Andre Frankenthal, S. Leo, M. E. Convery, S. Mastroianni, A. Chapelain, A. Palladino, Andrzej Wolski, H. Nguyen, B. Kiburg, Alexander Mikhailichenko, K. W. Merritt, J. Kaspar, Dinko Pocanic, M. Popovic, M. Lancaster, W. M. Morse, Timothy Chupp, M. McEvoy, Dariush Hampai, X. Ji, M. Shenk, S. Al-Kilani, A. K. Soha, D. A. Tarazona, Klaus-Peter Jungmann, Alejandro Garcia, Logashenko, I., Grange, J., Winter, P., Carey, R. M., Hazen, E., Kinnaird, N., Miller, J. P., Mott, J., Roberts, B. L., Crnkovic, J., Morse, W. M., Sayed, H. Kamal, Tishchenko, V., Druzhinin, V. P., Shatunov, Y. M., Bjorkquist, R., Chapelain, A., Eggert, N., Frankenthal, A., Gibbons, L., Kim, S., Mikhailichenko, A., Orlov, Y., Rider, N., Rubin, D., Sweigart, D., Allspach, D., Barzi, E., Casey, B., Convery, M. E., Drendel, B., Freidsam, H., Johnstone, C., Johnstone, J., Kiburg, B., Kourbanis, I., Lyon, A. L., Merritt, K. W., Morgan, J. P., Nguyen, H., Ostiguy, J. F., Para, A., Polly, C. C., Popovic, M., Ramberg, E., Rominsky, M., Soha, A. K., Still, D., Walton, T., Yoshikawa, C., Jungmann, K., Onderwater, C. J. G., Debevec, P., Leo, S., Pitts, K., Schlesier, C., Anastasi, A., Babusci, D., Corradi, G., Hampai, D., Palladino, A., Venanzoni, G., Dabagov, S., Ferrari, C., Fioretti, A., Gabbanini, C., Di Stefano, R., Marignetti, S., Iacovacci, M., Mastroianni, S., Di Sciascio, G., Moricciani, D., Cantatore, Giovanni, Karuza, M., Giovanetti, K., Baranov, V., Duginov, V., Khomutov, N., Krylov, V., Kuchinskiy, N., Volnykh, V., Gaisser, M., Haciomeroglu, S., Kim, Y., Lee, S., Lee, M., Semertzidis, Y. K., Won, E., Fatemi, R., Gohn, W., Gorringe, T., Bowcock, T., Carroll, J., King, B., Maxfield, S., Smith, A., Teubner, T., Whitley, M., Wormald, M., Wolski, A., Al Kilani, S., Chislett, R., Lancaster, M., Motuk, E., Stuttard, T., Warren, M., Flay, D., Kawall, D., Meadows, Z., Syphers, M., Tarazona, D., Chupp, T., Tewlsey Booth, A., Quinn, B., Eads, M., Epps, A., Luo, G., Mcevoy, M., Pohlman, N., Shenk, M., de Gouvea, A., Welty Rieger, L., Schellman, H., Abi, B., Azfar, F., Henry, S., Gray, F., Fu, C., Ji, X., Li, L., Yang, H., Stockinger, D., Cauz, D., Pauletta, G., Santi, L., Baessler, S., Frlez, E., Pocanic, D., Alonzi, L. P., Fertl, M., Fienberg, A., Froemming, N., Garcia, A., Hertzog, D. W., Kammel, P., Kaspar, J., Osofsky, R., Smith, M., Swanson, E., Lynch, K., Precision Frontier, Ostiguy, J. -F., Cantatore, G., Al-Kilani, S., Tewlsey-Booth, A., Welty-Rieger, L., and Abys, Salvatore
- Subjects
Particle physics ,magnetic moment ,standard model ,General Physics and Astronomy ,Standard deviation ,Standard Model ,Muon magnetic moment ,Nuclear physics ,Physics and Astronomy (all) ,anomalous magnetic moment ,Positron ,muon anomaly ,muon ,Fermilab ,Physical and Theoretical Chemistry ,instrumentation ,Physics ,Muon ,Anomalous magnetic moment ,Standard model ,Chemistry (all) ,Anomalous magnetic dipole moment ,Magnetic moment ,General Chemistry ,Magnetic field ,High Energy Physics::Experiment ,measurement ,muon, magnetic moment, instrumentation, measurement - Abstract
The anomalous magnetic moment of the muon is one of the most precisely measured quantities in experimental particle physics. Its latest measurement at Brookhaven National Laboratory deviates from the Standard Model expectation by approximately 3.5 standard deviations. The goal of the new experiment, E989, now under construction at Fermilab, is a fourfold improvement in precision. Here, we discuss the details of the future measurement and its current status. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4917553]
- Published
- 2015
9. Measurement of the Formation Rate of Muonic Hydrogen Molecules
- Author
-
A. A. Vasilyev, K. R. Lynch, Jules Deutsch, An.A. Vorobyov, T. P. Gorringe, J. Egger, D. W. Hertzog, R. M. Carey, Malte Hildebrandt, O. Maev, P. Kammel, V.A. Ganzha, B. Kiburg, Stuart J. Freedman, Françoise Mulhauser, M. Vznuzdaev, P. Winter, René Prieels, T. I. Banks, V. A. Andreev, G. G. Semenchuk, Kenneth M. Crowe, T. Case, A. G. Krivshich, G. N. Schapkin, V. Tishchenko, M. A. Soroka, C. Petitjean, Bernhard Lauss, P. Kravtsov, E. M. Maev, S. Knaack, S. M. Clayton, G. E. Petrov, F. Gray, and UCL - SST/IRMP - Institut de recherche en mathématique et physique
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Physics - Instrumentation and Detectors ,Proton ,010308 nuclear & particles physics ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Lambda ,Coupling (probability) ,01 natural sciences ,High Energy Physics - Experiment ,Pseudoscalar ,High Energy Physics - Experiment (hep-ex) ,0103 physical sciences ,Atom ,Molecule ,Nuclear Experiment (nucl-ex) ,Atomic physics ,010306 general physics ,Nuclear Experiment ,Exotic atom - Abstract
Background: The rate \lambda_pp\mu\ characterizes the formation of pp\mu\ molecules in collisions of muonic p\mu\ atoms with hydrogen. In measurements of the basic weak muon capture reaction on the proton to determine the pseudoscalar coupling g_P, capture occurs from both atomic and molecular states. Thus knowledge of \lambda_pp\mu\ is required for a correct interpretation of these experiments. Purpose: Recently the MuCap experiment has measured the capture rate \Lambda_S from the singlet p\mu\ atom, employing a low density active target to suppress pp\mu\ formation (PRL 110, 12504 (2013)). Nevertheless, given the unprecedented precision of this experiment, the existing experimental knowledge in \lambda_pp\mu\ had to be improved. Method: The MuCap experiment derived the weak capture rate from the muon disappearance rate in ultra-pure hydrogen. By doping the hydrogen with 20 ppm of argon, a competing process to pp\mu\ formation was introduced, which allowed the extraction of \lambda_pp\mu\ from the observed time distribution of decay electrons. Results: The pp\mu\ formation rate was measured as \lambda_pp\mu = (2.01 +- 0.06(stat) +- 0.03(sys)) 10^6 s^-1. This result updates the \lambda_pp\mu\ value used in the above mentioned MuCap publication. Conclusions: The 2.5x higher precision compared to earlier experiments and the fact that the measurement was performed at nearly identical conditions to the main data taking, reduces the uncertainty induced by \lambda_pp\mu\ to a minor contribution to the overall uncertainty of \Lambda_S and g_P, as determined in MuCap. Our final value for \lambda_pp\mu\ shifts \Lambda_S and g_P by less than one tenth of their respective uncertainties compared to our results published earlier., Comment: 12 pages, 6 figures, to be submitted to Phys. Rev. C
- Published
- 2015
10. The New Muon g-2 experiment at Fermilab
- Author
-
B. Abi T. Albahri, S. Al-Kilani, D. Allspach, L. P. Alonzi, A. Anastasi, F. Azfar, D. Babusci, S. Baessler, V. A. Baranov, E. Barzi, R. Bjorkquist, T. Bowcock, G. Cantatore, R. M. Carey, J. Carroll, B. Casey, D. Cauz, A. Chapelain, S. Chappa, S. Chattopadhyay, R. Chislett, T. E. Chupp, M. Convery, G. Corradi, J. Crnkovic, S. Dabagov, P. T. Debevec, G. Di Sciascio, R. Di Stefano, B. Drendel, V. P. Druzhinin, V. N. Duginov, M. Eads, N. Eggert, A. Epps, R. Fatemi, C. Ferrari, M. Fertl, A. T. Fienberg, A. Fioretti, D. Flay, A. S. Frankenthal, H. Friedsam, E. Frlez, N. S. Froemming, C. Fu, C. Gabbanini, M. Gaisser, S. Ganguly, A. Garcia, J. George, L. K. Gibbons, K. L. Giovanetti, S. Goadhouse, W. Gohn, T. Gorringe, J. Grange, F. Gray, S. Haciomeroglu, T. Halewood-Leagas, D. Hampai, E. Hazen, S. Henry, D. W. Hertzog, J. L. Holzbauer, M. Iacovacci, C. Johnstone, J. A. Johnstone, K. Jungmann, H. Kamal Sayed, P. Kammel, M. Karuza, J. Kaspar, D. Kawall, L. Kelton, K. S. Khaw, N. V. Khomutov, B. Kiburg, S. C. Kim, Y. I. Kim, B. King, N. Kinnaird, I. A. Koop, I. Kourbanis, V. A. Krylov, A. Kuchibhotla, N. A. Kuchinskiy, M. Lancaster, M. J. Lee, S. Lee, S. Leo, L. Li, I. Logashenko, G. Luo, K. R. Lynch, A. Lyon, S. Marignetti, S. Mastroianni, S. Maxfield, M. McEvoy, Z. Meadows, W. Merritt, A. A. Mikhailichenko, J. P. Miller, J. P. Morgan, D. Moricciani, W. M. Morse, J. Mott, E. Motuk, H. Nguyen, Y. Orlov, R. Osofsky, J. -F. Ostiguy, A. Palladino, G. Pauletta, K. Pitts, D. Pocanic, N. Pohlman, C. Polly, J. Price, B. Quinn, N. Raha, E. Ramberg, N. T. Rider, J. L. Ritchie, B. L. Roberts, M. Rominsky, D. L. Rubin, L. Santi, C. Schlesier, Y. K. Semertzidis, Y. M. Shatunov, M. Shenk, A. Smith, M. W. Smith, A. Soha, E. Solodov, D. Still, D. Stöckinger, T. Stuttard, H. E. Swanson, D. A. Sweigart, M. J. Syphers, S. Szustkowski, D. Tarazona, T. Teubner, A. E. Tewlsey-Booth, V. Tishchenko, G. Venanzoni, V. P. Volnykh, T. Walton, M. Warren, L. Welty-Rieger, M. Whitley, P. Winter, A. Wolski, E. Won, M. Wormald, W. Wu, H. Yang, C. Yoshikawa, Albahri, B. Abi T., Al-Kilani, S., Allspach, D., Alonzi, L. P., Anastasi, A., Azfar, F., Babusci, D., Baessler, S., Baranov, V. A., Barzi, E., Bjorkquist, R., Bowcock, T., Cantatore, G., Carey, R. M., Carroll, J., Casey, B., Cauz, D., Chapelain, A., Chappa, S., Chattopadhyay, S., Chislett, R., Chupp, T. E., Convery, M., Corradi, G., Crnkovic, J., Dabagov, S., Debevec, P. T., Di Sciascio, G., Di Stefano, R., Drendel, B., Druzhinin, V. P., Duginov, V. N., Eads, M., Eggert, N., Epps, A., Fatemi, R., Ferrari, C., Fertl, M., Fienberg, A. T., Fioretti, A., Flay, D., Frankenthal, A. S., Friedsam, H., Frlez, E., Froemming, N. S., Fu, C., Gabbanini, C., Gaisser, M., Ganguly, S., Garcia, A., George, J., Gibbons, L. K., Giovanetti, K. L., Goadhouse, S., Gohn, W., Gorringe, T., Grange, J., Gray, F., Haciomeroglu, S., Halewood-Leagas, T., Hampai, D., Hazen, E., Henry, S., Hertzog, D. W., Holzbauer, J. L., Iacovacci, M., Johnstone, C., Johnstone, J. A., Jungmann, K., Kamal Sayed, H., Kammel, P., Karuza, M., Kaspar, J., Kawall, D., Kelton, L., Khaw, K. S., Khomutov, N. V., Kiburg, B., Kim, S. C., Kim, Y. I., King, B., Kinnaird, N., Koop, I. A., Kourbanis, I., Krylov, V. A., Kuchibhotla, A., Kuchinskiy, N. A., Lancaster, M., Lee, M. J., Lee, S., Leo, S., Li, L., Logashenko, I., Luo, G., Lynch, K. R., Lyon, A., Marignetti, S., Mastroianni, S., Maxfield, S., Mcevoy, M., Meadows, Z., Merritt, W., Mikhailichenko, A. A., Miller, J. P., Morgan, J. P., Moricciani, D., Morse, W. M., Mott, J., Motuk, E., Nguyen, H., Orlov, Y., Osofsky, R., Ostiguy, J. -F., Palladino, A., Pauletta, G., Pitts, K., Pocanic, D., Pohlman, N., Polly, C., Price, J., Quinn, B., Raha, N., Ramberg, E., Rider, N. T., Ritchie, J. L., Roberts, B. L., Rominsky, M., Rubin, D. L., Santi, L., Schlesier, C., Semertzidis, Y. K., Shatunov, Y. M., Shenk, M., Smith, A., Smith, M. W., Soha, A., Solodov, E., Still, D., Stöckinger, D., Stuttard, T., Swanson, H. E., Sweigart, D. A., Syphers, M. J., Szustkowski, S., Tarazona, D., Teubner, T., Tewlsey-Booth, A. E., Tishchenko, V., Venanzoni, G., Volnykh, V. P., Walton, T., Warren, M., Welty-Rieger, L., Whitley, M., Winter, P., Wolski, A., Won, E., Wormald, M., Wu, W., Yang, H., and Yoshikawa, C.
- Subjects
Precision Physics, Muon magnetic anomaly, Muon g-2 experiment - Abstract
There is a long standing discrepancy between the Standard Model prediction for the muon and the value measured by the Brookhaven E821 Experiment. At present the discrepancy stands at about three standard deviations, with a comparable accuracy between experiment and theory. Two new proposals – at Fermilab and J-PARC – plan to improve the experimental uncertainty by a factor of 4, and it is expected that there will be a significant reduction in the uncertainty of the Standard Model prediction. I will review the status of the planned experiment at Fermilab, E989, which will analyse 21 times more muons than the BNL experiment and discuss how the systematic uncertainty will be reduced by a factor of 3 such that a precision of 0.14 ppm can be achieved.
- Published
- 2015
11. Recent results from the BNL g-2 experiment
- Author
-
D.N. Grigoriev, D. Zimmerman, M. Sossong, C. Ozben, C. C. Polly, P. Cushman, Satish Dhawan, J. Pretz, F. J. M. Farley, I. Logashenko, P. von Walter, E. P. Solodov, G. zu Putlitz, S. I. Redin, R. M. Carey, Klaus-Peter Jungmann, D. W. Hertzog, A. Grossman, Frederick Gray, F. Krienen, D. Urner, Masahiko Iwasaki, S. Giron, C. J. G. Onderwater, L. Duong, Wuzheng Meng, Y.Y. Lee, H. N. Brown, Rasmus Larsen, R. Prigl, J. Mi, L. R. Sulak, J. P. Miller, O. Rind, H. Deng, B. L. Roberts, R. McNabb, A. Yamamoto, J. M. Paley, N.M. Ryskulov, William Deninger, D. Winn, C. Timmermans, D. Warburton, Alexei Trofimov, Yannis K. Semertzidis, E. P. Sichtermann, E. Efstathiadis, A. Steinmetz, M. F. Hare, S. Sedykh, G.V. Fedotovich, William Morse, I. Kronkvist, M. Deile, G. T. Danby, D. Kawall, V. P. Druzhinin, D. Nikas, P. T. Debevec, V. W. Hughes, M. Grosse-Perdekamp, Yu. M. Shatunov, J. Kindem, B.I. Khazin, M. Kawamura, G. Bunce, and Yuri F. Orlov
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Muon ,Anomalous magnetic dipole moment ,Electron ,Atomic and Molecular Physics, and Optics ,Nuclear physics ,Data set ,Magnetic-moment ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,National laboratory ,Storage ring - Abstract
The status of the muon g — 2 experiment at the AGS facility of Brookhaven National Laboratory is discussed. Data obtained in 1999 with positive muons has been analyzed and published. The final data set contained 0.95 × 10 9 events and had an accuracy of 1.3 ppm . Approximately four times more data with positive muons and three times more data with negative muons were obtained in 2000 and 2001, respectively. These data were obtained with a more uniform magnetic field and with different storage ring tunes. An accuracy of the order of 0.5 ppm is anticipated.
- Published
- 2002
12. Recent results and current status of the muon g-2 experiment at BNL
- Author
-
Alexei Trofimov, E. Efstathiadis, A. Steinmetz, Q. Peng, Yu. F. Orlov, P. von Walter, E. P. Solodov, D.N. Grigoriev, R. M. Carey, Yannis K. Semertzidis, Rasmus Larsen, Wuzheng Meng, H. Deng, A. Yamamoto, D. Nikas, D. Urner, G. T. Danby, D. Winn, J. M. Paley, R. Prigl, J. Mi, R. McNabb, S. K. Dhawan, V. P. Druzhinin, B. L. Roberts, F. Krinen, T. Qian, P. Cushman, Frederick Gray, C. J. G. Onderwater, J. Kindem, F. J. M. Farley, C. Ozben, P. T. Debevec, G. zu Putlitz, Yu. M. Shatunov, M. Deile, P. M. Shagin, S. I. Redin, X. Huang, E. P. Sichtermann, C. Timmermans, M. F. Hare, I. Kronkvist, B. Bousquet, O. Rind, I.B. Logashenko, B.I. Khazin, L. Duong, M. Kawamura, J. P. Miller, D. Warburton, M. Sossong, J. Pretz, D. Kawall, A. Grossmann, G. Bunce, Klaus-Peter Jungmann, Masahiko Iwasaki, V. W. Hughes, A. Lam, H. N. Brown, N.M. Ryskulov, S. Sedykh, M. Grosse-Perdekamp, G. W. Bennett, D. Zimmerman, William Deninger, L. R. Sulak, Y. Y. Lee, William Morse, D. W. Hertzog, S. Giron, and G.V. Fedotovich
- Subjects
Physics ,Particle physics ,Muon ,Anomalous magnetic dipole moment ,General Physics and Astronomy ,Charge (physics) ,Elementary particle ,Electron ,Nmr ,Standard Model ,Nuclear physics ,Anomalous magnetic-moment ,Positive muon ,Storage ring ,Lepton - Abstract
The measurement of the (g−2) value of leptons provides a unique test of theory since it is the only quantity (unlike charge and mass) calculable in the framework of the Standard Model of elementary particles. The muon (g−2) experiment E821 is currently in progress at Brookhaven National Laboratory. Four data taking runs for positive muons and one run for negative muons were successfully accomplished in 1997–2000 and 2001, respectively. Results of the 1997–2000 runs have been published, thus completing our experiment for μ+. Data analysis for the 2001 run for μ− is currently in progress. To provide measurement of \(a_\mu = \tfrac{1} {2}(g - 2)_{\mu ^ - }\) at the same level of accuracy as for \(a_{\mu ^ + } = \tfrac{1} {2}(g - 2)_{\mu ^ + }\), we need to have one more data taking run.
- Published
- 2002
13. Muon g — 2 experiment at Brookhaven National Laboratory
- Author
-
N.M. Ryskulov, L. Duong, C. Ozben, P. Cushman, F. Krienen, D.N. Grigoriev, H. N. Brown, Rasmus Larsen, Wuzheng Meng, Y.Y. Lee, P. von Walter, Yu. M. Shatunov, G.V. Fedotovich, H. Deng, M. Sossong, William Deninger, D. Winn, A. Grossmann, J. Pretz, E. P. Sichtermann, D. Urner, M. F. Hare, E. P. Solodov, R. M. Carey, C. Timmermans, William Morse, V. W. Hughes, F. J. M. Farley, Alexei Trofimov, R. Prigl, J. Mi, E. Efstathiadis, A. Steinmetz, D. Warburton, R. McNabb, D. Zimmerman, G. zu Putlitz, D. Kawall, S. I. Redin, D. Nikas, C. C. Polly, J. Kindem, Satish Dhawan, J. M. Paley, L. R. Sulak, Klaus-Peter Jungmann, J. P. Miller, B. L. Roberts, Masahiko Iwasaki, Yannis K. Semertzidis, G. T. Danby, C. J. G. Onderwater, M. Kawamur, V. P. Druzhinin, M. Deile, Frederick Gray, P. T. Debevec, A. Yamamoto, D. W. Hertzog, O. Rind, S. Giron, I. Kronkvist, Yuri F. Orlov, G. Bunce, B.I. Khazin, S. Sedykh, I. Logashenko, and M. Grosse-Perdekamp
- Subjects
Physics ,Nuclear physics ,Nuclear and High Energy Physics ,Muon ,Alternating Gradient Synchrotron ,National laboratory ,Atomic and Molecular Physics, and Optics - Abstract
A precise measurement of the anomalous g value, a(mu)(+) = (g - 2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a(mu)(+) = 11 659 202(14)(6) x 10(-10) (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a(mu) (SM)= 11 659 159.6(6.7) x 10(-10) (0.57 ppm) and a(mu)(exp)-a(mu)(SM) = 42(16) x 10(-10) in which a(mu)(exp) is the world average experimental value.
- Published
- 2002
14. Muon g-2 experiment at Brookhaven National Laboratory
- Author
-
C. Ozben, S. Sedykh, O. Rind, M. Sossong, N.M. Ryskulov, V. W. Hertzog, I. Kronkvist, D. Kawall, Yuri F. Orlov, I. Logashenko, J. Pretz, A. Yamamoto, J. Kindem, W. Earle, G.V. Fedotovich, F. Krienen, Rasmus Larsen, B.I. Khazin, P. V. Walter, Yu. M. Shatunov, M. Kawamura, G. zu Putlitz, E. Hazen, H. Deng, Frederick Gray, Wuzheng Meng, C. Pai, J. P. Miller, C. Timmermans, M. Grosse-Perdekamp, D. Warburton, L. Duong, H. N. Brown, F. J. M. Farley, R. Prigl, J. Mi, D. Winn, R. McNabb, Y. Y. Lee, William Morse, S. I. Redin, Alexei Trofimov, A. Grossmann, L. R. Sulak, A. Steinmetz, G. Bunce, E. P. Sichtermann, P. T. Debevec, J. M. Paley, D. W. Hertzog, S. Giron, Ulrich Haeberlen, G. T. Danby, V. P. Druzhinin, B. L. Roberts, Yannis K. Semertzidis, E. Efstathiadia, C. J. G. Onderwater, D. Urner, S. K. Dhawan, William Deninger, C. C. Polly, E. P. Solodov, R. M. Carey, Klaus-Peter Jungmann, Masahiko Iwasaki, P. Cushman, and D. Nikas
- Subjects
Nuclear physics ,Data set ,Physics ,Anomalous magnetic-moment ,Nuclear and High Energy Physics ,Particle physics ,Muon ,Anomalous magnetic dipole moment ,Astronomy and Astrophysics ,Positive muon ,National laboratory ,Atomic and Molecular Physics, and Optics - Abstract
By the end of an excellent data taking in 1999, we collected approximate to1 billion decay positrons with energy greater than 2 GeV and 30 mus after injection. The analysis of the 1999 data set were performed in parallel by various teams in the collaboration and each team provides a different approach to the analysis. The projected errors are expected to be of order 1.3 ppm statistical and below 0.5 ppm systematic. The data obtained in the 2000 run contains,approximate to4 times more decay positrons compared to 1999.
- Published
- 2001
15. [Untitled]
- Author
-
V. A. Andreev, G. N. Schapkin, An.A. Vorobyov, F. J. Hartmann, V. I. Jatsoura, Jules Deutsch, B. Gartner, S. J. Freedman, N. I. Voropaev, C. J. G. Onderwater, S. M. Sadetsky, W. D. Herold, V.A. Ganzha, A. Dijksman, B. Lauss, Oleg Maev, P. U. Dick, Frederick Gray, P. T. Debevec, Richard Schmidt, P. Kammel, D. V. Balin, T. Case, V. E. Markushin, A. G. Krivshich, G. E. Petrov, S. M. Clayton, D. B. Chitwood, G. G. Semenchuk, J. Egger, A. A. Fetisov, R. M. Carey, E. M. Maev, C. C. Polly, René Prieels, Jan Govaerts, D. W. Hertzog, Kenneth M. Crowe, C. Petitjean, M. A. Soroka, and D. Fahrni
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon-catalyzed fusion ,Particle physics ,Muon ,Time projection chamber ,Proton ,Condensed Matter Physics ,Atomic and Molecular Physics, and Optics ,Muon capture ,Nuclear physics ,Particle decay ,Physical and Theoretical Chemistry ,Exotic atom ,Lepton - Abstract
The aim of the MuCap experiment is a 1% measurement of the singlet capture rate Lambda_S for the basic electro-weak reaction mu + p -> n + nu_mu. This observable is sensitive to the weak form-factors of the nucleon, in particular to the induced pseudoscalar coupling constant g_P. It will provide a rigorous test of theoretical predictions based on the Standard Model and effective theories of QCD. The present method is based on high precision lifetime measurements of mu^- in hydrogen gas and the comparison with the free mu^+ lifetime. The mu^- experiment will be performed in ultra-clean, deuterium-depleted H_2 gas at 10 bar. Low density compared to liquid H_2 is chosen to avoid uncertainties due to ppmu formation. A time projection chamber acts as a pure hydrogen active target. It defines the muon stop position in 3-D and detects rare background reactions. Decay electrons are tracked in cylindrical wire-chambers and a scintillator array covering 75% of 4 pi. Comment: Int. RIKEN Conf. on Muon Catalyzed Fusion and Related Exotic Atoms, April 2001, Shimoda, Japan, to be published in Hyperfine Interactions
- Published
- 2001
16. Electromagnetic calorimeters for the BNL muon (g−2) experiment
- Author
-
Jinsong Ouyang, P. Cushman, O. Rind, M. F. Hare, V. P. Druzhinin, R. M. Carey, B. Bunker, J.R Blackburn, D. Urner, C Coulsey, D. W. Hertzog, T. D. Jones, G de Santi, D. Zimmerman, C. C. Polly, J. P. Miller, Frederick Gray, J. Kindem, D. Winn, P. T. Debevec, Alexei Trofimov, C. J. G. Onderwater, S. Sedykh, C. Timmermans, and S. Giron
- Subjects
Physics ,Nuclear and High Energy Physics ,Photomultiplier ,Particle physics ,Range (particle radiation) ,Muon ,Anomalous magnetic dipole moment ,Physics::Instrumentation and Detectors ,Electron ,Nuclear physics ,Electromagnetic calorimeter ,High Energy Physics::Experiment ,Neutron ,Instrumentation ,Energy (signal processing) ,Storage ring ,Lead scintillating fiber - Abstract
A set of 24 lead/scintillating "ber electromagnetic calorimeters has been constructed for the new muon (g!2) experiment at the Brookhaven AGS. These calorimeters were designed to provide very good energy resolution for electrons up to 3 GeV while also yielding excellent timing information. Special requirements in the experiment related to the uniformity of response, the short-term gain and timing stability, and the neutron background led to several unusual design features. The calorimeters were tested and calibrated with electrons in the energy range 0.5}4.0 GeV and have been installed and used in the muon storage ring. The design criteria, construction, and performance of the system are described. ( 2000 Elsevier Science B.V. All rights reserved. PACS: 29.40.V; 13.35.B; 14.60.E
- Published
- 2000
17. Nitric oxide: a physiological mediator of the type 2 (AT2 ) angiotensin receptor
- Author
-
X.-H. Jin, H. M. Siragy, Z.-Q. Wang, and R. M. Carey
- Subjects
endocrine system ,medicine.medical_specialty ,Angiotensin receptor ,Angiotensin II receptor type 1 ,Physiology ,Bradykinin ,Angiotensin II ,Nitric oxide ,chemistry.chemical_compound ,Endocrinology ,Mediator ,chemistry ,Internal medicine ,Renin–angiotensin system ,cardiovascular system ,medicine ,Receptor ,hormones, hormone substitutes, and hormone antagonists ,circulatory and respiratory physiology - Abstract
Virtually all of the biological actions of angiotensin II (ANG II) have been thought to be mediated by the type 1 (AT1) angiotensin receptor and the function of the type 2 (AT2) receptor is unknown. We now describe a novel physiological action of ANG II to release nitric oxide (NO) mediated by the AT2 receptor in both the kidney and gastrointestinal tract. We present an integrated model for a counter-regulatory protective action of the AT2 receptor mediated by nitric oxide. In the kidney, ANG II at the AT2 receptor stimulates a vasodilator cascade of bradykinin (BK), NO and cyclic GMP which is tonically activated only during conditions of increased ANG II, such as sodium depletion. In the absence of the AT2 receptor, pressor and antinatriuretic hypersensitivity to ANG II is associated with BK and NO deficiency. In angiotensin-dependent hypertension, the hypotensive effect at AT1 receptor blockade is due at least in part to AT2 receptor stimulation and consequent increased activity of the vasodilator cascade. In the gastrointestinal tract, physiological quantities of ANG II stimulate the AT2 receptor releasing NO and cGMP leading to increased sodium and water absorption. In conclusion, NO is an important physiological mediator of ANG II at the AT2 receptor.
- Published
- 2000
18. Status of the BNL muon (g-2) experiment
- Author
-
W.M. Morse, S. I. Serednyakov, Yu. M. Shatunov, S. Sedykh, C. J. G. Onderwater, N.M. Ryskulov, A. Yamamoto, Lawrence Sulak, O. Rind, C. Timmermans, F. J. M. Farley, M. Sossong, P. Neumayer, H. N. Brown, G. zu Putlitz, D. Urner, S. I. Redin, W. Meng, J. Pretz, I. Kronkvist, P. T. Debevec, E. Hazen, L. Duong, E. Efstathiadis, J. Kindem, Yuri F. Orlov, S. K. Dhawan, J. P. Miller, D. W. Hertzog, M. Tanaka, V. W. Hughes, Frederick Gray, G.T. Danby, Robert Sanders, D. Miller, F. Krienen, Y.Y. Lee, Wen Liu, Klaus-Peter Jungmann, W. Earle, Masahiko Iwasaki, G. Bunce, B.I. Khazin, M. Grosse Perdekamp, M. Kawamura, D. Zimmerman, P. Cushman, C. Pai, D. Warburton, C. C. Polly, H. Deng, D. Winn, A. Grossmann, E. P. Solodov, R. M. Carey, William Deninger, M. F. Hare, G.V. Fedotovich, I.B. Logashenko, R. Prigl, J. Mi, R. McNabb, D. Kawall, Alexei Trofimov, A. Steinmetz, V. P. Druzhinin, B. L. Roberts, S. Giron, Yannis K. Semertzidis, R. Larsen, and Ulrich Haeberlen
- Subjects
Larmor precession ,Physics ,Particle physics ,Large Hadron Collider ,Muon ,Muon storage ring ,Meson ,Proton ,Physics::Instrumentation and Detectors ,Electron ,Superconducting coils ,G factor ,Nuclear magnetic resonance ,Nuclear physics ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Supersymmetry ,Electrical and Electronic Engineering ,Spin precession ,Superconducting Coils ,Instrumentation ,Storage ring ,Standard model - Abstract
The muon (g-2) experiment at Brookhaven completed a first run in June and July 1997. The main components of the experiment, which include the superconducting inflector, the superferric storage ring, the electrostatic quadrupoles and the lead-scintillating fiber electron calorimeters, have been commissioned satisfactorily. Our first measurement of the ratio R of the spin precession frequency of the positive muon relative to that of a free proton, R=(3.707219/spl plusmn/0.000048)/spl times/10/sup -3/, is in good agreement with the previous CERN measurements for /spl mu//sup +/ and /spl mu//sup -/, and has approximately the same uncertainty as each of these measurements. In spring 1998 a muon kicker was installed and successfully tested in the storage ring magnet and a significant improvement in the knowledge of the muon g-factor is expected from upcoming runs in August 1998 and January 1999.
- Published
- 1999
19. The Medical Academic Advancement Program at the University of Virginia School of Medicine
- Author
-
M Apprey, Wei Li Fang, J M Schuyler, M K Woode, T L Atkins-Brady, and R M Carey
- Subjects
Education, Premedical ,Program evaluation ,Medical education ,business.industry ,education ,Virginia ,MEDLINE ,Medical school ,General Medicine ,Retention rate ,Health professions ,Entrance exam ,Education ,Disadvantaged ,Underrepresented Minority ,Humans ,Medicine ,Program Development ,business ,Minority Groups ,Schools, Medical ,Program Evaluation - Abstract
Since 1984 the University of Virginia School of Medicine has conducted the Medical Academic Advancement Program for minority and disadvantaged students interested in careers in medicine. The program is a six-week residential program for approximately 130 undergraduate and post-baccalaureate students per year. It emphasizes academic course work--biology, chemistry, physics, and essay writing--to prepare the participants for the Medical College Admission Test. Non-graded activities, such as a clinical medicine lecture series, clinical experiences, and a special lecture series, and special workshops are also offered. The participants take two simulated MCAT exams. Between 1984 and 1998, 1,497 students have participated in the program, with complete follow-up information available for 690 (46%). Of the 1,487 participants, 80 (5%) have graduated from the University of Virginia School of Medicine and 174 (12%) from other medical schools; 44 (3%) are attending the medical school now, and 237 (16%) are at other medical schools; 44 (3%) have graduated from other health professions schools, and 54 (3%) are attending such schools. The retention rate for participants at the University of Virginia School of Medicine is 91% (that is, all but seven of the 80 who matriculated have been retained past the first year). The Medical Academic Advancement Program has been successful in increasing the number of underrepresented minority students matriculating into and continuing in medical education. Such programs warrant continued support and encouragement.
- Published
- 1999
20. Status of the g-2 experiment at BNL
- Author
-
D. Kawall, V. B. Golubev, S. Kurokawa, E. P. Solodov, B. J. Hughes, G. Bunce, P. Cushman, P. von Walter, R. M. Carey, A. Stillman, P. T. Debevec, Y.Y. Lee, J. W. Jackson, G.V. Fedotovich, Louis Snydstrup, F. Toldo, A.G. Chertovskikh, Rasmus Larsen, H. Hirabayashi, J. Cullen, M. F. Hare, O. Rind, H. Deng, D. von Lintig, E. Benedict, D. Urner, David Miller, Alexei Trofimov, X. Fei, J. Benante, A. Disco, D. Winn, A. Soukas, E. Efstathiadis, F. J. M. Farley, Yannis K. Semertzidis, R. Prigl, H. N. Brown, R. McNabb, O. N. Ryskulov, Yuri Shatunov, C. Timmermans, Jinsong Ouyang, J. Geller, William Deninger, G. zu Putlitz, S. I. Redin, M. Tanaka, K. Woodle, C. Poly, E. Hazen, B. Bunker, C. Pearson, Y. Mizumachi, M. Grosse Perdekamp, H. E. Ahn, Ulrich Haeberlen, J. Pretz, K. Endo, D. Zimmerman, V. Monich, L. Jia, G. T. Danby, R. P. Shutt, J. Kindem, William Morse, T. D. Jones, A. Maskimov, L. Duong, H. Hseuh, V. P. Druzhinin, S. I. Serednyakov, F. Krienen, Wuzheng Meng, B.I. Khazin, C. Pai, Yuri F. Orlov, Michael A. Green, W. Earle, M. Mapes, A. Grossmann, V. W. Hughes, D. Warbuton, Yu Merzliakov, I. Polk, Satish Dhawan, J. Gerhaeuser, W. A. Worstell, S. Kochis, J. P. Miller, B. L. Roberts, Klaus-Peter Jungmann, Masahiko Iwasaki, J. Sandberg, S. Sedykh, S. Rankowitz, D.H Brown, D. N. Grigorev, I. Logashenko, G. S. Varner, D. W. Hertzog, A. Yamamoto, T. Tallerico, S. Giron, L. R. Sulak, and Precision Frontier
- Subjects
Physics ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Muon ,Meson ,Anomalous magnetic dipole moment ,Physics::Instrumentation and Detectors ,MUON ,Atomic and Molecular Physics, and Optics ,Nuclear physics ,Pion ,DIPOLE-MOMENT ,Antimatter ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,ANOMALOUS MAGNETIC-MOMENT ,Storage ring ,Lepton - Abstract
The muon g-2 experiment at Brookhaven has successfully completed two exploratory runs using pion injection and direct muon injection for checkout and initial data taking. The main components of the experiment, which include the pion beam line, the superconducting storage ring and inflector magnets, the muon kicker and the lead-scintillating fiber calorimeters have been satisfactorily commissioned. First results on the anomalous magnetic moment of the positive muon from pion injection are in good agreement with previous experimental results for a(mu+) and a(mu-) from CERN and of comparable accuracy (13 ppm). Analysis of the 1998 muon injection run is in progress and expected to improve the precision to about 4 ppm. A first production run is scheduled for January 1999 with the goal of reaching the 1 ppm error level.
- Published
- 1999
21. Detailed report of the MuLan measurement of the positive muon lifetime and determination of the Fermi constant
- Author
-
I. Logashenko, Zachary Hartwig, P. Kammel, P. T. Debevec, J. Crnkovic, D. M. Webber, J. Kunkle, A. Gafarov, P. Winter, C. J. G. Onderwater, T. P. Gorringe, R. M. Carey, Brad L. Johnson, J. P. Miller, B. L. Roberts, W. Earle, Susanne Rath, K. L. Giovanetti, V. Tishchenko, D. B. Chitwood, D. W. Hertzog, Frederick Gray, Bernhard Lauss, R. McNabb, B. Wolfe, S. Battu, B. Kiburg, S. Dhamija, K. R. Lynch, Q. Peng, S. Kizilgul, Françoise Mulhauser, J. Phillips, and Precision Frontier
- Subjects
Physics ,Nuclear and High Energy Physics ,Physics - Instrumentation and Detectors ,Muon ,FOS: Physical sciences ,Instrumentation and Detectors (physics.ins-det) ,Scintillator ,FRAMEWORK ,High Energy Physics - Experiment ,Magnetic field ,Crystal ,Nuclear physics ,NEUTRON DECAY ,High Energy Physics - Experiment (hep-ex) ,Scintillation counter ,RADIATIVE-CORRECTIONS ,QUARTZ ,Atomic physics ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Beam (structure) ,SYSTEM ,Fermi Gamma-ray Space Telescope ,Exotic atom - Abstract
We present a detailed report of the method, setup, analysis and results of a precision measurement of the positive muon lifetime. The experiment was conducted at the Paul Scherrer Institute using a time-structured, nearly 100%-polarized, surface muon beam and a segmented, fast-timing, plastic scintillator array. The measurement employed two target arrangements; a magnetized ferromagnetic target with a ~4 kG internal magnetic field and a crystal quartz target in a 130 G external magnetic field. Approximately 1.6 x 10^{12} positrons were accumulated and together the data yield a muon lifetime of tau_{mu}(MuLan) = 2196980.3(2.2) ps (1.0 ppm), thirty times more precise than previous generations of lifetime experiments. The lifetime measurement yields the most accurate value of the Fermi constant G_F (MuLan) = 1.1663787(6) x 10^{-5} GeV^{-2} (0.5 ppm). It also enables new precision studies of weak interactions via lifetime measurements of muonic atoms., Comment: Submitted for publication in Phys. Rev. D (32 pages, 28 figures, 5 tables)
- Published
- 2013
22. Measurement of muon capture on the proton to 1% precision and determination of the pseudoscalar coupling gP
- Author
-
G. G. Semenchuk, O. Maev, Malte Hildebrandt, J. Egger, G. N. Schapkin, Françoise Mulhauser, T. I. Banks, V. A. Andreev, M. A. Soroka, V. Tishchenko, G. E. Petrov, V.A. Ganzha, T. Case, E. M. Maev, An.A. Vorobyov, P. Kravtsov, C. Petitjean, A. G. Krivshich, F. Gray, Stuart J. Freedman, M. Vznuzdaev, Bernhard Lauss, R. M. Carey, S. Knaack, T. P. Gorringe, K. R. Lynch, A. A. Vasilyev, Kenneth M. Crowe, S. M. Clayton, P. Winter, David W. Hertzog, René Prieels, B. Kiburg, Jules Deutsch, and P. Kammel
- Subjects
Physics ,Time projection chamber ,Muon ,Proton ,Physics::Instrumentation and Detectors ,General Physics and Astronomy ,FOS: Physical sciences ,Electron ,High Energy Physics - Experiment ,Muon capture ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Double beta decay ,Atom ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Physics::Atomic Physics ,Atomic physics ,Nuclear Experiment (nucl-ex) ,Nuclear Experiment ,Exotic atom - Abstract
The MuCap experiment at the Paul Scherrer Institute has measured the rate L_S of muon capture from the singlet state of the muonic hydrogen atom to a precision of 1%. A muon beam was stopped in a time projection chamber filled with 10-bar, ultra-pure hydrogen gas. Cylindrical wire chambers and a segmented scintillator barrel detected electrons from muon decay. L_S is determined from the difference between the mu- disappearance rate in hydrogen and the free muon decay rate. The result is based on the analysis of 1.2 10^10 mu- decays, from which we extract the capture rate L_S = (714.9 +- 5.4(stat) +- 5.1(syst)) s^-1 and derive the proton's pseudoscalar coupling g_P(q^2_0 = -0.88 m^2_mu) = 8.06 +- 0.55., Comment: Updated figure 1 and small changes in wording to match published version
- Published
- 2012
23. Cerenkov fiber sampling calorimeters
- Author
-
Yu. Kamyshkov, C. Sanzeni, Yu. Efremenko, Kenneth Segall, K. Arrington, Lawrence Sulak, D. Kefford, J. P. Miller, A. Savin, Stephen T. Dye, R. Pisani, J. Kennedy, E. Tarkovsky, K. Shmakov, D. Winn, D. Wall, R. M. Carey, and W. A. Worstell
- Subjects
Physics ,Nuclear and High Energy Physics ,Optical fiber ,business.industry ,Particle accelerator ,Electromagnetic radiation ,Particle detector ,Radiation length ,law.invention ,Core (optical fiber) ,Optics ,Nuclear Energy and Engineering ,law ,High Energy Physics::Experiment ,Fiber ,Electrical and Electronic Engineering ,business ,Cherenkov radiation - Abstract
Clear optical fibers were used as a Cerenkov sampling media in Pb (electromagnetic) and Cu (hadron) absorbers in spaghetti calorimeters, for high rate and high radiation dose experiments, such as the forward region of high energy colliders. The fiber axes were aligned close to the direction of the incident particles(1/spl deg/-7/spl deg/). The 7 /spl lambda/ deep hadron tower, contained 2.8% by volume 1.5 mm diameter core clear plastic fibers. The 27 radiation length deep electromagnetic towers had packing fractions of 6.8% and 7.2% of 1 mm diameter core quartz fibers as the active Cerenkov sampling medium. The energy resolution on electrons and pions, energy response, pulse shapes and angular studies are presented. >
- Published
- 1994
24. Immunohistochemical Detection of Angiotensin II Receptor
- Author
-
Z Q, Wang and R M, Carey
- Abstract
This chapter deals with immunohistochemical detection of low copy molecules in tissue. We will focus on peptide receptors, but the same principles apply to hormones, autacoid substances, enzymes, and signaling molecules. Several approaches are currently available to characterize receptor distribution in tissue: (1) radioligand binding autoradiography, (2) immunohistochemistry (IHC), and (3) in situ hybridization (ISH). Each method yields different types of information. ISH identifies cells that express a specific mRNA and, therefore, are likely to express the protein of interest. However, the site of mRNA transcript expression for a receptor may be different from the site of receptor binding or protein expression. Although radioligand binding autoradiography provides a good measure of functional receptor expression, precise subcellular localization of receptor expression is not possible. Moreover, pharmacological ligands specific for a single-receptor subtype are not always available. IHC is necessary for cell-specific localization of receptor expression within tissue. The resolution and sensitivity achieved with IHC is far greater than that obtained with classic autoradiography techniques although antireceptor antibody.
- Published
- 2011
25. Publisher's note: Measurement of the positive muon lifetime and determination of the Fermi constant to part-per-million precision [Phys. Rev. Lett. 106, 041803 (2011)]
- Author
-
D. M. Webber, V. Tishchenko, Q. Peng, S. Battu, R. M. Carey, D. B. Chitwood, J. Crnkovic, P. T. Debevec, S. Dhamija, W. Earle, A. Gafarov, K. Giovanetti, T. P. Gorringe, F. E. Gray, Z. Hartwig, D. W. Hertzog, B. Johnson, P. Kammel, B. Kiburg, S. Kizilgul, J. Kunkle, B. Lauss, I. Logashenko, K. R. Lynch, R. McNabb, J. P. Miller, F. Mulhauser, C. J. G. Onderwater, J. Phillips, S. Rath, B. L. Roberts, P. Winter, B. Wolfe, and Research unit Nuclear & Hadron Physics
- Subjects
Physics ,Particle physics ,Muon ,Parts-per notation ,General Physics and Astronomy ,Elementary particle ,Fermion ,Constant (mathematics) ,Fermi Gamma-ray Space Telescope ,Lepton - Published
- 2011
26. Effects of radiation on scintillating fiber performance
- Author
-
Yu. Efremenko, M. Rothman, E. Tarkovsky, K. Shmakov, A. Gordeev, M.L. Bauer, W. A. Worstell, H. Cohn, K.G. Young, Yu. Kamyshkov, H. Paar, R. M. Carey, D. Onopienko, Lawrence Sulak, and S. Savin
- Subjects
Physics ,Nuclear and High Energy Physics ,Scintillation ,Optical fiber ,Physics::Instrumentation and Detectors ,business.industry ,Detector ,Particle accelerator ,Radiation ,law.invention ,Superconducting Super Collider ,Optics ,Nuclear Energy and Engineering ,law ,Scintillation counter ,Measuring instrument ,Optoelectronics ,High Energy Physics::Experiment ,Electrical and Electronic Engineering ,business - Abstract
Continued rapid improvements in formulations for scintillating fibers require the ability to parameterize and predict effects of radiation on detector performance. Experimental techniques necessary to obtain desired information and calculation procedures used in performing predications for hadron scintillating fiber calorimetry in the Superconducting Super Collider environment are described. The experimental techniques involve control of the testing environment, consideration of dose rate effects. and other factors. The calculations involve the behavior of particle showers in the detector, expected levels of radiation, and parameterization of the radiation effects. A summary of significant work is presented. >
- Published
- 1993
27. Measurement of the Positive Muon Lifetime and Determination of the Fermi Constant to Part-per-Million Precision
- Author
-
P. Winter, V. Tishchenko, D. M. Webber, C. J. G. Onderwater, D. B. Chitwood, K. L. Giovanetti, S. Dhamija, K. R. Lynch, J. Kunkle, P. Kammel, W. Earle, A. Gafarov, S. Kizilgul, J. P. Miller, D. W. Hertzog, B. L. Roberts, I. Logashenko, Frederick Gray, S. Battu, Q. Peng, J. Crnkovic, R. M. Carey, B. Kiburg, T. P. Gorringe, Brad L. Johnson, Bernhard Lauss, R. McNabb, P. T. Debevec, Zachary Hartwig, J. Phillips, Françoise Mulhauser, Susanne Rath, B. Wolfe, and Precision Frontier
- Subjects
Physics ,Muon ,Proton ,Hadron ,General Physics and Astronomy ,FOS: Physical sciences ,Elementary particle ,Coupling (probability) ,High Energy Physics - Experiment ,Baryon ,Nuclear physics ,NEUTRON DECAY ,High Energy Physics - Experiment (hep-ex) ,RADIATIVE-CORRECTIONS ,Atomic physics ,Nuclear Experiment (nucl-ex) ,Nucleon ,Nuclear Experiment ,Lepton - Abstract
We report a measurement of the positive muon lifetime to a precision of 1.0 parts per million (ppm); it is the most precise particle lifetime ever measured. The experiment used a time-structured, low-energy muon beam and a segmented plastic scintillator array to record more than 2 x 10^{12} decays. Two different stopping target configurations were employed in independent data-taking periods. The combined results give tau_{mu^+}(MuLan) = 2196980.3(2.2) ps, more than 15 times as precise as any previous experiment. The muon lifetime gives the most precise value for the Fermi constant: G_F(MuLan) = 1.1663788 (7) x 10^-5 GeV^-2 (0.6 ppm). It is also used to extract the mu^-p singlet capture rate, which determines the proton's weak induced pseudoscalar coupling g_P., Accepted for publication in Phys. Rev. Lett
- Published
- 2010
28. Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data
- Author
-
Paul Pellegrino, R. M. Carey, and Larry L. Stowe
- Subjects
geography ,geography.geographical_feature_category ,Vulcanian eruption ,Advanced very-high-resolution radiometer ,Atmospheric sciences ,Aerosol ,Latitude ,Atmosphere ,Geophysics ,Volcano ,General Earth and Planetary Sciences ,Environmental science ,Stratosphere ,Atmospheric optics - Abstract
The NOAA/NESDIS operational aerosol optical thickness product has provided an exceptional view of the development of the Mt. Pinatubo stratospheric aerosol layer. The product is derived from reflected solar radiation measurements of the Advanced Very High Resolution Radiometer onboard the NOAA/11 polar orbiting environmental satellite. The greater the optical thickness, the greater the amount of reflected solar radiation. Daily and weekly composites of aerosol optical thickness (AOT) at a wavelength of 0.5 micrometers have been analyzed to monitor the spatial and temporal variability of the aerosol layer and its optical thickness since the major eruption of Mt. Pinatubo on June 15, 1991. These analyses show that: the volcanic aerosol layer circled the Earth in 21 days; there are inhomogeneities in the layer that seem to remain after over two months of circling the Earth; using an AOT of 0.1 to define the layer, it covered about 42% of the Earth's surface area after two months, over twice the area covered by the El Chichon aerosol layer two months after its eruption; the layer is confined to the latitude zone 20S to 30N, with occasional patches seen at somewhat higher latitudes; the largest mean optical thickness of the layer was 0.31, occurring on August 23rd; the mass of SO2 required to produce this aerosol optical thickness is 13.6 megatons; and, the globally averaged net radiation at the top of the atmosphere may be reduced by about 2.5 Wm−2 (cooling effect of at least 0.5°C) once the aerosol is distributed globally over the next two to four years.
- Published
- 1992
29. Improved limit on the muon electric dipole moment
- Author
-
L. Duong, Rasmus Larsen, H. Deng, Yannis K. Semertzidis, C. J. G. Onderwater, D. Winn, Satish Dhawan, J. M. Paley, C. Timmermans, M. Sossong, J. Pretz, G.V. Fedotovich, M. Deile, P. M. Shagin, Yu. M. Shatunov, J. P. Miller, T. Qian, F. Krienen, X. Huang, G. T. Danby, N.M. Ryskulov, B. L. Roberts, P. Cushman, R. Prigl, J. Mi, V. P. Druzhinin, Yuri F. Orlov, R. McNabb, D. Kawall, Wuzheng Meng, Y. Mizumachi, S. Sedykh, D. Urner, I. Kronkvist, D. Nikas, D. Zimmerman, M. Grosse-Perdekamp, Q. Peng, J. Kindem, B. Bousquet, E. P. Sichtermann, M. F. Hare, D.N. Grigoriev, C. C. Polly, H. N. Brown, Klaus-Peter Jungmann, E. P. Solodov, O. Rind, G. Bunce, A. Lam, I. Logashenko, D. W. Hertzog, P. von Walter, A. Grossmann, Y.Y. Lee, Masahiko Iwasaki, B.I. Khazin, Frederick Gray, William Deninger, M. Kawamura, D. Warburton, V. W. Hughes, Lawrence Sulak, G. W. Bennett, Alexei Trofimov, E. Efstathiadis, A. Steinmetz, William Morse, F. J. M. Farley, G. zu Putlitz, S. I. Redin, R. M. Carey, A. Yamamoto, C. S. Özben, S. Giron, P. T. Debevec, and Research unit Nuclear & Hadron Physics
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,Anomalous magnetic dipole moment ,Physics::Instrumentation and Detectors ,POSITIVE MUON ,G-2 ,FOS: Physical sciences ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,Electric dipole moment ,Precession ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Combined result ,Limit (mathematics) ,ANOMALOUS MAGNETIC-MOMENT ,Spin (physics) ,Storage ring - Abstract
Three independent searches for an electric dipole moment (EDM) of the positive and negative muons have been performed, using spin precession data from the muon g-2 storage ring at Brookhaven National Laboratory. Details on the experimental apparatus and the three analyses are presented. Since the individual results on the positive and negative muon, as well as the combined result, d=-0.1(0.9)E-19 e-cm, are all consistent with zero, we set a new muon EDM limit, |d| < 1.9E-19 e-cm (95% C.L.). This represents a factor of 5 improvement over the previous best limit on the muon EDM., 19 pages, 15 figures, 7 tables
- Published
- 2009
30. The New (g-2) Experiment: A proposal to measure the muon anomalous magnetic moment to +-0.14 ppm precision
- Author
-
B.I. Khazin, I. Logashenko, J. P. Miller, B. L. Roberts, K. R. Lynch, R. M. Carey, William Morse, V. P. Druzhinin, Y. K. Semertzides, Ivan Koop, and S.I. Redin
- Subjects
Nuclear physics ,Physics ,Particle physics ,Muon ,Anomalous magnetic dipole moment ,Physics beyond the Standard Model ,Mu2e ,Elementary particle ,Anomaly (physics) ,Neutrino ,Lepton - Abstract
We propose to measure the muon anomalous magnetic moment, a{sub {mu}}, to 0.14 ppm-a fourfold improvement over the 0.54 ppm precision obtained in the BNL experiment E821. The muon anomaly is a fundamental quantity and its precise determination will have lasting value. The current measurement was statistics limited, suggesting that greater precision can be obtained in a higher-rate, next-generation experiment. We outline a plan to use the unique FNAL complex of proton accelerators and rings to produce high-intensity bunches of muons, which will be directed into the relocated BNL muon storage ring. The physics goal of our experiment is a precision on the muon anomaly of 16 x 10{sup -11}, which will require 21 times the statistics of the BNL measurement, as well a factor of 3 reduction in the overall systematic error. Our goal is well matched to anticipated advances in the worldwide effort to determine the standard model (SM) value of the anomaly. The present comparison, {Delta}a{sub {mu}} (Expt: -SM) = (295 {+-} 81) x 10{sup -11}, is already suggestive of possible new physics contributions to the muon anomaly. Assuming that the current theory error of 51 x 10{sup -11} is reduced to 30 x 10{sup -11} onmore » the time scale of the completion of our experiment, a future {Delta}a{sub {mu}} comparison would have a combined uncertainty of {approx} 34 x 10{sup -11}, which will be a sensitive and complementary benchmark for proposed standard model extensions. The experimental data will also be used to improve the muon EDM limit by up to a factor of 100 and make a higher-precision test of Lorentz and CPT violation. We describe in this Proposal why the FNAL complex provides a uniquely ideal facility for a next-generation (g-2) experiment. The experiment is compatible with the fixed-target neutrino program; indeed, it requires only the unused Booster batch cycles and can acquire the desired statistics in less than two years of running. The proton beam preparations are largely aligned with the new Mu2e experimental requirements. The (g-2) experiment itself is based on the solid foundation of E821 at BNL, with modest improvements related to systematic error control. We outline the motivation, conceptual plans, and details of the tasks, anticipated budget, and timeline in this proposal.« less
- Published
- 2009
31. Global distribution of cloud cover derived from NOAA/AVHRR operational satellite data
- Author
-
Craig S. Long, R. M. Carey, Garik Gutman, E.P. McClain, S. Hart, Larry L. Stowe, Paul Pellegrino, and Paul A. Davis
- Subjects
Atmospheric Science ,Data processing ,Pixel ,Meteorology ,Advanced very-high-resolution radiometer ,Cloud cover ,media_common.quotation_subject ,Polar orbit ,Aerospace Engineering ,Astronomy and Astrophysics ,Sea surface temperature ,Geophysics ,Space and Planetary Science ,Sky ,Radiance ,General Earth and Planetary Sciences ,Environmental science ,Remote sensing ,media_common - Abstract
NOAA/NESDIS is developing an algorithm for the remote sensing of global cloud cover using multi-spectral radiance measurements from the Advanced Very High Resolution Radiometer (AVHRR) on-board NOAA polar orbiting satellites. The current (Phase 1) algorithm uses a sequence of “universal” threshold tests to classify all 2×2 pixel arrays of GAC (4 km) observations into clear, mixed and cloudy categories. A subsequent version of the algorithm (Phase II) will analyze the previous 9-day series of mapped ( 1 2 degree) “clear” array data to replace the “universal” thresholds with space and time specific values. This will provide more accurate estimates of cloud amount for each pixel. The current algorithm is being implemented into the operational data processing stream for testing and evaluation of experimental products. Eventually, it is intended for use operationally to support weather and climate diagnosis and forecasting programs, as well as to provide clear sky radiance data sets for other remote sensing parameters, e.g., vegetation index, aerosol optical thickness, and sea surface temperature.
- Published
- 1991
32. Proposal to search for mu- N -> e- N with a single event sensitivity below 10 -16
- Author
-
R. M. Carey, N.Y. City Coll., U Idaho State, K. R. Lynch, Inr Moscow, J. P. Miller, B. L. Roberts, P. Yamin, C.M. Ankenbrandt, Amherst Massachusetts U., Boston, James L. Popp, William J. Marciano, Yu.G. Kolomensky, Berkeley Uc, W. R. Molzon, Yannis K. Semertzidis, Urbana Illinois U., and Irvine Uc
- Subjects
Nuclear physics ,Physics ,Particle physics ,Muon ,Physics beyond the Standard Model ,High Energy Physics::Phenomenology ,Order (ring theory) ,High Energy Physics::Experiment ,Supersymmetry ,Sensitivity (control systems) ,Neutrino ,Lepton ,Muon capture - Abstract
We propose a new experiment, Mu2e, to search for charged lepton flavor violation with unprecedented sensitivity. We will measure the ratio of the coherent neutrinoless conversion in the field of a nucleus of a negatively charged muon into an electron to the muon capture process: R{sub {mu}e} = {mu}{sup -} + A(Z,N) {yields} e{sup -} + A(Z,N)/{mu}{sup -} + A(Z,N) {yields} {nu}{sub {mu}} + A(Z-1, N), with a sensitivity R{sub {mu}e} {le} 6 x 10{sup -17} at 90% CL. This is almost a four order-of-magnitude improvement over the existing limit. The observation of such a process would be unambiguous evidence of physics beyond the Standard Model. Since the discovery of the muon in 1936, physicists have attempted to answer I.I. Rabi's famous question: 'Who ordered that?' Why is there a muon? What role does it play in the larger questions of why there are three families and flavors of quarks, leptons, and neutrinos? We know quarks mix through a mechanism described by the Cabbibo-Kobayashi-Maskawa matrix, which has been studied for forty years. Neutrino mixing has been observed in the last decade, but mixing among the family of charged leptons has never been seen. The current limits are of order 10{sup -11} - 10{sup -13} so the process is rare indeed. Why is such an experiment important and timely? A major motivation for experiments at the Large Hadron Collider (LHC) is the possible observation of supersymmetric particles in the TeV mass range. Many of these supersymmetric models predict a {mu}-e conversion signal at R{sub {mu}e} {approx} 10{sup -15}. We propose to search for {mu}-e conversion at a sensitivity that exceeds this by more than an order of magnitude. The LHC may not be able to conclusively distinguish among supersymmetric models, so Mu2e will provide invaluable information should the LHC observe a signal. In the case where the LHC finds no evidence of supersymmetry, or other beyond-the-standard-model physics, Mu2e will probe for new physics at mass scales up to 10{sup 4} TeV, far beyond the reach of any planned accelerator.
- Published
- 2008
33. Search for Lorentz and CPT violation effects in muon spin precession
- Author
-
A. Lam, G. T. Danby, I. Logashenko, V. P. Druzhinin, Frederick Gray, A. Grossmann, F. Krienen, E. P. Sichtermann, M. F. Hare, G. Bunce, L. Duong, Satish Dhawan, O. Rind, Wuzheng Meng, William Deninger, B.I. Khazin, D. Urner, Lawrence Sulak, J. P. Miller, H. N. Brown, P. Cushman, M. Kawamura, S. Sedykh, P. T. Debevec, F. J. M. Farley, Q. Peng, M. Sossong, B. L. Roberts, D. Nikas, I. Kronkvist, C. S. Özben, G. zu Putlitz, A. Yamamoto, S. I. Redin, J. Kindem, X. Huang, M. Grosse-Perdekamp, D. Warburton, D. Zimmerman, J. Pretz, Yu. M. Shatunov, C. C. Polly, J. M. Paley, D. W. Hertzog, Yuri F. Orlov, D. Kawall, E. P. Solodov, B. Bousquet, N.M. Ryskulov, R. M. Carey, C. J. G. Onderwater, S. Giron, R. Prigl, J. Mi, Y. Mizumachi, V. W. Hughes, T. Qian, G. W. Bennett, C. Timmermans, R. McNabb, William Morse, G.V. Fedotovich, Alexei Trofimov, E. Efstathiadis, A. Steinmetz, Y.Y. Lee, D.N. Grigoriev, P. von Walter, Rasmus Larsen, H. Deng, D. Winn, Yannis K. Semertzidis, M. Deile, P. M. Shagin, Klaus-Peter Jungmann, Masahiko Iwasaki, and KVI - Center for Advanced Radiation Technology
- Subjects
Larmor precession ,Physics ,Particle physics ,Muon ,Anomalous magnetic dipole moment ,CPT symmetry ,VALUES ,SYMMETRY ,HIGHER-DIMENSIONAL THEORIES ,General Physics and Astronomy ,Muon spin spectroscopy ,Omega ,STRINGS ,INVARIANCE ,Standard Model ,High Energy Physics - Experiment ,High Energy Physics - Phenomenology ,TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY ,High Energy Physics::Experiment ,ANOMALOUS MAGNETIC-MOMENT ,SPACED DATA ,Spin-½ - Abstract
The spin precession frequency of muons stored in the $(g-2)$ storage ring has been analyzed for evidence of Lorentz and CPT violation. Two Lorentz and CPT violation signatures were searched for: a nonzero $\Delta\omega_{a}$ (=$\omega_{a}^{\mu^{+}}-\omega_{a}^{\mu^{-}}$); and a sidereal variation of $\omega_{a}^{\mu^{\pm}}$. No significant effect is found, and the following limits on the standard-model extension parameters are obtained: $b_{Z} =-(1.0 \pm 1.1)\times 10^{-23}$ GeV; $(m_{\mu}d_{Z0}+H_{XY}) = (1.8 \pm 6.0 \times 10^{-23})$ GeV; and the 95% confidence level limits $\check{b}_{\perp}^{\mu^{+}}< 1.4 \times 10^{-24}$ GeV and $\check{b}_{\perp}^{\mu^{-}} < 2.6 \times 10^{-24}$ GeV., Comment: 5 pages, 3 figures, submitted to Physical Review Letters, Modified to answer the referees suggestions
- Published
- 2008
34. Letter of intent: a muon to electron conversion experiment at Fermilab
- Author
-
D. Bogert, Amherst Massachusetts U., K. R. Lynch, U Idaho State, Inr Moscow, P. Yamin, Urbana Illinois U., J. P. Miller, U Virginia, R. M. Carey, U Boston, B. L. Roberts, Yannis K. Semertzidis, U Syracuse, William J. Marciano, Yu.G. Kolomensky, Berkeley Uc, R. H. Bernstein, and C.M. Ankenbrandt
- Subjects
Physics ,Particle physics ,Muon ,Physics beyond the Standard Model ,Particle accelerator ,Linear particle accelerator ,law.invention ,Accumulator (energy) ,Nuclear physics ,Conceptual design ,law ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Fermilab ,Lepton - Abstract
We are writing this letter to express our interest in pursuing an experiment at Fermilab to search for neutrinoless conversion of muons into electrons in the field of a nucleus, which is a lepton flavor-violating (LFV) reaction. The sensitivity goal of this experiment represents an improvement of more than a factor of 10,000 over existing limits. It would provide the most sensitive test of LFV, a unique and essential window on new physics unavailable at the high energy frontier. We present a conceptual scheme that would exploit the existing Fermilab Accumulator and Debuncher rings to generate the required characteristics of the primary proton beam. The proposal requires only modest modifications to the accelerator complex beyond those already planned for the NOvA experiment, with which this experiment would be fully compatible; however, it could also benefit significantly from possible upgrades such as the 'Project X' linac. We include the conceptual design of the muon beam and the experimental apparatus, which use the previously proposed MECO experiment as a starting point.
- Published
- 2007
35. Improved measurement of the positive-muon lifetime and determination of the Fermi constant
- Author
-
P. T. Debevec, R. McNabb, C. S. Özben, T. I. Banks, K. L. Giovanetti, C. C. Polly, P. A. Zolnierczuk, V. Tishchenko, M. Hance, Kenneth M. Crowe, C. J. G. Onderwater, M. F. Hare, S. M. Clayton, D. M. Webber, Susanne Rath, B. Lauss, Françoise Mulhauser, J. Wasserman, T. P. Gorringe, D. B. Chitwood, S. Dhamija, J. P. Miller, K. R. Lynch, B. L. Roberts, null null, C. S. Oezben, D. W. Hertzog, S. Cheekatmalla, R. M. Carey, B. Kiburg, S. Battu, Q. Peng, M. J. Barnes, I. Logashenko, P. Winter, J. Crnkovic, J. Kunkle, A. Gafarov, W. Earle, P. Kammel, F. Gray, G. D. Wait, and KVI - Center for Advanced Radiation Technology
- Subjects
Physics ,Coupling ,Muon ,Physics::Instrumentation and Detectors ,FOS: Physical sciences ,General Physics and Astronomy ,Scintillator ,High Energy Physics - Experiment ,Nuclear physics ,Pseudoscalar ,NEUTRON DECAY ,High Energy Physics - Experiment (hep-ex) ,Scintillation counter ,RADIATIVE-CORRECTIONS ,High Energy Physics::Experiment ,Nuclear Experiment (nucl-ex) ,Nucleon ,Nuclear Experiment ,Beam (structure) ,Fermi Gamma-ray Space Telescope - Abstract
The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, tau_mu = 2.197013(24) us, is in excellent agreement with the previous world average. The new world average tau_mu = 2.197019(21) us determines the Fermi constant G_F = 1.166371(6) x 10^-5 GeV^-2 (5 ppm). Additionally, the precision measurement of the positive muon lifetime is needed to determine the nucleon pseudoscalar coupling g_P., As published version (PRL, July 2007)
- Published
- 2007
36. Final report of the E821 muon anomalous magnetic moment measurement at BNL
- Author
-
E. P. Sichtermann, M. F. Hare, X. Huang, D. W. Hertzog, P. T. Debevec, C. S. Özben, Frederick Gray, L. R. Sulak, O. Rind, A. Yamamoto, A. Lam, I. Logashenko, C. J. G. Onderwater, L. Duong, B. Bousquet, P. von Walter, H. N. Brown, E. P. Solodov, J. M. Paley, S. K. Dhawan, Yuri F. Orlov, M. Sossong, G. T. Danby, I. Kronkvist, Klaus-Peter Jungmann, S. Giron, R. M. Carey, D. Kawall, Yu. M. Shatunov, Masahiko Iwasaki, D. Urner, J. Pretz, Y. Mizumachi, S. Sedykh, T. Qian, F. J. M. Farley, J. P. Miller, M. Grosse-Perdekamp, D. Nikas, C. Timmermans, D.N. Grigoriev, G.V. Fedotovich, G. zu Putlitz, S. I. Redin, V. P. Druzhinin, B. L. Roberts, P. Cushman, Rasmus Larsen, B.I. Khazin, D. Zimmerman, M. Kawamura, H. Deng, G. W. Bennett, D. Winn, C. C. Polly, N.M. Ryskulov, J. Kindem, F. Krienen, R. Prigl, J. Mi, R. McNabb, William Deninger, Wuzheng Meng, Y. Y. Lee, Gerry Bunce, William Morse, M. Deile, P. M. Shagin, Alexei Trofimov, E. Efstathiadis, A. Steinmetz, Yannis K. Semertzidis, A. Grossmann, D. Warburton, Q. Peng, Vernon W. Hughes, and Research unit Nuclear & Hadron Physics
- Subjects
Physics ,HADRONIC CONTRIBUTIONS ,Nuclear and High Energy Physics ,Particle physics ,Large Hadron Collider ,Muon ,Anomalous magnetic dipole moment ,G-2 EXPERIMENT ,SCATTERING CONTRIBUTION ,Hadron ,E(+)E(-) ANNIHILATION ,ELECTROMAGNETIC INTERACTIONS ,Standard deviation ,Standard Model ,Nuclear physics ,BOHR MAGNETONS ,BY-LIGHT CONTRIBUTION ,High Energy Physics::Experiment ,Vacuum polarization ,STORAGE-RING MAGNET ,PRECISE MEASUREMENT ,Anomaly (physics) ,ELECTROWEAK CORRECTIONS - Abstract
We present the final report from a series of precision measurements of the muon anomalous magnetic moment, a(mu)=(g-2)/2. The details of the experimental method, apparatus, data taking, and analysis are summarized. Data obtained at Brookhaven National Laboratory, using nearly equal samples of positive and negative muons, were used to deduce a(mu)(Expt)=11659208.0(5.4)(3.3)x10(-10), where the statistical and systematic uncertainties are given, respectively. The combined uncertainty of 0.54 ppm represents a 14-fold improvement compared to previous measurements at CERN. The standard model value for a(mu) includes contributions from virtual QED, weak, and hadronic processes. While the QED processes account for most of the anomaly, the largest theoretical uncertainty, approximate to 0.55 ppm, is associated with first-order hadronic vacuum polarization. Present standard model evaluations, based on e(+)e(-) hadronic cross sections, lie 2.2-2.7 standard deviations below the experimental result.
- Published
- 2006
37. A (g−2) μ Experiment to ±0.2 ppm Precision BNL P969
- Author
-
R M Carey, Gafarov, Anatoliy, Logashenko, Ivan, K.R. Lynch, Miller, James, B. L. Roberts, G. Bunce, W. Meng, W. M. Morse, Semertzidis, Yannis K, D.N. Grigoriev, B. I. Khazin, S.I. Redin, Shatunov, Yuri M, E. SOLODOV, Yu. F. Orlov, P. T. Debevec, D W Hertzog, P. Kammel, R. McNabb, F Mülhauser, K. L. Giovanetti, K P Jungmann, C. J. G. Onderwater, S. Dhamija, T. P. Gorringe, W. Korsch, F.E. Gray, B. Lauss, E. P. Sichtermann, P Cushman, Qian, Tan Rou, P. Shagin, Shivanshu Dhawan, and Farley, Francis
- Published
- 2004
- Full Text
- View/download PDF
38. A New Experiment to Measure the Muon Electric Dipole Moment
- Author
-
R. McNabb, I. B. Khriplovich, L. B. Leipuner, D. W. Hertzog, A. Dunikov, J. P. Miller, B. L. Roberts, C. Ozben, Yannis K. Semertzidis, Y. Kuno, B. I. Khazin, C. J. G. Onderwater, F. J. M. Farley, Klaus-Peter Jungmann, V. Balakin, Neil Shafer-Ray, R. Prigl, E. J. Stephenson, K. R. Lynch, P. T. Debevec, G. Sylvestrov, M. Iwasaki, R. M. Carey, A. Aoki, A. Sato, K. Yoshimura, Marcis Auzinsh, Yuri F. Orlov, Alexander J. Silenko, A. Bazhan, P. Cushman, G. W. Bennett, W. Meng, William Morse, D. M. Lazarus, William J. Marciano, and V. Logashenko
- Subjects
Larmor precession ,Physics ,Nuclear physics ,Particle physics ,Dipole ,Electric dipole moment ,Anomalous magnetic dipole moment ,Neutron magnetic moment ,Proton magnetic moment ,Physics::Atomic Physics ,Magnetic dipole ,Electron magnetic dipole moment - Abstract
A description is given of a new experiment to measure the muon electric dipole moment (EDM) to between σ = 10−24 e − cm and 10−25 e − cm, which would be 5 to 6 orders of magnitude improvement over the current world average. Muons are stored in a magnetic ring. Precession due to Thomas precession and the magnetic moment are canceled with the proper combination of applied E and B fields. Only precession due to a non‐vanishing EDM remains, resulting in a large amplification of the EDM signal. The method has general applicability to charged particles.
- Published
- 2004
39. Measurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm
- Author
-
A. Yamamoto, M. Grosse-Perdekamp, M. Deile, H. N. Brown, P. M. Shagin, A. Lam, R. von Walter, S. K. Dhawan, F. Gray, Cjg Onderwater, A. Grossmann, N.M. Ryskulov, D.N. Grigoriev, Q. Peng, F. Krienen, Vernon W. Hughes, B. Bousquet, YM Shatunov, Yu. M. Shatunov, D. Nikas, C. C. Polly, B.I. Khazin, Rasmus Larsen, Wuzheng Meng, H. Deng, P. Cushman, E. P. Sichtermann, [No Value] Huang, R. Prigl, Alexei Trofimov, Yannis K. Semertzidis, G. W. Bennett, R. McNabb, GZ Putlitz, J. M. Paley, D. W. Hertzog, M. F. Hare, Gerry Bunce, G. T. Danby, P. T. Debevec, C.C. Polley, T. Qian, Yuri F. Orlov, V. P. Druzhinin, B. L. Roberts, G.V. Fedotovich, L. Duong, [No Value] Logashenko, I.B. Logashenko, J. P. Miller, P. von Walter, E. P. Solodov, F. J. M. Farley, C. S. Özben, R. M. Carey, D. Kawall, L. R. Sulak, Y. Y. Lee, William Morse, [No Value] Kronkvist, I. Kronkvist, S. I. Redin, M. Sossong, J. Pretz, O. Rind, X. Huang, Klaus-Peter Jungmann, and Masahiko Iwasaki
- Subjects
Larmor precession ,Physics ,Muon ,Anomalous magnetic dipole moment ,G-2 EXPERIMENT ,Cyclotron ,General Physics and Astronomy ,FOS: Physical sciences ,FREQUENCY ,NMR ,Magnetic field ,law.invention ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) ,law ,Proton spin crisis ,Physics::Accelerator Physics ,High Energy Physics::Experiment ,Fermilab ,STORAGE-RING MAGNET ,FIELD ,Intensity (heat transfer) - Abstract
The anomalous magnetic moment of the negative muon has been measured to a precision of 0.7 parts per million (ppm) at the Brookhaven Alternating Gradient Synchrotron. This result is based on data collected in 2001, and is over an order of magnitude more precise than the previous measurement of the negative muon. The result a_mu= 11 659 214(8)(3) \times 10^{-10} (0.7 ppm), where the first uncertainty is statistical and the second is sytematic, is consistend with previous measurements of the anomaly for the positive and negative muon. The average for the muon anomaly a_{mu}(exp) = 11 659 208(6) \times 10^{-10} (0.5ppm)., Comment: 4 pages, 4 figures, submitted to Physical Review Letters, revised to reflect referee comments. Text further revised to reflect additional referee comments and a corrected Fig. 3 replaces the older version
- Published
- 2004
- Full Text
- View/download PDF
40. Copper-scintillating fiber hadron calorimeter tower prototypes
- Author
-
K. Shmakov, B. Moore, J. P. Miller, Robin E. Miller, N. Akchurin, D. Winn, E. Hazen, J. Sandro, James Sullivan, C. Bromberg, D. H. Brown, Yu. Kamyshkov, Lawrence Sulak, Kenneth Segall, D. Higby, R. Pisani, A. Savin, C. Elder, Stephen T. Dye, W. Bugg, F. Ayer, H. Paar, W. Brower, R. M. Carey, A. Smirnov, F. Placil, R. Kroeger, D. Wall, W. A. Worstell, H. Cohn, J. Reidy, Yasar Onel, D. Kefford, K.G. Young, J. Langland, R. Wigmans, and M. Rennich
- Subjects
Nuclear physics ,Physics ,Range (particle radiation) ,Muon ,Large Hadron Collider ,Pion ,Physics::Instrumentation and Detectors ,Muon collider ,Scintillation counter ,Hadron ,High Energy Physics::Experiment ,Nuclear Experiment ,Tower - Abstract
The authors have constructed and tested seven projective scintillating fiber-copper absorber hadron calorimeter towers for high-energy hadron collider detectors. Each tower contained 2.25% by volume scintillating fibers, embedded between copper laminations, 10.6 lambda deep. A hadron energy resolution of sigma /E=91%/ square root E was obtained. Pions exhibited uniform response when scanned across boundaries between modules and through a range of incident angles with respect to the fibers. The e/ pi ratio is 1.08+or-0.02 for energies between 10 and 20 GeV, with a response of approximately 60 p.e./GeV. The muon Landau distributions well-resolved from pedestals were observed. >
- Published
- 2003
41. Resent Results and Current Status of the Muon (g–2) Experiment at BNL
- Author
-
S. I. Redin, G. W. Bennett, B. Bousquet, H. N. Brown, G. Bunce, R. M. Carey, P. Cushman, G. T. Danby, P. T. Debevec, M. Deile, H. Deng, W. Deninger, S. K. Dhawan, V. P. Druzhinin, L. Duong, E. Efstathiadis, F. J. M. Farley, G. V. Fedotovich, S. Giron, F. Gray, D. Grigoriev, M. Grosse-Perdekamp, A. Grossmann, M. F. Hare, D. W. Hertzog, X. Huang, V. W. Hughes, M. Iwasaki, K. Jungmann, D. Kawall, M. Kawamura, B. I. Khazin, J. Kindem, F. Krinen, I. Kronkvist, A. Lam, R. Larsen, Y. Y. Lee, I. B. Logashenko, R. McNabb, W. Meng, J. Mi, J. P. Miller, W. M. Morse, D. Nikas, C. J. G. Onderwater, Yu. F. Orlov, C. Ozben, J. Paley, Q. Peng, J. Pretz, R. Prigl, G. zu Putlitz, T. Qian, O. Rind, B. L. Roberts, N. M. Ryskulov, P. Shagin, S. Sedykh, Y. K. Semertzidis, Yu. M. Shatunov, E. P. Solodov, E. P. Sichtermann, M. Sossong, A. Steinmetz, L. R. Sulak, C. Timmermans, A. Trofimov, D. Urner, P. von Walter, D. Warburton, D. Winn, A. Yamamoto, and D. Zimmerman
- Published
- 2003
42. A New Method For A Sensitive Deuteron EDM Experiment
- Author
-
Y. Kuno, E. J. Stephenson, A. Dudnikov, P. T. Debevec, B. Kirk, Yannis K. Semertzidis, D. W. Hertzog, B. I. Khazin, J. P. Miller, M. Iwasaki, R. M. Carey, V. Balakin, Klaus-Peter Jungmann, P. Cushman, L. B. Leipuner, D. Kawall, B. L. Roberts, Masaharu Aoki, C. J. G. Onderwater, William J. Marciano, W. Meng, V. Logashenko, K. Yoshimura, I. B. Khriplovich, Neil Shafer-Ray, S. Rescia, R. McNabb, K. R. Lynch, C. Ozben, F. J. M. Farley, Yuri F. Orlov, G. W. Bennett, William Morse, D. M. Lazarus, Alexander J. Silenko, A. Bazhan, Marcis Auzinsh, and R. Prig
- Subjects
Physics ,Nuclear physics ,Particle physics ,High Energy Physics - Experiment (hep-ex) ,Deuterium ,Statistical sensitivity ,Nuclear force ,FOS: Physical sciences ,Order of magnitude ,High Energy Physics - Experiment - Abstract
In this paper a new method is presented for particles in storage rings which could reach a statistical sensitivity of 10**(-27) e cm for the deuteron EDM. This implies an improvement of two orders of magnitude over the present best limits on the T-odd nuclear forces ksi parameter., Comment: 5 pages. Proceedings of a talk presented at CIPANP 2003, May 19-24, 2003
- Published
- 2003
- Full Text
- View/download PDF
43. Scintillating fiber calorimeters with cast absorbers
- Author
-
Lawrence Sulak, D. Higby, D. Scrofani, N. Diaczenko, W. A. Worstell, F. Ayer, B. Ong, E. Hazen, J. P. Miller, D. H. Brown, Robin E. Miller, C. Wang, H. Paar, D. Acosta, D. Boccuzzi, S. Zaman, D. Wall, B. L. Roberts, C. E. Lane, D. Sullivan, A. David, J. Branson, C. Bromberg, Joey Huston, M. Sivertz, R. M. Carey, Daniel Thomas, C. Elder, Stephen T. Dye, Kenneth Segall, R. C. Webb, C. Yosef, A. Sanzgiri, and D. Winn
- Subjects
Materials science ,Fabrication ,Physics::Instrumentation and Detectors ,chemistry.chemical_element ,Tungsten ,Radiation length ,Physics::Fluid Dynamics ,chemistry ,Casting (metalworking) ,Forensic engineering ,Fiber ,Composite material ,Absorption (electromagnetic radiation) ,Molière radius ,Eutectic system - Abstract
The technology to construct cast lead-eutectic scintillating fiber calorimeters for measuring the energy of hadron and electromagnetic showers is discussed. The lead eutectic injection process, mold construction and release equipment, and fiber preform are described, along with beam test results on prototypes. Novel extensions of the technique include liquid fiber forward calorimeters, and shot-loading of the molten eutectic to achieve variable absorption properties. This lead eutectic and eutectic/shot slurry casting technique for solid and liquid fiber calorimetry has significant potential advantages in the ease of fabrication compared with laminated fiber insertion techniques while preserving an electromagnetic resolution similar to that obtained with laminated fiber calorimeters. The addition of micro-shot to the molten eutectic enables fiber calorimeters with variable properties, such as an interaction length approximately 30% smaller than lead calorimeters (tungsten loading), or modified neutron sensitivities. The combination of short radiation length/Moliere radius ( approximately 1/2 of BaF/sub 2/, for example), low cost, and energy resolution is unique. >
- Published
- 2002
44. Publisher’s Note: Measurement of the Positive Muon Anomalous Magnetic Moment to 0.7 ppm [Phys. Rev. Lett.89, 101804 (2002)]
- Author
-
D. Warburton, M. Grosse-Perdekamp, X. Huang, M. Sossing, Rasmus Larsen, H. Deng, Alexei Trofimov, E. Efstathiadis, A. Steinmetz, D.N. Grigoriev, G. W. Bennett, Yuri F. Orlov, G. T. Danby, P. von Walter, A. Lam, F. Krienen, V. W. Hughes, William Morse, O. Rind, J. M. Paley, G.V. Fedotovich, C. Ozben, D. Urner, P. Cushman, Yu. M. Shatunov, H. N. Brown, C. C. Polly, S. Giron, Wuzheng Meng, V. P. Druzhinin, J. Pretz, F. J. M. Farley, T. Qian, I. Kronkvist, R. M. Carey, S.I. Redin, B. I. Khazin, E. P. Solodov, C. J. G. Onderwater, G. zu Putlitz, N.M. Ryskulov, D. W. Hertzog, Y.Y. Lee, Klaus-Peter Jungmann, G. Bunce, J. P. Miller, R. Prigl, L. R. Sulak, Masahiko Iwasaki, B. L. Roberts, E. P. Sichtermann, M. F. Hare, William Deninger, A. Grossmann, Yannis K. Semertzidis, I.B. Logashenko, D. Nikas, D. Kawall, J. Kindem, M. Deile, L. Duong, P. M. Shagin, J. Mi, B. Bousquet, R. McNabb, F. Gray, Satish Dhawan, P. T. Debevec, A. Yamamoto, and Q. Peng
- Subjects
Physics ,Muon ,Anomalous magnetic dipole moment ,Neutron magnetic moment ,Condensed matter physics ,Proton magnetic moment ,Nuclear magnetic moment ,General Physics and Astronomy ,Magnetic dipole ,Electron magnetic dipole moment ,Spin magnetic moment - Published
- 2002
45. RESULTS FROM THE MUON G-2 EXPERIMENT
- Author
-
I. B. LOGASHENKO, R. M. CAREY, E. EFSTATHIADIS, M. F. HARE, F. KRIENEN, J. P. MILLER, J. M. PALEY, O. RIND, B. L. ROBERTS, L. R. SULAK, A. TROFIMOV, H. N. BROWN, G. BUNCE, G. T. DANBY, R. LARSEN, Y. Y. LEE, W. MENG, J. MI, W. M. MORSE, D. NIKAS, C. S. ÖZBEN, R. PRIGL, Y. K. SEMERTZIDIS, D. WARBURTON, V. P. DRUZHININ, G. V. FEDOTOVICH, D. N. GRIGORIEV, B. I. KHAZIN, N. RYSKULOV, YU. M. SHATUNOV, E. SOLODOV, Y. F. ORLOV, D. WINN, A. GROSSMANN, K. JUNGMANN, G. ZU PUTLITZ, P. VON WALTER, P. T. DEBEVEC, W. DENINGER, F. GRAY, D. W. HERTZOG, C. J. G. ONDERWATER, C. POLLY, S. SEDYKH, M. SOSSONG, D. URNER, A. YAMAMOTO, P. CUSHMAN, L. DUONG, S. GIRON, J. KINDEM, I. KRONKVIST, R. MCNABB, C. TIMMERMANS, D. ZIMMERMAN, M. IWASAKI, M. KAWAMURA, M. DEILE, H. DENG, S. K. DHAWAN, F. J. M. FARLEY, M. GROSSE-PERDEKAMP, V. W. HUGHES, D. KAWALL, J. PRETZ, S. I. REDIN, E. P. SICHTERMANN, and A. STEINMETZ
- Published
- 2002
46. Measurement of the Positive Muon Anomalous Magnetic Moment to 0.7 ppm
- Author
-
G W, Bennett, B, Bousquet, H N, Brown, G, Bunce, R M, Carey, P, Cushman, G T, Danby, P T, Debevec, M, Deile, H, Deng, W, Deninger, S K, Dhawan, V P, Druzhinin, L, Duong, E, Efstathiadis, F J M, Farley, G V, Fedotovich, S, Giron, F E, Gray, D, Grigoriev, M, Grosse-Perdekamp, A, Grossmann, M F, Hare, D W, Hertzog, X, Huang, V W, Hughes, M, Iwasaki, K, Jungmann, D, Kawall, B I, Khazin, J, Kindem, F, Krienen, I, Kronkvist, A, Lam, R, Larsen, Y Y, Lee, I, Logashenko, R, McNabb, W, Meng, J, Mi, J P, Miller, W M, Morse, D, Nikas, C J G, Onderwater, Y, Orlov, C S, Ozben, J M, Paley, Q, Peng, C C, Polly, J, Pretz, R, Prigl, G, Zu Putlitz, T, Qian, S I, Redin, O, Rind, B L, Roberts, N, Ryskulov, P, Shagin, Y K, Semertzidis, Yu M, Shatunov, E P, Sichtermann, E, Solodov, M, Sossong, A, Steinmetz, L R, Sulak, A, Trofimov, D, Urner, P, Von Walter, D, Warburton, and A, Yamamoto
- Subjects
HADRONIC CONTRIBUTIONS ,PHYSICS ,ALPHA(M-Z(2)) ,High Energy Physics - Experiment (hep-ex) ,VALUES ,G-2 ,General Physics and Astronomy ,FOS: Physical sciences ,E(+)E(-) ANNIHILATION ,NMR ,High Energy Physics - Experiment - Abstract
A higher precision measurement of the anomalous g value, a_mu = (g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron, based on data collected in the year 2000. The result a_{mu^+} = 11 659 204(7)(5) times 10^{-10} (0.7 ppm) is in good agreement with previous measurements and has an error about one half that of the combined previous data. The present world average experimental value is a_mu(exp) = 11 659 203(8) times 10^{-10} (0.7 ppm)., Comment: 5 pages, 4 figures. submitted to Physical Review Letters. as accepted for publication in Physical Review Letters. As accepted for publication in Physical Review Letters
- Published
- 2002
- Full Text
- View/download PDF
47. Theodore Cooper Lecture: Renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure
- Author
-
R M, Carey
- Subjects
Dopamine ,Paracrine Communication ,Sodium ,Animals ,Homeostasis ,Humans ,Blood Pressure ,Kidney ,Receptors, Dopamine - Abstract
All of the components of a complete dopamine system are present within the kidney, where dopamine acts as a paracrine substance in the control of sodium excretion. Dopamine receptors can be divided into D(1)-like (D(1) and D(5)) receptors that stimulate adenylyl cyclase and D(2)-like (D(2), D(3), and D(4)) receptors that inhibit adenylyl cyclase. All 5 receptor subtypes are expressed in the kidney, albeit in low copy. Dopamine is synthesized extraneuronally in proximal tubule cells, exported from these cells largely into the tubule lumen, and interacts with D(1)-like receptors to inhibit the Na(+)-H(+) exchanger and Na(+),K(+)-ATPase, decreasing tubule sodium reabsorption. During moderate sodium surfeit, dopamine tone at D(1)-like receptors accounts for approximately 50% of sodium excretion. In experimental and human hypertension, 2 renal dopaminergic defects have been described: (1) decreased renal generation of dopamine and (2) a D(1) receptor-G protein coupling defect. Both defects lead to renal sodium retention, and each may play an important role in the pathophysiology of essential hypertension.
- Published
- 2001
48. A PRECISE MEASUREMENT OF THE ANOMALOUS MAGNETIC MOMENT OF THE MUON
- Author
-
A. Grossman, I. Kronkvist, N.M. Ryskulov, S.I. Redin, J. P. Miller, D.N. Grigoriev, M. Deile, O. Rind, E. P. Sichtermann, W. Deniger, Yuri F. Orlov, M. Grosse-Perdekamp, L. Duong, Yu. M. Shatunov, P. von Walter, B. L. Roberts, M. F. Hare, J. Mi, J. M. Paley, R. McNabb, H. Brown, G.V. Fedotovich, D. Urner, Yannis K. Semertzidis, D. Warburton, M. Sossong, V. W. Hughes, G. T. Danby, I.B. Logashenko, M. Kawamura, J. Pretz, D. Zimmerman, C. J. G. Onderwater, D. Kawall, S. Sedykh, P. T. Debevec, V. P. Druzhini, D. W. Hertzog, William Morse, F. Gray, C. Ozben, C. Timmermans, G. Bunce, C. C. Polly, A. Yamamoto, E. P. Solodov, Rasmus Larsen, D. Nikas, H. Deng, Y.Y. Lee, R. Prigl, D. Winn, Satish Dhawan, J. Kindem, Alexei Trofimov, E. Efstathiadis, A. Steinmetz, B. I. Khazin, Klaus-Peter Jungmann, Masahiko Iwasaki, P. Cushman, F. J. M. Farley, G. zu Putlitz, R. M. Carey, L. R. Sulak, S. Giron, F. Krienen, and Wuzheng Meng
- Subjects
Physics ,Nuclear physics ,Muon ,Anomalous magnetic dipole moment - Published
- 2001
49. Precise measurement of the positive muon anomalous magnetic moment
- Author
-
F. Krienen, Klaus-Peter Jungmann, Masahiko Iwasaki, E. P. Solodov, J. P. Miller, M. Sossong, R. M. Carey, G. T. Danby, P. Cushman, Yuri F. Orlov, J. M. Paley, Vernon W. Hughes, W. M. Morse, J. Pretz, C. J. G. Onderwater, V. P. Druzhinin, H. N. Brown, B. L. Roberts, E. P. Sichtermann, M. F. Hare, S. Sedykh, O. Rind, D.N. Grigoriev, William Deninger, Alexei Trofimov, P. T. Debevec, A. Steinmetz, C. S. Özben, M. Deile, I. Logashenko, P. von Walter, Rasmus Larsen, H. Deng, L. Duong, A. Grossmann, D. Zimmerman, D. Winn, A. Yamamoto, W. Meng, C. C. Polly, B.I. Khazin, M. Kawamura, J. Kindem, S. K. Dhawan, Yannis K. Semertzidis, Yu. M. Shatunov, D. Urner, D. Warburton, D. Kawall, D. Nikas, C. Timmermans, Lawrence Sulak, M. Grosse-Perdekamp, F. J. M. Farley, G. zu Putlitz, S. Giron, S. I. Redin, R. Prigl, J. Mi, R. McNabb, G.V. Fedotovich, E. Efstathiadis, I. Kronkvist, N.M. Ryskulov, Gerry Bunce, D. W. Hertzog, Frederick Gray, and Y. Y. Lee
- Subjects
Physics ,Cross-section ,Muon ,Anomalous magnetic dipole moment ,General Physics and Astronomy ,FOS: Physical sciences ,E(+)e(-) annihilation ,Alternating Gradient Synchrotron ,Dipole-moment ,(g-2)(mu) ,Nmr ,Standard Model ,Magnetic field ,High Energy Physics - Experiment ,Nuclear physics ,High Energy Physics - Experiment (hep-ex) - Abstract
A precise measurement of the anomalous g value, a_mu=(g-2)/2, for the positive muon has been made at the Brookhaven Alternating Gradient Synchrotron. The result a_mu^+=11 659 202(14)(6) X 10^{-10} (1.3 ppm) is in good agreement with previous measurements and has an error one third that of the combined previous data. The current theoretical value from the standard model is a_mu(SM)=11 659 159.6(6.7) X 10^{-10} (0.57 ppm) and a_mu(exp)-a_mu(SM)=43(16) X 10^{-10} in which a_mu(exp) is the world average experimental value., 5 pages and 5 figures. Submitted to Physical Review Letters
- Published
- 2001
50. The Brookhaven muon storage ring magnet
- Author
-
Yu. M. Shatunov, P. von Walter, A. Yamamoto, M. Mapes, J. P. Miller, D. W. Hertzog, L. Jia, V. W. Hughes, H. N. Brown, W. Meng, H. Hirabayashi, W. A. Worstell, A. Disco, M. O'Toole, D. Urner, A. Soukas, F. Krienen, Rasmus Larsen, Y. Y. Lee, William Morse, J. Kindem, P. T. Debevec, X. Fei, D. Winn, L. Addessi, S. Kochis, I. Polk, D. Kawall, S. Giron, J. Benante, Jinsong Ouyang, Stanislav Serednyakov, E. Hazen, F. J. M. Farley, R. P. Shutt, S. K. Dhawan, Y. Mizumachi, L. R. Sulak, G. zu Putlitz, S. I. Redin, D. N. Grigorev, R. E. Meier, H. Hseuh, R. Prigl, C. Timmermans, J. Geller, M. A. Green, G.V. Fedotovich, J. W. Jackson, G. Bunce, J. Cullen, David Miller, Yuri F. Orlov, T. Tallerico, M. Grosse-Perdekamp, W. Earle, B.I. Khazin, C. Pai, Z. Armoza, S. Sedykh, D. Koniczny, William Deninger, K. Woodle, E. P. Solodov, R. M. Carey, Louis Snydstrup, J. C. Cottingham, A. Grossmann, P. Cushman, F. Toldo, N.M. Ryskulov, K. Endo, D. Zimmerman, Ulrich Haeberlen, G. T. Danby, V. P. Druzhinin, B. L. Roberts, D. von Lintig, Yannis K. Semertzidis, and Klaus-Peter Jungmann
- Subjects
Physics ,Nuclear and High Energy Physics ,Muon ,large superconducting coils ,Niobium-titanium ,storage ring ,Superconducting magnet ,Cryogenics ,muon g-2 ,Magnetic field ,Nuclear physics ,Magnet ,superconducting magnet ,Instrumentation ,Excitation ,Storage ring - Abstract
The muon g-2 experiment at Brookhaven National Laboratory has the goal of determining the muon anomalous g-value a(mu) ( = (g - 2)/2) to the very high precision of 0.35 parts per million and thus requires a storage ring magnet with great stability and homogeniety. A superferric storage ring with a radius of 7.11 m and a magnetic field of 1.45 T has been constructed in which the field quality is largely determined by the iron, and the excitation is provided by superconducting coils operating at a current of 5200 A. The storage ring has been constructed with maximum attention to azimuthal symmetry and to tight mechanical tolerances and with many features to allow obtaining a homogenous magnetic field. The fabrication of the storage ring, its cryogenics and quench protection systems, and its initial testing and operation are described. (C) 2001 Elsevier Science B.V. All rights reserved.
- Published
- 2001
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.