6 results on '"RA-UNet"'
Search Results
2. Automatic Robotic Ultrasound for 3D Musculoskeletal Reconstruction: A Comprehensive Framework.
- Author
-
Sun, Dezhi, Cappellari, Alessandro, Lan, Bangyu, Abayazid, Momen, Stramigioli, Stefano, and Niu, Kenan
- Abstract
Musculoskeletal ultrasound (US) imaging faces challenges such as operator experience, limited spatial flexibility, and high personnel costs. This study introduces an Automated Robotic Ultrasound Scanning (ARUS) system that integrates key technological advancements to automate the ultrasound scanning procedure with the robot, including anatomical target localization, automatic trajectory generation, deep-learning-based segmentation, and 3D reconstruction of musculoskeletal structures. The ARUS system consists of a robotic arm, ultrasound imaging, and stereo vision for precise anatomical area detection. A Graphical User Interface (GUI) facilitates a flexible selection of scanning trajectories, improving user interaction and enabling customized US scans. To handle complex and dynamic curvatures on the skin, together with anatomical area detection, the system employs a hybrid position–force control strategy based on the generated trajectory, ensuring stability and accuracy. Additionally, the utilized RA-UNet model offers multi-label segmentation on the bone and muscle tissues simultaneously, which incorporates residual blocks and attention mechanisms to enhance segmentation accuracy and robustness. A custom musculoskeletal phantom was used for validation. Compared to the reference 3D reconstruction result derived from the MRI scan, ARUS achieved a 3D reconstruction root mean square error (RMSE) of 1.22 mm, with a mean error of 0.94 mm and a standard deviation of 0.77 mm. The ARUS system extends 3D musculoskeletal imaging capacity by enabling both bones and muscles to be segmented and reconstructed into 3D shapes in real time and simultaneously. These features suggest significant potential as a cost-effective and reliable option for musculoskeletal examination and diagnosis in real-time applications. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF
3. Automatic Robotic Ultrasound for 3D Musculoskeletal Reconstruction: A Comprehensive Framework
- Author
-
Dezhi Sun, Alessandro Cappellari, Bangyu Lan, Momen Abayazid, Stefano Stramigioli, and Kenan Niu
- Subjects
robotic imaging ,3D reconstruction ,force control ,musculoskeletal reconstruction ,RA-UNet ,Technology - Abstract
Musculoskeletal ultrasound (US) imaging faces challenges such as operator experience, limited spatial flexibility, and high personnel costs. This study introduces an Automated Robotic Ultrasound Scanning (ARUS) system that integrates key technological advancements to automate the ultrasound scanning procedure with the robot, including anatomical target localization, automatic trajectory generation, deep-learning-based segmentation, and 3D reconstruction of musculoskeletal structures. The ARUS system consists of a robotic arm, ultrasound imaging, and stereo vision for precise anatomical area detection. A Graphical User Interface (GUI) facilitates a flexible selection of scanning trajectories, improving user interaction and enabling customized US scans. To handle complex and dynamic curvatures on the skin, together with anatomical area detection, the system employs a hybrid position–force control strategy based on the generated trajectory, ensuring stability and accuracy. Additionally, the utilized RA-UNet model offers multi-label segmentation on the bone and muscle tissues simultaneously, which incorporates residual blocks and attention mechanisms to enhance segmentation accuracy and robustness. A custom musculoskeletal phantom was used for validation. Compared to the reference 3D reconstruction result derived from the MRI scan, ARUS achieved a 3D reconstruction root mean square error (RMSE) of 1.22 mm, with a mean error of 0.94 mm and a standard deviation of 0.77 mm. The ARUS system extends 3D musculoskeletal imaging capacity by enabling both bones and muscles to be segmented and reconstructed into 3D shapes in real time and simultaneously. These features suggest significant potential as a cost-effective and reliable option for musculoskeletal examination and diagnosis in real-time applications.
- Published
- 2025
- Full Text
- View/download PDF
4. RA-UNet: an intelligent fish phenotype segmentation method based on ResNet50 and atrous spatial pyramid pooling
- Author
-
Jianyuan Li, Chunna Liu, Zuobin Yang, Xiaochun Lu, and Bilang Wu
- Subjects
fish phenotypic segmentation ,RA-UNet ,fishery resources ,Resnet50 ,ASPP ,Environmental sciences ,GE1-350 - Abstract
Introduction: Changes in fish phenotypes during aquaculture must be monitored to improve the quality of fishery resources. Therefore, a method for segmenting and measuring phenotypes rapidly and accurately without harming the fish is essential. This study proposes an intelligent fish phenotype segmentation method based on the residual network, ResNet50, and atrous spatial pyramid pooling (ASPP).Methods: A sufficient number of fish phenotypic segmentation datasets rich in experimental research was constructed, and diverse semantic segmentation datasets were developed. ResNet50 was then built as the backbone feature extraction network to prevent the loss of fish phenotypic feature information and improve the precision of fish phenotypic segmentation. Finally, an ASPP module was designed to improve the phenotypic segmentation accuracy of different parts of fish.Results: The test algorithm based on the collected fish phenotype segmentation datasets showed that the proposed algorithm (RA-UNet) yielded the best results among several advanced semantic segmentation models. The mean intersection over union (mIoU) and mean pixel accuracy (mPA) were 87.8% and 92.3%, respectively.Discussion: Compared with the benchmark UNet algorithm, RA-UNet demonstrated improvements in the mIoU and mPA by 5.0 and 1.8 percentage points, respectively. Additionally, RA-UNet exhibited superior fish phenotype segmentation performance, with a low false detection rate and clear and complete edge segmentation. Conclusively, the RA-UNet proposed in this study has high accuracy and edge segmentation ability and can, therefore, directly improve the efficiency of phenotypic monitoring in fish farming.
- Published
- 2023
- Full Text
- View/download PDF
5. A Novel Hybridoma Cell Segmentation Method Based on Multi-Scale Feature Fusion and Dual Attention Network.
- Author
-
Lu, Jianfeng, Ren, Hangpeng, Shi, Mengtao, Cui, Chen, Zhang, Shanqing, Emam, Mahmoud, and Li, Li
- Subjects
HYBRIDOMAS ,DEEP learning ,CELL morphology ,IMAGE segmentation ,CELL imaging ,MONOCLONAL antibodies - Abstract
The hybridoma cell screening method is usually done manually by human eyes during the production process for monoclonal antibody drugs. This traditional screening method has certain limitations, such as low efficiency and subjectivity bias. Furthermore, most of the existing deep learning-based image segmentation methods have certain drawbacks, due to different shapes of hybridoma cells and uneven location distribution. In this paper, we propose a deep hybridoma cell image segmentation method based on residual and attention U-Net (RA-UNet). Firstly, the feature maps of the five modules in the network encoder are used for multi-scale feature fusion in a feature pyramid form and then spliced into the network decoder to enrich the semantic level of the feature maps in the decoder. Secondly, a dual attention mechanism module based on global and channel attention mechanisms is presented. The global attention mechanism (non-local neural network) is connected to the network decoder to expand the receptive field of the feature map and bring more rich information to the network. Then, the channel attention mechanism SENet (the squeeze-and-excitation network) is connected to the non-local attention mechanism. Consequently, the important features are enhanced by the learning of the feature channel weights, and the secondary features are suppressed, hence improving the cell segmentation performance and accuracy. Finally, the focal loss function is used to guide the network to learn the hard-to-classify cell categories. Furthermore, we evaluate the performance of the proposed RA-UNet method on a newly established hybridoma cell image dataset. Experimental results show that the proposed method has good reliability and improves the efficiency of hybridoma cell segmentation compared with state-of-the-art networks such as FCN, UNet, and UNet++. The results show that the proposed RA-UNet model has improvements of 0.8937%, 0.9926%, 0.9512%, and 0.9007% in terms of the dice coefficients, PA, MPA, and MIoU, respectively. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
6. A Novel Hybridoma Cell Segmentation Method Based on Multi-Scale Feature Fusion and Dual Attention Network
- Author
-
Jianfeng Lu, Hangpeng Ren, Mengtao Shi, Chen Cui, Shanqing Zhang, Mahmoud Emam, and Li Li
- Subjects
hybridoma cell segmentation ,RA-UNet ,Computer Networks and Communications ,Hardware and Architecture ,Control and Systems Engineering ,Signal Processing ,deep learning ,feature fusion ,focal loss ,Electrical and Electronic Engineering ,attention mechanism - Abstract
The hybridoma cell screening method is usually done manually by human eyes during the production process for monoclonal antibody drugs. This traditional screening method has certain limitations, such as low efficiency and subjectivity bias. Furthermore, most of the existing deep learning-based image segmentation methods have certain drawbacks, due to different shapes of hybridoma cells and uneven location distribution. In this paper, we propose a deep hybridoma cell image segmentation method based on residual and attention U-Net (RA-UNet). Firstly, the feature maps of the five modules in the network encoder are used for multi-scale feature fusion in a feature pyramid form and then spliced into the network decoder to enrich the semantic level of the feature maps in the decoder. Secondly, a dual attention mechanism module based on global and channel attention mechanisms is presented. The global attention mechanism (non-local neural network) is connected to the network decoder to expand the receptive field of the feature map and bring more rich information to the network. Then, the channel attention mechanism SENet (the squeeze-and-excitation network) is connected to the non-local attention mechanism. Consequently, the important features are enhanced by the learning of the feature channel weights, and the secondary features are suppressed, hence improving the cell segmentation performance and accuracy. Finally, the focal loss function is used to guide the network to learn the hard-to-classify cell categories. Furthermore, we evaluate the performance of the proposed RA-UNet method on a newly established hybridoma cell image dataset. Experimental results show that the proposed method has good reliability and improves the efficiency of hybridoma cell segmentation compared with state-of-the-art networks such as FCN, UNet, and UNet++. The results show that the proposed RA-UNet model has improvements of 0.8937%, 0.9926%, 0.9512%, and 0.9007% in terms of the dice coefficients, PA, MPA, and MIoU, respectively.
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.