The growing global demand for safe and sustainable food production has motived a restructuring in the beef production sector aiming the production of better quality products without increasing the productive cost. Thus, animal breeding aims to improve economic productivity of future generations of domestic species through selection. Most of the economic important traits in livestock has a complex and quantitative expression, that is, they are influenced by a large number of genes and affected by environmental factors. However, there is no consensus among researches about the best methodology to obtain genomic prediction for each trait. There are different methods and pseudophenotypes used in genomic predictions, being necessary to determine the ideal for each trait of interest. In Chapter 2, the aim of this study was to estimate genetic parameters and identify genomic regions associated with carcass traits obtained by ultrasound and visual scores in Nellore cattle. Data from ~66,000 animals from the National Association of Breeders and Researchers (ANCP) were used. The variance components for back fat thickness (BF), rump fat thickness (RF) and Longissimus muscle area (LMA) were estimated considering a linear model whereas a threshold model were fitted for body structure (BS), finishing precocity (FP) and musculature (MS) traits were used. The SNP solutions were estimated using the ssGBLUP approach by considering windows of 10 consecutive SNPs. Regions that explained for more than 1.0% of the additive genetic variance were used. Gene enrichment analysis revealed GO biological processes that might be directly influenced the organism growth and development. In Chapter 3, the aim of this study was to compare the genomic prediction ability for carcass composition indicator traits in Nellore cattle using the Best Linear Unbiased Prediction (BLUP), Genomic BLUP (GBLUP), singlestep GBLUP (ssGBLUP), Bayesian methods (BayesA, BayesB, BayesC and BayesianLASSO) and an approach combining the pedigree matrix of genotyped animals and the genomic matrix using a Bayesian analysis. Phenotypic and genotypic information on about 66, and 21,000 animals, respectively, evaluated by ANCP were available for BF, RF, LMA, BS, FP and MS. To obtain the prediction ability, the dataset was split into training (genotyped sires and dams with progenies) and validation (genotyped young animals without progeny records and without phenotypes) subsets. In terms of prediction ability and bias, Bayesian approaches were superior for visual scores traits and the ssGBLUP for carcass traits obtained by ultrasonography, however, more biased results were obtained for BF and RF using the ssGBLUP. The ssGBLUP model showed less biased prediction for low heritability traits, such as LMA, and also it has lower computational demand and it is a straightforward method for implementing genomic selection in beef cattle. In Chapter 4, the aim of this study was to estimate genetic parameters and to identify genomic regions associated with the calving ease (CE) in precocious Nellore heifers. A total of 1,277 CE phenotypes were collected and scored into two categories: i- non assisted calving, categorized as success (1) and ii- assisted calving where heifers required any form of assistance or intervention to give birth, categorized as failure (2). The direct and maternal heritability estimates for CE were low (0.18) and moderate (0.39) respectively, indicating that genetic progress for this trait is feasible, and so, it would respond favorably to direct selection. Gene enrichment analysis revealed processes that might directly influence fetal processes involved in female pregnancy and stress response. A crescente busca por produção alimentar sustentável tem incentivado uma reestruturação no setor de produção de carne visando obter produtos de melhor qualidade sem aumentar os custos de produção. Deste modo, o melhoramento genético animal tende a melhorar a produtividade econômica das futuras gerações de espécies de interesse econômico por meio da seleção. A maioria das características de interesse econômico na pecuária é de expressão quantitativa e complexa, ou seja, são influenciadas por vários genes e afetadas por fatores ambientais. No entanto, ainda não há consenso entre os pesquisadores sobre a melhor metodologia para a obtenção da predição genômica para cada característica. Existem diferentes métodos e pseudofenótipos utilizados em predições genômicas, sendo necessário determinar o ideal para a característica de interesse. No Capítulo 2, o objetivo deste estudo foi estimar parâmetros genéticos e identificar regiões genômicas associadas a características de carcaça obtidas por ultrassonografia e escores visuais em bovinos Nelore. Foram utilizados dados de aproximadamente 66.000 animais provenientes da Associação Nacional de Criadores e Pesquisadores (ANCP). Os componentes de variância para espessura de gordura subcutânea (EG), espessura de gordura subcutânea da garupa (EGP8) e área de olho de lombo (AOL) foram estimados considerando um modelo linear, e um modelo de limiar para as características, como estrutura corporal (E), precocidade (P) e musculosidade (M). As soluções dos SNPs foram estimadas por meio da metodologia ssGBLUP considerando janelas de 10 SNPs adjacentes. Regiões que representaram mais de 1.0% da variância genética aditiva foram utilizadas. A análise de enriquecimento funcional revelou processos biológicos que podem influenciar diretamente o crescimento e desenvolvimento animal. No Capítulo 3, objetivou-se com este estudo comparar a habilidade de predição genômica de características indicadoras de composição de carcaça em bovinos Nelore usando os métodos BLUP, GBLUP, ssGBLUP, métodos Bayesianos (BayesA, BayesB, BayesC e BayesianLASSO) e uma metodologia combinando a matriz de parentesco dos animais genotipados com a matriz genômica e métodos Bayesianos. Foram obtidas informações fenotípicas e genotípicas de aproximadamente 66.000 e 21.000 animais, respectivamente, avaliados pela ANCP para BF, RF, LMA, BS, FP e MS. Para obter a habilidade de predição, o conjunto de dados foi dividido em subconjuntos de treinamento (touros genotipados e mães com progênies) e validação (animais jovens genotipados sem registros de progênies e sem fenótipos). Em relação a habilidade de predição e o viés, os métodos bayesianos foram superiores para as características de escores visuais e o ssGBLUP para as características de carcaça obtidas por ultrassonografia, entretanto, resultados mais tendenciosos foram obtidos para BF e RF quando utilizado o ssGBLUP. O modelo ssGBLUP apresentou predição menos viesada para as características de baixa herdabilidade, como LMA, e também apresentou menor demanda computacional, caracterizado por ser um método que não necesita de cálculo de pseudofenótipos para a implementação da seleção genômica em bovinos de corte. No Capítulo 4, o objetivo deste estudo foi estimar parâmetros genéticos e identificar regiões genômicas associadas à facilidade de parto (CE) em novilhas Nelore precoces. Um total de 1.277 fenótipos para CE foram coletados e classificados em duas categorias: i- parto não assistido, categorizado como sucesso (1) e ii- parto assistido, no qual as novilhas necessitaram de qualquer forma de assistência ou intervenção para parir, categorizado como falha (2). As estimativas de herdabilidade direta e materna para CE foram baixas (0,18) e moderadas (0,39), respectivamente, indicando que o progresso genético para essa característica é viável e, portanto, responderia favoravelmente à seleção direta. A análise de enriquecimento funcional revelou processos que podem influenciar diretamente os processos fetais envolvidos na gestação e na resposta ao estresse.