Yao Zhang, Gong-Ping Liu, Hong-Hua Li, Hu-Jun Ren, Dan Ke, Yanchao Liu, Su-Lian Yang, Mengzhu Li, Shi Zhao, Sheng Wei, Qun Wang, Rong-Xi Huang, Hong-Wei Jiang, Pei-Yan Zhan, Xin Wang, Cai-Xia Kong, Lin Fang, Lin Deng, Jing-Rong Li, Na Li, Shujuan Zhang, Jian-Zhi Wang, Zhi-Peng Xu, Cheng-Hong Zheng, Yuan Gao, Qiuzhi Zhou, Jing-Wang Ye, and Li-Fang Zhang
Background Both type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) are common age-associated disorders and T2DM patients show an increased risk to suffer from AD, however, there is currently no marker to identify who in T2DM populations will develop AD. Since glycogen synthase kinase-3β (GSK-3β) activity, ApoE genotypes and olfactory function are involved in both T2DM and AD pathogenesis, we investigate whether alterations of these factors can identify cognitive impairment in T2DM patients. Methods The cognitive ability was evaluated using Minimum Mental State Examination (MMSE) and Clinical Dementia Rating (CDR), and the mild cognitive impairment (MCI) was diagnosed by Petersen's criteria. GSK-3β activity in platelet, ApoE genotypes in leucocytes and the olfactory function were detected by Western/dot blotting, the amplification refractory mutation system (ARMS) PCR and the Connecticut Chemosensory Clinical Research Center (CCCRC) test, respectively. The odds ratio (OR) and 95% confidence intervals (95% CI) of the biomarkers for MCI diagnosis were calculated by logistic regression. The diagnostic capability of the biomarkers was evaluated by receiver operating characteristics (ROC) analyses. Findings We recruited 694 T2DM patients from Jan. 2012 to May. 2015 in 5 hospitals (Wuhan), and 646 of them met the inclusion criteria and were included in this study. 345 patients in 2 hospitals were assigned to the training set, and 301 patients in another 3 hospitals assigned to the validation set. Patients in each set were randomly divided into two groups: T2DM without MCI (termed T2DM-nMCI) or with MCI (termed T2DM-MCI). There were no significant differences for sex, T2DM years, hypertension, hyperlipidemia, coronary disease, complications, insulin treatment, HbA1c, ApoE ε2, ApoE ε3, tGSK3β and pS9GSK3β between the two groups. Compared with the T2DM-nMCI group, T2DM-MCI group showed lower MMSE score with older age, ApoE ε4 allele, higher olfactory score and higher rGSK-3β (ratio of total GSK-3β to Ser9-phosphorylated GSK-3β) in the training set and the validation set. The OR values of age, ApoE ε4 gene, olfactory score and rGSK-3β were 1.09, 2.09, 1.51, 10.08 in the training set, and 1.06, 2.67, 1.47, 7.19 in the validation set, respectively. The diagnostic accuracy of age, ApoE ε4 gene, olfactory score and rGSK-3β were 0.76, 0.72, 0.66, 0.79 in the training set, and 0.70, 0.68, 0.73, 0.79 in the validation set, respectively. These four combined biomarkers had the area under the curve (AUC) of 82% and 86%, diagnostic accuracy of 83% and 81% in the training set and the validation set, respectively. Interpretation Aging, activation of peripheral circulating GSK-3β, expression of ApoE ε4 and increase of olfactory score are diagnostic for the mild cognitive impairment in T2DM patients, and combination of these biomarkers can improve the diagnostic accuracy., Highlights • ApoE ε4 gene, platelet GSK-3β activation, olfactory dysfunction and aging are non-invasive, affordable and accessible biomarkers for diagnosing mild cognitive impairment in type 2 diabetes mellitus patients, and the combination of these non-invasive, affordable and accessible biomarkers can improve the accuracy of the diagnosis. Epidemiological studies show that type 2 diabetes mellitus is an independent risk factor of Alzheimer disease, and a large proportion of diabetic patients will develop Alzheimer disease, but no early diagnostic tool to identify them. We find that ApoE ε4 gene, platelet GSK-3β activation, olfactory dysfunction and aging are early markers for dementia in type 2 diabetes patients, and combination of these non-invasive markers can improve the diagnostic accuracy. These findings shed light on the early identification in type 2 diabetes population who will develop Alzheimer disease and thus enable early intervention to this currently incurable neurodegenerative disorder.