1. Hydrocarbon Diffusion in Mesoporous Carbon Materials: Implications for Unconventional Gas Recovery
- Author
-
Daniel Ferry, Eric Chaput, Yann Magnin, Rachel Jorand, Jérémie Berthonneau, Olivier Grauby, Nicolas Chanut, Roland J.-M. Pellenq, Franz J. Ulm, Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089), Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY), Department of Civil and Environmental Engineering [Cambridge] (CEE), Massachusetts Institute of Technology (MIT), Matériaux divisés, interfaces, réactivité, électrochimie (MADIREL), Aix Marseille Université (AMU)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institute for Applied Geophysics and Geothermal Energy, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS), and Rheinisch-Westfälische Technische Hochschule Aachen University (RWTH)
- Subjects
Molecular diffusion ,Materials science ,Fluid mechanics ,Kerogen ,02 engineering and technology ,Microporous material ,Neutron scattering ,Molecular dynamics ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,molecular diffusion ,Chemical physics ,Volume fraction ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,General Materials Science ,Diffusion (business) ,0210 nano-technology ,Mesoporous material ,Porosity ,Tomography ,Methane ,Green-Kubo equation - Abstract
International audience; Methane diffusion in micro- and mesopores of carbonaceous materials is dominated by molecular interactions with the pore walls. As a consequence, the fluid molecules are mainly in a diffusive regime and the laws of fluid mechanics are not directly applicable. A method called the “free volume theory” has been successfully used by different authors to study the diffusion of n-alkanes into microporous carbons. However, we show in this paper that such a method fails to describe the dynamical properties of methane in porous hosts presenting both micro- and mesopores. We further evidence that this theory is limited to structures whose pore diameters are lower than ∼3 nm. We then propose a simple scaling method based on the micro- and mesoporous volume fraction in order to predict diffusion coefficients. This method only requires the knowledge of (i) the host microporous volume fraction and (ii) the self-diffusion coefficient in micropores smaller than 3 nm, which can be obtained using the “free volume theory”, quasi-elastic neutron scattering experiments, or atomistic simulations.
- Published
- 2020
- Full Text
- View/download PDF