84 results on '"Rangasamy G"'
Search Results
2. Pathway prediction of LDPE degradation using Winogradsky column and bacterial strains from municipal solid wastes
- Author
-
Sridharan, R., Kumar, P. S., Veenagayathri, K., and Rangasamy, G.
- Published
- 2024
- Full Text
- View/download PDF
3. Morphology investigation on direct growth ultra-long CNTs by chemical vapour deposition method for high performance HER applications
- Author
-
Thirumal, V., Yuvakkumar, R., Senthil Kumar, P., Rangasamy, G., Ravi, G., Isacfranklin, M., Velauthapillai, Dhayalan, Thambidurai, Muthuvelan, Nguyen, Hung D., and School of Electrical and Electronic Engineering
- Subjects
Fuel Technology ,Hydrogen Evolution Reaction ,General Chemical Engineering ,Water Splitting ,Organic Chemistry ,Electrical and electronic engineering [Engineering] ,Energy Engineering and Power Technology - Abstract
Carbon nanotube (CNT) is prepared by chemical vapor deposition method and their electrochemical behaviors for instance oxygen evolution (OER) and hydrogen evolution (HER) reaction have been successfully studied. In recent times, Pt-free electrocatalysts have been greatly attractive in electrochemical hydrogen evolution reactions for the replacement of fossil fuels and development of sustainable energy carriers. Chemical vapor deposition method was used as an efficient way to synthesize CNTs directly. The as prepared free-standing and multifunctional CNT electrodes are used for overall water splitting applications. In this work, we have designed CNT as electrode material as well as current collector using Ni-foil and Ni-foam substrate and their fundamental characterizations confirm the structural, morphological behaviors of CNTs. Moreover, the well-ordered growth of CNT was obtained in Ni-foam CNTs 1 and 2, whereas in the Ni foil CNTs 1 and 2 less growth of CNT and amorphous carbon sponge was exceeded, which was further confirmed by the SEM images. The achieved electrochemical HER results displayed that the Ni-foam-CNT-2 exhibited lower overpotential, smallest Tafel slope and lower resistance value of 110 mV, 240 mV/dec and 0.24 Ω respectively. Moreover, Ni-foam-CNT-2 revealed excellent stability with 86.6 % retention over 20 h. Hence, it is one of the cost-effective and reliable materials for electrochemical hydrogen evolution reaction. This work was supported by UGC-SAP, DST-FIST, DST-PURSE, MHRD-RUSA grants.
- Published
- 2022
- Full Text
- View/download PDF
4. Investigación sobre las propiedades mecánicas y de corrosión del compuesto de matriz metálica Al 7075/Redmud.
- Author
-
Mani Sambathkumar, Kondayampalayam S.K. Sasikumar, Rangasamy Gukendran, Karupannasamy Dineshkumar, Kannayiram Ponappa, and Samiyappan Harichandran
- Subjects
al 7075 ,lodo rojo ,fundición por agitación en dos pasos ,propiedades frente a la corrosión ,propiedades mecánicas ,Mining engineering. Metallurgy ,TN1-997 - Abstract
En el presente trabajo se realiza una investigación sobre las propiedades mecánicas y el comportamiento frente a corrosión del compuesto de matriz metálica Al 7075. El cual se preparó a partir de Al 7075 como matriz y lodo rojo como refuerzo, mediante el uso de un proceso de fundición por agitación en dos pasos. El porcentaje en volumen de refuerzo varía de 0% a 15%. La densidad del material compuesto se calculó mediante el principio de Arquímedes, mayor que la matriz básica. La distribución uniforme del refuerzo y la matriz en el material compuesto se estudió utilizando micrografías ópticas, y la microdureza del material se determinó utilizando una máquina de ensayo de dureza Vickers. La microdureza del compuesto aumentó, mientras que el refuerzo pasó del 0% al 15%. La resistencia a la tracción del material compuesto se elevó al 5% de la tolerancia de refuerzo (326 MPa), que es más alta que la matriz base. Los compuestos de matriz metálica Al 7075 presentan una velocidad de corrosión más baja en una solución de NaCl al 3,5% que la matriz base. A medida que aumenta el porcentaje en volumen en el lodo rojo, se reduce la velocidad de corrosión de los compuestos.
- Published
- 2021
- Full Text
- View/download PDF
5. An evaluation of minors' access to cigarettes from vending machines in the city of Pretoria, SA.
- Author
-
Nkuchia, J.M., Becker, P., Rangasamy, G., Schoombie, T., and Nel, J.
- Subjects
- *
MINORS , *VENDING machines , *TOBACCO use - Abstract
Examines the extent of minors' access to cigarettes from vending machines in Pretoria, South Africa. Limited measures to prevent the sale of cigarettes to minors in Africa; Importance of information concerning minors' access to cigarettes for the successful implementation of policies to prevent minor smoking; Recommended action.
- Published
- 1997
6. Efficient Removal of Pharmaceutical Contaminants from Aqueous Solution Using Plant-Derived Biosurfactant-Assisted Dissolved Air Flotation Process.
- Author
-
Pooja G, Senthil Kumar P, Boobalan C, and Rangasamy G
- Subjects
- Water chemistry, Solutions, Surface-Active Agents chemistry, Ibuprofen chemistry, Ibuprofen isolation & purification, Trigonella chemistry, Saponins chemistry, Saponins isolation & purification, Diclofenac chemistry, Diclofenac isolation & purification, Water Pollutants, Chemical isolation & purification, Water Pollutants, Chemical chemistry, Air
- Abstract
This study investigates the removal of ibuprofen and diclofenac from aqueous media via a fully pressurized dissolved air flotation system, enhanced by fenugreek-derived saponin, a plant-based biosurfactant. The use of fenugreek saponin in flotation processes distinguishes this work from previous studies as it offers an ecofriendly and efficient alternative to chemical surfactants. The biosurfactant's surface-active properties were confirmed through FT-IR, UV-vis spectroscopy identified key functional groups and structural characteristics of the saponin, NMR provided molecular insights into its bioactive components, and surface tension analyses demonstrated its ability to reduce interfacial tension, indicating effective surfactant behavior. To optimize the saponin extraction, the ultrasound-assisted extraction (UAE) method was employed using a 70% ethanolic solution for 50 min, significantly improving the flotation efficiency. Experimental conditions were carefully optimized to maximize the removal efficiency of both contaminants. For ibuprofen, the optimal pH was 5 with a retention time of 10 min, while for diclofenac, the optimal pH was 4 with a contact time of 15 min. A saponin dosage of 0.4 wt % was used in both cases, with the flotation process operating under a pressure of 15 psig and a flow rate of 0.5 L/min. Under these conditions, the process attained a maximum removal efficiency of 98.59% for ibuprofen and 95.32% for diclofenac. GC-MS results further validated the presence of bioactive components in fenugreek saponin that are responsible for its high contaminant removal capacity. Despite the challenge of scum removal during the flotation process, this study demonstrates the high efficiency of this process in treating low-concentration pollutants. The process is not only rapid but also allows for selective pollutant removal while minimizing the use of harmful chemicals, offering a more sustainable and ecofriendly solution for wastewater treatment.
- Published
- 2024
- Full Text
- View/download PDF
7. Design of biocompatible gelatin hydrogels reinforced with magnetite nanoparticles: Effective removal of chromium from water environment.
- Author
-
Anulekshmi PS, Nithya K, Kumar PS, Sathish A, M P, Rekha E, Cheruvally AS, and Rangasamy G
- Subjects
- Adsorption, Biocompatible Materials chemistry, Hydrogels chemistry, Gelatin chemistry, Water Pollutants, Chemical chemistry, Chromium chemistry, Chromium isolation & purification, Magnetite Nanoparticles chemistry, Water Purification methods
- Abstract
The development of biocompatible adsorbents is vital for environmental remediation to control and reduce pollution and waste accumulation in ecosystems. Biocompatible hydrogels represent an innovative class of materials that are primarily composed of polymer chain units forming their structural framework. They have a high affinity for water molecules. This research thus aims to incorporate iron oxide particles into the gelatin matrix to produce gelatin hydrogel beads to remove hexavalent chromium from an aqueous solution. The synthesized beads, known for their consistent size, low friction, high specific surface area, mechanical stability, and lightweight characteristics, demonstrated their suitability for various industrial applications. The effectiveness of these hydrogels in removing hexavalent chromium ions was confirmed through a thorough analysis using techniques such as FTIR, TGA, SEM, EDX, VSM, and XPS. Batch experiments revealed that the gelatin-based nanocomposite beads exhibited optimal adsorption efficiency under acidic conditions, lower initial concentrations of chromium ions, extended contact time, and elevated temperature (50-60 °C). The composite achieved a maximum removal efficiency of 99% at pH 1, with an adsorbent dose of 0.5 g at 50 °C, and an initial concentration of 50 mg per liter. The use of 0.7 N NaOH in the regeneration process resulted in a commendable 70.5% desorption efficiency, enabling potential reuse and regeneration. Significantly, the desorption efficiency remained consistently high even after four desorption-readsorption cycles, contributing to the economic and environmental sustainability of chromium removal. Additionally, the study determined that the sorption process was feasible, spontaneous, and endothermic. These collective findings suggest that magnetic gelatin hydrogel beads could serve as a cost-effective alternative adsorbent for the efficient removal of chromium ions from aqueous solutions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
8. Mechanism of Sulfate Radical Formation on Activation of Persulfate Using Doped Metal Oxide and Its Role in Degradation of Tartrazine Dye in an Aqueous Solution.
- Author
-
Jackulin F, Senthil Kumar P, Boobalan C, and Rangasamy G
- Abstract
Degradation of tartrazine dye (TZD) was performed in this study using sulfate radicals (SO
4 •- ) generated from the activated sodium persulfate (SPS) using Fe3 O4 @PDA nanoparticles (NPs). The NPs were characterized by Fourier transform infrared (FTIR), vibrating sample magnetometer (VSM), X-ray diffraction (XRD), high-resolution scanning electron microscopy (HR-SEM), X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), and energy-dispersive X-ray spectroscopy (EDX). The average particle size of the NPs was 17.49 nm from XRD analysis. The presence of the C-N group at 1129 cm-1 value to 42.015 emu/g after doping was determined. Doping was further confirmed by XPS analysis with binding energies at 399.68 and 400.99 eV. The average particle size from HRTEM analysis was 21.47 nm with a lattice spacing of 0.30 nm. Turnover number (TON) and turnover frequency (TOF) values for Fe Ms value to 42.015 emu/g after doping was determined. Doping was further confirmed by XPS analysis with binding energies at 399.68 and 400.99 eV. The average particle size from HRTEM analysis was 21.47 nm with a lattice spacing of 0.30 nm. Turnover number (TON) and turnover frequency (TOF) values for Fe3 O4 @PDA were determined to be 3.72 and 0.0248 min-1 @PDA/SPS system were 50 ppm TZD, 0.9 g/L catalyst, 12 mM SPS, and pH 4 with 94.68% efficiency in 150 min. The inhibition effect of ions in TZD degradation followed the order humic acid3 O 4 @PDA/SPS system were 50 ppm TZD, 0.9 g/L catalyst, 12 mM SPS, and pH 4 with 94.68% efficiency in 150 min. The inhibition effect of ions in TZD degradation followed the order humic acid3 - < Cl- < CO3 2 . The kinetic model fitting the Fe3 O4 @PDA/SPS system has pseudo-second-order kinetics. Excess formation of SO4 •- produced hydroxyl radicals (• OH) that were identified by a scavenging test. Reusability of the NPs was performed for five cycles and showed acceptable degradation performance up to 82.47%. The intermediates identified from gas chromatography-mass spectrometry (GCMS) proved the cleavage of azo and sulfonate groups of TZD with the formation of nontoxic intermediates. Finally, the phytotoxicity assessment was studied using Vigna radiata (Green grams). The % decrease of the root, shoot, and seedling length for the degraded dye solution was negligible. Hence, this study proved that the Fe3 O4 @PDA/SPS system could effectively degrade TZD with nontoxic intermediate formation.- Published
- 2024
- Full Text
- View/download PDF
9. Degradation of Remazol Brilliant Blue Dye Using Persulfate Activated by Fe 3 O 4 @PDA Nanoparticles: Kinetic Studies, Radical Determination, and Phytotoxicity Test.
- Author
-
Jackulin F, Senthil Kumar P, Boobalan C, and Rangasamy G
- Abstract
In the current research work, an advanced oxidation process was applied to the degradation of Remazol brilliant blue dye (RBBD) using a sulfate radical. Fe
3 O4 @PDA nanoparticles were synthesized using coprecipitation and self-polymerization techniques. Nanoparticle formation was confirmed by XRD, FTIR, FESEM-EDX, VSM, and XPS analyses. The crystalline nature of the material showed that it possessed a spherical shape with an M value of 58 emu/g. The elemental composition and binding energy from EDX and XPS analyses showed successful doping. Batch studies were conducted, and experimental studies showed that the optimum condition for degradation of 90 ppm of RBBD was 0.3 g/L of nanomaterial, 20 mM PS at pH 3, achieving 91.35% degradation. The kinetic model suitable for this study was a pseudo-second-order kinetic model withs value of 58 emu/g. The elemental composition and binding energy from EDX and XPS analyses showed successful doping. Batch studies were conducted, and experimental studies showed that the optimum condition for degradation of 90 ppm of RBBD was 0.3 g/L of nanomaterial, 20 mM PS at pH 3, achieving 91.35% degradation. The kinetic model suitable for this study was a pseudo-second-order kinetic model with R2 value >0.9. From the radical identification tests, sulfate radicals played a dominant role in degradation, and to confirm it, EPR analysis was conducted using DMPO. A stability test was performed for 5 cycles in which the degradation efficiency was reduced appreciably. From XPS, XRD, and EDX analyses, the elemental composition and oxidation state of the recycled material used in the fifth cycle showed variation in a negligible manner when compared to the fresh catalyst used in the first cycle of the degradation experiment. Intermediate identification was done by GCMS analysis, and it disclosed the formation of aliphatic products from the degradation of RBBD with less toxicity. Phytotoxicity analysis was conducted using green grams for 10 days, and it proved that intermediates formed in the solution were nontoxic to the plants. Additionally, TOC and COD removal % were attained to be 80.021 and 80.903%, respectively, which confirm the mineralization efficacy. Hence, this research work proved the efficient performance of the catalyst for RBBD degradation with less formation of intermediates, and therefore, this technique is most suitable for the reduction of water pollution.- Published
- 2024
- Full Text
- View/download PDF
10. Hydrothermally Synthesized rGO/MnO 2 /MoS 2 Nanohybrids as Superior Bifunctional Electrocatalysts for Oxygen and Hydrogen Evolution Reactions.
- Author
-
Denisdon S, Senthil Kumar P, Boobalan C, and Rangasamy G
- Abstract
This investigation delved into the field of bifunctional electrocatalyst water splitting, aimed at advancing sustainable energy by addressing the scarcity of efficient nonprecious electrocatalysts capable of facilitating both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). This study focused on nanohybrids consisting of hydrothermally synthesized rGO/MnO
2 /MoS2 composites and highlighted their efficacy as bifunctional electrocatalysts. The synergistic integration of rGO/MnO2 /MoS2 enhanced the surface area, magnified electroactive sites, established a customized conductive arrangement, and provoked the efficiency in splitting of water. The nanohybrid displayed exceptional catalytic performance for the OER and HER, with significantly reduced overpotentials of 208 and 205 mV in 1 M KOH at 10 mA cm-2 current density, respectively. The findings underscore the potential of these cost-effective and environmentally friendly rGO/MnO2 /MoS2 nanohybrids in advancing the field of electrocatalysis for renewable energy applications.- Published
- 2024
- Full Text
- View/download PDF
11. A review on recent advancements in the treatment of polyaromatic hydrocarbons (PAHs) using sulfate radicals based advanced oxidation process.
- Author
-
Jackulin F, Senthil Kumar P, Chitra B, Karthick S, and Rangasamy G
- Subjects
- Environmental Pollutants chemistry, Environmental Pollutants analysis, Oxidation-Reduction, Sulfates chemistry, Sulfates analysis, Polycyclic Aromatic Hydrocarbons analysis, Polycyclic Aromatic Hydrocarbons chemistry, Environmental Restoration and Remediation methods
- Abstract
Polyaromatic hydrocarbons (PAHs) are the most persistent compounds that get contaminated in the soil and water. Nearly 16 PAHs was considered to be a very toxic according US protection Agency. Though its concentration level is low in the environments but the effects due to it, is enormous. Advanced Oxidation Process (AOP) is an emergent methodology towards treating such pollutants with low and high molecular weight of complex substances. In this study, sulfate radical (SO
4 ‾•) based AOP is emphasized for purging PAH from different sources. This review essentially concentrated on the mechanism of SO4 ‾• for the remediation of pollutants from different sources and the effects caused due to these pollutants in the environment was reduced by this mechanism is revealed in this review. It also talks about the SO4 ‾• precursors like Peroxymonosulfate (PMS) and Persulfate (PS) and their active participation in treating the different sources of toxic pollutants. Though PS and PMS is used for removing different contaminants, the degradation of PAH due to SO4 ‾• was presented particularly. The hydroxyl radical (• OH) mechanism-based methods are also emphasized in this review along with their limitations. In addition to that, different activation methods of PS and PMS were discussed which highlighted the performance of transition metals in activation. Also this review opened up about the degradation efficiency of contaminants, which was mostly higher than 90% where transition metals were used for activation. Especially, on usage of nanoparticles even 100% of degradation could be able to achieve was clearly showed in this literature study. This study mainly proposed the treatment of PAH present in the soil and water using SO4 ‾• with different activation methodologies. Particularly, it emphasized about the importance of treating the PAH to overcome the risk associated with the environment and humans due to its contamination., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
12. Effective removal of chromium by adsorption using Delonix regia bark derived activated carbon from aqueous solution: a sustainable approach.
- Author
-
Ganesan JJ, Chien CC, Kumar PS, Sundaram H, Thangappan H, Achuthan A, Rajamanickam S, and Rangasamy G
- Subjects
- Adsorption, Hydrogen-Ion Concentration, Water Purification methods, Kinetics, Sapotaceae chemistry, Thermodynamics, Spectroscopy, Fourier Transform Infrared, Temperature, Chromium chemistry, Plant Bark chemistry, Water Pollutants, Chemical chemistry, Charcoal chemistry
- Abstract
This study introduces a new biosorbent derived from Delonix regia bark-activated carbon to efficiently remove Chromium Cr(VI) metal ions from aqueous systems. The biosorbent was synthesized from the bark powder of the plant species and chemically activated with phosphoric acid. The biosorbent was characterized using FTIR, SEM, and BET to determine its functional properties and structural morphology. The batch adsorption experiments examined the optimal conditions for Cr(VI) metal ion adsorption, identifying that the highest removal efficiency occurred at pH levels of 2. The ideal adsorbent dosage was determined to be 2.5 g/L, with equilibrium achieved at a contact time of 60 min at the optimal temperature of about 303 K for a Cr(VI) metal ion concentration of 20 mg/L. Various isotherm models were applied to the adsorption equilibrium values, revealing that the adsorbent had a maximum removal capacity of approximately 224.8 mg/g for Cr(VI) metal ions. The adsorption process of Cr(VI) on the DAC biosorbent was best described by the Freundlich isotherm, indicating multilayer adsorption. The kinetic data fit well with the pseudo-second-order model. Thermodynamic parameters suggested that the adsorption process was spontaneous, exothermic, and feasible across different temperatures. Furthermore, the desorption studies showed that the DAC biosorbent can easily be rejuvenated and utilized several cycles with high adsorption capacity. These findings indicate that the developed adsorbent is environmentally friendly and effective for removing Cr(VI) from water systems., (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
- Published
- 2024
- Full Text
- View/download PDF
13. A critical review on biochar for the removal of toxic pollutants from water environment.
- Author
-
Sivaranjanee R, Senthil Kumar P, Chitra B, and Rangasamy G
- Subjects
- Adsorption, Water Purification methods, Biomass, Charcoal chemistry, Water Pollutants, Chemical chemistry, Water Pollutants, Chemical analysis
- Abstract
As an effort to tackle some of the most pressing ecological issues we are currently experiencing, there has been an increasing interest in employing biomass-derived char products in various disciplines. Thermal combustion of biomass results in biochar production, which is a remarkably rich source of carbon. Not only does the biochar obtained by the thermochemical breakdown of biomass lower the quantity of carbon released into the environment, but it also serves as an eco-friendly substitute for activated carbon (AC) and further carbon-containing products. An overview of using biochar to remove toxic pollutants is the main subject of this article. Several techniques for producing biochar have been explored. The most popular processes for producing biochar are hydrothermal carbonization, gasification and pyrolysis. Carbonaceous materials, alkali, acid and steam are all capable of altering biochar. Depending on the environmental domains of applications, several modification techniques are chosen. The current findings on characterization and potential applications of biochar are compiled in this survey. Comprehensive discussion is given on the fundamentals regarding the formation of biochar. Process variables influencing the yield of biochar have been summarized. Several biochars' adsorption capabilities for expulsion pollutants under various operating circumstances are compiled. In the domain of developing biochar, a few suggestions for future study have been given., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
14. Fluorescence enhancing and quenching signal based on new approach for selective detection of multiple organochlorine pesticides using blue emissive-carbon dot.
- Author
-
Nethaji P, Revathi P, Senthil Kumar P, Logesh M, Rajabathar JR, Al-Lohedan HA, Arokiyaraj S, and Rangasamy G
- Subjects
- Carbon, Fluorescence, Environmental Monitoring methods, Pesticides analysis, Hydrocarbons, Chlorinated analysis, Chlorphenamidine
- Abstract
Measuring the concentration of organochlorine pesticides (OCPs) in agriculture has engaged significant awareness for healthcare investigation since OCPs are harmful to many physiological processes. Excessive usage of these compounds can result in major contamination of the environment and food supply chains. As a result, more accurate and rapid ways to detect pesticide residues in food are required. In this work, we have portrayed the surface-engineered fluorescent blue emissive-carbon dot (B-CD) with a high quantum yield (49.3 %) via the hydrothermal method for fluorescent sensing of OCPs on real samples. The amine group functionalities of carbon dots have supported the direct coordination with -Cl and -OH groups of HEP, ENS, CDF and 2,4-DPAC for the sensitive detection of OCPs, by switching in the fluorescent intensity of B-CD. The functional group of OCPs exhibits a variety of binding interactions with B-CD to contribute a complex formation, which leads to static quenching via an insubstantial restricted electron transfer process. The synthesized carbon dots exhibit individuality in binding nature towards different OCPs. Fluorescence studies help to distinguish the target OCPs and their low detection limits (LODs) were 0.002, 0.099, 0.16 and 0.082 μM for Heptachlor (HEP - turn "on"), Endosulfan (ENS), Chlordimeform (CDF) and 2,4-dichlorophenoxyacetic acid (2,4-DPAC - turn "off") OCPs respectively. The real water samples and agriculture food samples were effectively investigated and the OCP toxicity was noted. Thus, the design of the fluorescence sensor is established as an easy and proficient sensing method for detecting OCPs., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
15. Fungal bioremediation approaches for the removal of toxic pollutants: Mechanistic understanding for biorefinery applications.
- Author
-
Navina BK, Velmurugan NK, Senthil Kumar P, Rangasamy G, Palanivelu J, Thamarai P, Vickram AS, Saravanan A, and Shakoor A
- Subjects
- Biodegradation, Environmental, Ecosystem, Hazardous Waste, Environmental Pollutants
- Abstract
Pollution is a global menace that poses harmful effects on all the living ecosystems and to the Earth. As years pass by, the available and the looming rate of pollutants increases at a faster rate. Although many treatments and processing strategies are waged for treating such pollutants, the by-products and the wastes or drain off generated by these treatments further engages in the emission of hazardous waste. Innovative and long-lasting solutions are required to address the urgent global issue of hazardous pollutant remediation from contaminated environments. Myco-remediation is a top-down green and eco-friendly tool for pollution management. It is a cost-effective and safer practice of converting pernicious substances into non-toxic forms by the use of fungi. But these pollutants can be transformed into useable products along with multiple benefits for the environment such as sequestration of carbon emissions and also to generate high valuable bioactive materials that fits as a sustainable economic model. The current study has examined the possible applications of fungi in biorefineries and their critical role in the transformation and detoxification of pollutants. The paper offers important insights into using fungal bioremediation for both economically and environmentally sound solutions in the domain of biorefinery applications by combining recent research findings., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
16. Immobilization of hydrochar in cellulose beads for eradicating paracetamol from synthetic and sewage water.
- Author
-
Senthil Kumar P, Shanmugapriya M, Prasannamedha G, and Rangasamy G
- Subjects
- Acetaminophen, Cellulose, Hydrogen-Ion Concentration, Adsorption, Kinetics, Sewage, Water Pollutants, Chemical analysis
- Abstract
Sodium carboxymethyl cellulose polymer was used as a support matrix in immobilizing activated hydrochar derived from bamboo using hydrothermal carbonization. The structural and textural morphology of the beads were studied using FTIR, XRD, SEM/EDS, BET and TGA. Activated hydrochar showed a rough surface with irregular spherical shaped structure. Various oxygenated functional groups in composite beads and activated hydrochar were identified that assist in interaction with PARA pollutant. TGA analysis showed weight loss at three stages 200 °C, 365 °C and 710 °C that leads to complete disintegration of composite beads. BET analysis showed a variation in the surface area between activated hydrochar and beads which could be due to air drying process. Batch adsorption test was conducted for investigating the efficiency of beads in removing PARA from water. Pseudo-second order and Langmuir isotherm fitted the best highlighting chemical mode of adsorption with homogenous interaction on the adsorbent surface. 48.12 mg g
-1 was the maximum adsorption capacity estimated from sorption between beads and PARA. For practical applications beads were effectively used in reducing COD levels of PARA spiked sewage water with the defined experimental parameters. Ethanol would be effectively used as regenerating solvent in recycling the beads for the betterment of cost reduction. The activated hydrochar immobilized cellulose beads would be successfully applied as adsorbent in removing target pollutants from water thereby reducing the hurdles faced with respect to fine particles in water treatment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
17. Recent advances in edible coatings and their application in food packaging.
- Author
-
Yaashikaa PR, Kamalesh R, Senthil Kumar P, Saravanan A, Vijayasri K, and Rangasamy G
- Subjects
- Food Packaging, Food Preservation, Polysaccharides chemistry, Fruit, Proteins chemistry, Lipids, Edible Films, Refuse Disposal
- Abstract
The food packaging industries are facing the challenge of food waste generation. This can be addressed through the use of edible coating materials. These coatings aid in extending the shelf life of food products, reducing waste. The key components of these coatings include food-grade binding agents, solvents, and fillers. The integration of polysaccharide, protein, lipids, bioactive and composite-based materials with edible coating matrix aids to combat substantial post-harvest loss of highly perishable commodities and elevates the quality of minimally processed food. The aim of this review is to introduce the concept of edible coatings and discuss the different coating materials used in the food industry, along with their properties. Additionally, this review aims to classify the coating types based on characteristic features and explore their application in various food processing industries. This review provides a comprehensive overview of edible coatings, including the integration of polysaccharides, proteins, lipids, bioactive, and composite-based materials into the coating matrix. This review also addresses the significant post-harvest loss of highly perishable commodities and emphasizes the enhancement of quality in minimally processed food. Furthermore, the antimicrobial, anti-corrosive, and edible characteristics are highlighted, showcasing their potential applications in different food packaging industries. Moreover, it also discusses the challenges, safety and regulatory aspects, current trends, and future perspectives, aiming to shed light on the commercialization and future investigation of edible coatings., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
18. A comprehensive review on immobilized microbes - biochar and their environmental remediation: Mechanism, challenges and future perspectives.
- Author
-
Saravanan A, Swaminaathan P, Kumar PS, Yaashikaa PR, Kamalesh R, and Rangasamy G
- Abstract
The environment worldwide has been contaminated by toxic pollutants and chemicals through anthropogenic activities, industrial growth, and urbanization. Microbial remediation is seen to be superior compared to conventional remediation due to its low cost, selectivity towards particular metal ions, and high efficiency. One key strategy in enhancing microbial remediation is employing an immobilization technique with biochar as a carrier. This review provides a comprehensive summary of sources and toxic health effects of hazardous water pollutants on human health and the environment. Biochar enhances the growth and proliferation of contaminant-degrading microbes. The combined activity of biochar and microbes in eliminating the contaminants has gained the researcher's interest. Biochar demonstrates its biocompatibility by fostering microbial populations, the release of enzymes, and protecting the microbes from the acute toxicity of surrounding contaminants. The current review complies with the immobilization technique and remediation mechanisms of microbes in pollutant removal. This review also emphasizes the combined utilization, environmental adaptability, and the potential of the combined effect of immobilized microbes and biochar in the remediation of contaminants. Challenges and future outlooks are urged to commercialize the immobilized microbes-biochar interaction mechanism for environmental remediation., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
19. Emerging aspects of metal ions-doped zinc oxide photocatalysts in degradation of organic dyes and pharmaceutical pollutants - A review.
- Author
-
Annam Renita A, Sathish S, Kumar PS, Prabu D, Manikandan N, Mohamed Iqbal A, Rajesh G, and Rangasamy G
- Subjects
- Zinc, Metals, Organic Chemicals, Coloring Agents, Pharmaceutical Preparations, Ions, Catalysis, Zinc Oxide, Environmental Pollutants, Metal Nanoparticles
- Abstract
In recent periods, a broad assortment of continual organic contaminants has been released into our natural water resources. Indeed, it is exceedingly poisonous and perilous to living things; thus, the elimination of these organic pollutants before release into the water bodies is vital. A variety of techniques have been utilized to remove these organic pollutants with advanced oxidation photocatalytic methods with zinc oxide (ZnO) nanoparticles being commonly used as a capable catalyst for contaminated water treatment. Nevertheless, its broad energy gap, which can be only stimulated under an ultraviolet (UV) light source, and high recombination pairs of electrons and holes limit their photocatalytic behaviors. However, numerous methods have been suggested to decrease its energy gap for visible regions. Including, the doping ZnO with metal ions (dopant) can be considered as an effectual route not only the reason for a movement of the absorption edges toward the higher (visible light) region but also to lower the electron-hole pair (e
- -h+ ) recombination. This review concentrated on the impact of dissimilar types of metal ions (dopants) on the advancement in the degradation performance of ZnO. So, this work demonstrates a vital review of contemporary attainments in the alteration of ZnO nanoparticles for organic pollutants eliminations. Besides, the effect of doping ions including transition metals, rare earth metals, and metal ions (substitutional and interstitial) concerning numerous types of altered ZnO are summarized. The photodegradation mechanisms for pristine and metal-modified ZnO nanoparticles are also conferred., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
20. An efficient electrochemical degradation of toxic pollutants in wastewater using BiOBr/BiVO 4 hierarchical structured electrode material.
- Author
-
Shankar VU, Alanazi AK, Senthil Kumar P, Anand J, Prasannamedha G, Abo-Dief HM, and Rangasamy G
- Subjects
- Bismuth, Sodium Chloride, Electrodes, Wastewater, Environmental Pollutants
- Abstract
The electrochemical degradation of alizarin red dye was studied using bismuth oxyhalide attached to bismuth vanadate nanocomposite synthesized via a simple solvothermal method. The electrochemical degradation of alizarin red dye was treated at current densities of 3 and 5 mA cm
-1 for 30 min under different supporting electrolyte mediums (NaCl and KCl). Also, the electrochemical degradation of BiOBr/BiVO4 electrode shows higher degradation percentages of 97 and 99 for NaCl and KCl electrolyte solutions, which are higher degradation percentages than pure BiVO4 electrode (88 and 91 for NaCl and KCl). Also, the BiOBr/BiVO4 electrode shows 100% COD reduction during the 30th min of alizarin red dye using both NaCl and KCl electrolyte solutions. This may indicate that the prepared BiOBr/BiVO4 electrode shows an efficient electrode material for the degradation of textile dyes., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
21. A critical review on the removal of toxic pollutants from contaminated water using magnetic hybrids.
- Author
-
Saravanan A, Ragini YP, Kumar PS, Thamarai P, and Rangasamy G
- Subjects
- Humans, Animals, Ecosystem, Water Pollution, Water, Coloring Agents, Magnetic Phenomena, Environmental Pollutants, Water Pollutants, Chemical, Metals, Heavy metabolism
- Abstract
The persistence of organic/inorganic pollutants in the water has become a serious environmental issue. Among the different pollutants, dyes and heavy metal pollution in waterways are viewed as a global ecological problem that can have an impact on humans, plants, and animals. The necessity to develop a sustainable and environmentally acceptable approach to remove these toxic contaminants from the ecosystem has been raised. In the past two decades, rapid industrialization and anthropogenic activities in developed countries have aggravated environmental pollution. Industrial effluents that are discharged directly into the natural environment taint the water, which has a consequence for the water resources. Magnetic nanohybrids are broadly investigated materials used in the adsorption and photocatalytic degradation of poisonous pollutants present across water effluents. In the present review, the toxic health effects of heavy metals and dyes from the water environment have been discussed. This paper reviews the role of magnetic nanohybrids in the removal of pollutants from the water environment, providing an adequate point of view on their new advances regarding their qualities, connection methodologies, execution, and their scale-up difficulties., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
22. An insights of organochlorine pesticides categories, properties, eco-toxicity and new developments in bioremediation process.
- Author
-
C FC, Kamalesh T, Senthil Kumar P, and Rangasamy G
- Subjects
- Humans, Biodegradation, Environmental, Environmental Monitoring methods, Soil chemistry, China, Soil Pollutants analysis, Pesticides analysis, Hydrocarbons, Chlorinated analysis
- Abstract
Organochlorine pesticides (OCPs) have been used in agriculture, increasing crop yields and representing a serious and persistent global contaminant that is harmful to the environment and human health. OCPs are typically bioaccumulative and persistent chemicals that can spread over long distances. The challenge is to reduce the impacts caused by OCPs, which can be achieved by treating OCPs in an appropriate soil and water environment. Therefore, this report summarizes the process of bioremediation with commercially available OCPs, considering their types, impacts, and characteristics in soil and water sources. The methods explained in this report were considered to be an effective and environmentally friendly technique because they result in the complete transformation of OCPs into a non-toxic end product. This report suggests that the bioremediation process can overcome the challenges and limitations of physical and chemical treatment for OCP removal. Advanced methods such as biosurfactants and genetically modified strains can be used to promote bioremediation of OCPs., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
23. Bifunctional electrode of bismuth tungsten for electrochemical sensing applications.
- Author
-
Alanazi AK, Senthil Kumar P, Ramya M, Abo-Dief HM, and Rangasamy G
- Subjects
- Bismuth, Electrodes, Ascorbic Acid chemistry, Electrochemical Techniques methods, Tungsten chemistry, Metal Nanoparticles chemistry
- Abstract
A co-precipitation technique has been used to prepare Bismuth tungstate nanoparticles (Bi
2 WO6 ) for electrochemical capacitors and electrochemical sensing of Ascorbic acid (AA). Using a scanning rate of 10 mV s-1 , the electrode was performed as the pseudocapacitance behavior and the specific capacitance to be up to 677 Fg-1 at 1 A/g. Bi2 WO6 versus Glassy carbon electrode (GCE) was also used to study the behavior of the Bi2 WO6 modified electrodes in detecting ascorbic acid. This electrochemical sensor shows excellent electrocatalytic performance when ascorbic acid is present, as determined by differential pulse voltammetry. In solution, ascorbic acid diffuses to an electrode surface and controls its surface properties. Based on the results from the investigation, the sensor showed a detection sensitivity of 0.26 mM/mA, and a limit of detection (LOD) of 77.85 mM. It is clear from these results that Bi2 WO6 may find application as an electrode material for supercapacitors and glucose sensors., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
24. A Short Review on Current Status and Obstacles in the Sustainable Production of Biohydrogen from Microalgal Species.
- Author
-
Rathi BS, Kumar PS, and Rangasamy G
- Abstract
Biohydrogen is an economical fuel which has enormous promise as an alternative energy source. The synthesis of biohydrogen can be done more affordably and sustainably using microalgae. For the generation of biohydrogen and the treatment of wastewater, microalgae derived from effluent have been showing very impressive outcomes. In comparison to traditional fuel sources, microalgae have benefits. Microalgae are capable of fixing ambient Carbon dioxide and converting it to carbohydrates, which are subsequently processed biochemically to provide fuel. When compared to terrestrial crops, they require less water and minerals for production. But besides these benefits, there are certain technological restrictions on the scale-up implementations of microalgae bioenergy. In this work, we explored the production of biohydrogen from several types of microalgae. The process of producing biohydrogen is affected by a number of variables, including pH, substrate concentration, the kinds of microalgal species, and others. The most recent studies and difficulties related to each stage of the biohydrogen manufacturing process are outlined. The synthesis of microalgal biohydrogen is improved using promising approaches that are discussed. Also, the specific future direction are covered. The possibility for microalgae-based production of biohydrogen to serve as an environmentally friendly and carbon-free biofuel solution that might handle the impending fuel scarcity was demonstrated. However, additional study is required on both the upstream and downstream processes of the synthesis of biohydrogen., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
25. Removal of pentachlorophenol and phenanthrene from lignocellulosic biorefinery wastewater by a biocatalytic/biosurfactant system comprising cross-linked laccase aggregates and rhamnolipid.
- Author
-
Vaidyanathan VK, Kumar PS, Singh I, Singh I, Rangasamy G, Saratale RG, and Saratale GD
- Subjects
- Laccase chemistry, Wastewater, Pentachlorophenol, Phenanthrenes
- Abstract
Synthesis and characterization of highly active cross-linked laccase aggregates (CLLAs) were performed and evaluated for removal of pentachlorophenol and phenanthrene from lignocellulosic biorefinery wastewater. Laccase from Tramates versicolor MTCC 138 was insolubilized as CLLAs via precipitation with 70% ammonium sulphate and simultaneous cross-linking with 5 mM glutaraldehyde to obtain activity recovery of 89.1%. Compared to the free laccase, the pH and thermal stability of the prepared CLLAs were significantly higher. At a high temperature of 60 °C, free laccase had a half-life of 0.25 h, while CLLAs had a half-life of 6.2 h. In biorefinery wastewater (pH 7.0), the free and CLLAs were stored for 3 day at a temperature of 30 °C. Free laccase completely lost their initial activity after 60 h; however, the CLLAs retained 39% activity till 72 h. Due to its excellent stability, free laccase and CLLAs were assessed for removing pentachlorophenol and phenanthrene in wastewater. CLLAs could remove 51-58% of pentachlorophenol (PCP) and phenanthrene (PHE) in 24 h. Biosurfactants, including surfactin, sophorolipid, and rhamnolipid, were assessed for their aptitude to improve the removal of organic contaminants in wastewater. Biorefinery wastewater incubated with all surfactants enhanced PCP and PHE removal compared to the no-surfactant controls. Further, 1 μM rhamnolipid significantly amplified pentachlorophenol and phenanthrene removal to 81-93% for free laccase and CLLAs, respectively., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
26. A biotechnological roadmap for decarbonization systems combined into bioenergy production: Prelude of environmental life-cycle assessment.
- Author
-
Yaashikaa PR, Senthil Kumar P, Saravanan A, Karishma S, and Rangasamy G
- Subjects
- Biotechnology methods, Biofuels, Carbon Dioxide analysis
- Abstract
Decarbonization has become a critical issue in recent years due to rising energy demands and diminishing oil resources. Decarbonization systems based on biotechnology have proven to be a cost-effective and environmentally benign technique of lowering carbon emissions. Bioenergy generation is an environmentally friendly technique for mitigating climate change in the energy industry, and it is predicted to play an important role in lowering global carbon emissions. This review essentially provides a new perspective on the unique biotechnological approaches and strategies based decarbonization pathways. Furthermore, the application of genetically engineered microbes in CO
2 biomitigation and energy generation is particularly emphasized. The production of biohydrogen and biomethane via anaerobic digestion techniques has been highlighted in the perspective. In this review, role of microorganisms in bioconversion of CO2 into different types of bioproducts such as biochemical, biopolymers, biosolvents and biosurfactant was summarized. The current analysis, which includes an in-depth discussion of a biotechnology-based roadmap for the bioeconomy, provides a clear picture of sustainability, forthcoming challenges, and perspectives., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
27. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review.
- Author
-
Rajagopalan V, Venkataraman S, Rajendran DS, Vinoth Kumar V, Kumar VV, and Rangasamy G
- Subjects
- Humans, Acetylcholinesterase analysis, Acetylcholinesterase chemistry, Acetylcholinesterase metabolism, Acetylcholine analysis, Pesticides analysis, Pesticide Residues analysis, Biosensing Techniques
- Abstract
Neurotoxic pesticides are a group of chemicals that pose a severe threat to both human health and the environment. These molecules are also known to accumulate in the food chain and persist in the environment, which can lead to long-term exposure and adverse effects on non-target organisms. The detrimental effects of these pesticides on neurotransmitter levels and function can lead to a range of neurological and behavioral symptoms, which are closely associated with neurodegenerative diseases. Hence, the accurate and reliable detection of these neurotoxic pesticides and associated neurotransmitters is essential for clinical applications, such as diagnosis and treatment. Over the past few decades, acetylcholinesterase (AchE) biosensors have emerged as a sensitive and reliable tool for the electrochemical detection of neurotoxic pesticides and acetylcholine. These biosensors can be tailored to utilize the high specificity and sensitivity of AchE, enabling the detection of these chemicals. Additionally, enzyme immobilization and the incorporation of nanoparticles have further improved the detection capabilities of these biosensors. AchE biosensors have shown tremendous potential in various fields, including environmental monitoring, clinical diagnosis, and pesticide residue analysis. This review summarizes the advancements in AchE biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine over the past two decades., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
28. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations.
- Author
-
Ramesh B, Saravanan A, Senthil Kumar P, Yaashikaa PR, Thamarai P, Shaji A, and Rangasamy G
- Subjects
- Animals, Humans, Wastewater, Plants, Pharmaceutical Preparations, Environmental Pollutants, Water Purification methods, Metals, Heavy, Water Pollutants, Chemical
- Abstract
Heavy metals, dyes and pharmaceutical pollutants in water environment are considered as serious threat to the human and animal health globally. Rapid development of industrialization and agricultural activities are the major source for eliminating the toxic pollutants into the aquatic environment. Several conventional treatment methods have been suggested for the removal of emerging contaminants from wastewater. Algal biosorption, among other strategies and techniques, is demonstrating to be a limited technical remedy that is more focused and inherently more efficient and helps remove dangerous contaminants from water sources. The different environmental effects of harmful contaminants, including heavy metals, dyes, and pharmaceutical chemicals, as well as their sources, were briefly compiled in the current review. This paper provides a comprehensive definition of the future possibilities in heavy compound decomposition by using algal technology, from aggregation to numerous biosorption procedures. Functionalized materials produced from algal sources were clearly proposed. This review further highlights the limiting factors of algal biosorption to eliminate the hazardous material. Finally, this study showed how the existence of algae indicates a potential, effective, affordable, and sustainable sorbent biomaterial for minimizing environmental pollution., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
29. Advances in enzymatic conversion of biomass derived furfural and 5-hydroxymethylfurfural to value-added chemicals and solvents.
- Author
-
Kumar Vaidyanathan V, Saikia K, Senthil Kumar P, Karanam Rathankumar A, Rangasamy G, and Dattatraya Saratale G
- Subjects
- Solvents, Biomass, Furaldehyde, Furans chemistry
- Abstract
The progress of versatile chemicals and bio-based fuels using renewable biomass has gained ample importance. Furfural and 5-hydroxymethylfurfural are biomass-derived compounds that serve as the cornerstone for high-value chemicals and have a myriad of industrial applications. Despite the significant research into several chemical processes for furanic platform chemicals conversion, the harsh reaction conditions and toxic by-products render their biological conversion an ideal alternative strategy. Although biological conversion confers an array of advantages, these processes have been reviewed less. This review explicates and evaluates notable improvements in the bioconversion of 5-hydroxymethylfurfural and furfural to comprehend the current developments in the biocatalytic transformation of furan. Enzymatic conversion of HMF and furfural to furanic derivative have been explored, while the latter has substantially overlooked a foretime. This discrepancy was reviewed along with the outlook on the potential usage of 5-hydroxymethylfurfural and furfural for the furan-based value-added products' synthesis., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
30. Cost-effective, scalable production of glucose oxidase using Casuarina equisetifolia biomass and its application in the bio-Fenton oxidation process for the removal of trace organic contaminants from wastewater.
- Author
-
Vaidyanathan VK, Alanazi AK, Senthil Kumar P, Rajendran DS, Chidambaram A, Venkataraman S, Kumar VV, Rangasamy G, Cabana H, and Abo-Dief HM
- Subjects
- Glucose Oxidase, Biomass, Hydrogen Peroxide, Cost-Benefit Analysis, Oxidation-Reduction, Waste Disposal, Fluid methods, Wastewater, Water Pollutants, Chemical analysis
- Abstract
This study focuses on using Casuarina equisetifolia biomass for pilot-scale glucose oxidase production from Aspergillus niger and its application in the removal of trace organic contaminants (TrOCs) from municipal wastewater through the bio-Fenton oxidation. The cost of glucose oxidase was 0.005 $/U, including the optimum production parameters, 10% biomass, 7% sucrose, 1% peptone, and 3% CaCO
3 at 96 h with an enzyme activity of 670 U/mL. Optimized conditions for H2 O2 were 1 M glucose, 100 U/mL glucose oxidase, and 120 mins of incubation, resulting in 544.3 mg/L H2 O2 . Thus, H2 O2 produced under these conditions lead to bio-Fenton oxidation resulting in the removal of 36-92% of nine TrOCs in municipal wastewater at pH 7.0 in 360 mins. Therefore, this work establishes the cost-effective glucose oxidase-producing H2 O2 as an attractive bioremediating agent to enhance the removal of TrOCs in wastewater at neutral pH., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
31. Preparation and characterization of a novel cobalt-substitution cadmium aluminate spinel for the photodegradation of azo dye pollutants.
- Author
-
Rajesh G, Senthil Kumar P, Akilandeswari S, Rangasamy G, Lohita S, Uma Shankar V, Ramya M, and Thirumalai K
- Subjects
- Cadmium, Photolysis, Azo Compounds chemistry, Cobalt chemistry, Ecosystem, Catalysis, Environmental Pollutants chemistry
- Abstract
Modern-year organic contaminants have been highly observed in ecosystems since they are not removed entirely and remain dangerous. Semiconductor binary oxide photocatalysts have been well accredited as capable technology for ecological contaminants degradation in the existence of visible irradiation. In this research, novel Co ions doped CdAl
2 O4 materials were fabricated by a facile co-precipitation approach. The fabricated pure and Co-doped CdAl2 O4 exhibited the typical peaks of CdAl2 O4 with the Eg of 3.66, 3.24, 2.57, and 2.41 eV respectively. The HR-TEM microstructures revealed that the Co (0.075 M) doped CdAl2 O4 has rod-like morphology, and some places are spherical with particle sizes reaching 21 nm. The PL peaks of the Co (0.075 M)-CdAl2 O4 are much lesser than that of the other dopant and pure CdAl2 O4 , representing much more effectual separation of generated e- and h+ at the interface which in fact outcomes in superior expected photodegradation behaviours. The Co (0.075 M)-CdAl2 O4 catalyst demonstrated the highest performances of 92 and 94% toward the degradation of both dyes, respectively, owing to the lowest e- and h+ recombination rate. The Co (0.075 M) doped CdAl2 O4 photocatalyst revealed outstanding reusability and stability under visible irradiation, retaining the performance of about 83 and 86% after the fifth consecutive run of BB and BG elimination. A probable photodegradation mechanism of Co (0.075 M) doped CdAl2 O4 was suggested since the photoexcited h+ , OH- and O2 - species contributed to the removal process, and that was affirmed by the scavenging test and ESR analysis. This research offers new ways to improve the photodegradation performance of the Co-doped CdAl2 O4 catalyst that will be employed in pharmaceutical applications and wastewater treatment., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
32. Fabrication of an effectual, stable and reusable Mg-doped CdAl 2 O 4 nanoparticles for photodegradation of toxic pollutants under visible light illumination.
- Author
-
Mahalaxmi S, Rajesh G, Senthil Kumar P, Akilandeswari S, Arul Joshua M, Uma Shankar V, Ramya M, Thirumalai K, and Rangasamy G
- Subjects
- Humans, Photolysis, Lighting, Light, Catalysis, Water, Coloring Agents, Environmental Pollutants, Nanoparticles
- Abstract
The water contamination caused by discharging extensive organic dyes stuff into water bodies is one of the utmost significant concerns disturbing the environment and human life. CdAl
2 O4 spinel materials have been excellent in the elimination of emerging pollutants by the photocatalysis route. These materials, when altered through methods namely doping with Mg ions, have benefits over CdAl2 O4 , especially reduced energy gap and light absorbed in the visible region. The XRD established the creation of space group R 3‾ with no other phase step being found. The photoluminescence outcomes indicated that Mg-doped CdAl2 O4 nanoparticles had the preventing e- -h+ recombination possibility, which was favorable for the photocatalytic process. The Mg (0.075 M)-doped CdAl2 O4 catalyst had higher photocatalytic performance with 94 and 96% removal of two azo (BB and BG) dyes under a mere 90 min visible light irradiation, which indicated enhanced Photodegradation behaviors when compared to other Mg (0.025, 0.050 M)-doped and pure CdAl2 O4 materials. More interestingly, pH 5 was optimum for the Mg (0.075 M)-doped CdAl2 O4 samples photodegradation of both dyes, and the optimum catalyst amount was 5 mg/100 mL. The doped Mg ions influenced the elimination of both dyes by inducing the manufacture of more active species. The Mg (0.075 M)-doped CdAl2 O4 samples is reusable and highly stable with only a 5% reduction in degradation rate after six cycles. Based on the quencher and ESR investigations, the. OH- and h+ are described as active species in the removal reaction. We hope our present examinations highlight the possibility of using Mg (0.075 M)-doped CdAl2 O4 product for a broad range of photodegradation applications, also it may be applied for several ecological remediations, surface cleaning devices, foods and pharmaceutical industry applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
33. A comprehensive review on nanocatalysts and nanobiocatalysts for biodiesel production in Indonesia, Malaysia, Brazil and USA.
- Author
-
Mahdi HI, Ramlee NN, da Silva Duarte JL, Cheng YS, Selvasembian R, Amir F, de Oliveira LH, Wan Azelee NI, Meili L, and Rangasamy G
- Subjects
- Esterification, Biofuels, Brazil, Indonesia, Malaysia, Plant Oils chemistry, Petroleum
- Abstract
Biodiesel is an alternative to fossil-derived diesel with similar properties and several environmental benefits. Biodiesel production using conventional catalysts such as homogeneous, heterogeneous, or enzymatic catalysts faces a problem regarding catalysts deactivation after repeated reaction cycles. Heterogeneous nanocatalysts and nanobiocatalysts (enzymes) have shown better advantages due to higher activity, recyclability, larger surface area, and improved active sites. Despite a large number of studies on this subject, there are still challenges regarding its stability, recyclability, and scale-up processes for biodiesel production. Therefore, the purpose of this study is to review current modifications and role of nanocatalysts and nanobiocatalysts and also to observe effect of various parameters on biodiesel production. Nanocatalysts and nanobiocatalysts demonstrate long-term stability due to strong Brønsted-Lewis acidity, larger active spots and better accessibility leading to enhancethe biodiesel production. Incorporation of metal supporting positively contributes to shorten the reaction time and enhance the longer reusability. Furthermore, proper operating parameters play a vital role to optimize the biodiesel productivity in the commercial scale process due to higher conversion, yield and selectivity with the lower process cost. This article also analyses the relationship between different types of feedstocks towards the quality and quantity of biodiesel production. Crude palm oil is convinced as the most prospective and promising feedstock due to massive production, low cost, and easily available. It also evaluates key factors and technologies for biodiesel production in Indonesia, Malaysia, Brazil, and the USA as the biggest biodiesel production supply., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
34. Strategies for ameliorating the photodegradation efficiency of Mn-doped CdAl 2 O 4 nanoparticles for the toxic dyes under visible light illumination.
- Author
-
Rajesh G, Senthil Kumar P, Akilandeswari S, Rangasamy G, Lohita S, Uma Shankar V, Ramya M, Nirmala K, and Thirumalai K
- Subjects
- Photolysis, Coloring Agents, Light, Azo Compounds, Catalysis, Lighting, Nanoparticles
- Abstract
Worldwide environmental issues have been escalating with the growth of the global economy and become a vital problem. To solve the problems, we require an eco-friendly and sustainable binary catalyst for the degradation of Azo dye pollutants. In this work, magnetically reusable, multifunctional novel Mn-doped CdAl
2 O4 nanoparticles were effectively fabricated by the co-precipitation approach. It was utilized for the degradation of two Azo dyes, exhibiting 96 and 98% Mn (0.050 M)-doped CdAl2 O4 removal rates under visible light illumination, and presenting improved photocatalytic capability than that of pure and other dopants. More notably, the Mn (0.050 M)-doped CdAl2 O4 catalyst was recycled using centrifuges without major loss and displays almost similar photodegradation behaviors for six successive runs. According to the ESR measurements, outcome and quenching tests affirmed that. OH- and h+ radicals were better reactive species responsible for Azo dyes removal. A possible photodegradation reaction mechanism underlying the elimination of Azo dyes by Mn (0.050 M)-doped CdAl2 O4 catalyst is also proposed. Elaborated analyzes by variable reaction parameters such as the role of reactive species and catalyst dosage, pH, COD and irradiation time in the degradation route was also discussed. We assume that our outcomes will provide novel insights into using a highly effectual Mn (0.050 M)-doped CdAl2 O4 catalyst, with possible applications in the treatment of both industrial and domestic wastewater., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
35. A critical review on recent research progress on microplastic pollutants in drinking water.
- Author
-
Nirmala K, Rangasamy G, Ramya M, Shankar VU, and Rajesh G
- Subjects
- Microplastics, Plastics, Environmental Monitoring methods, Environmental Pollutants, Drinking Water, Water Pollutants, Chemical analysis
- Abstract
Plastic pollution is an emerging issue in recent days. Persistent plastic particles reach the atmosphere, land and water by multiple pathways. Research has confirmed that the existence of plastic particles is found surprisingly everywhere, from the Artic to the Antarctic region. The probability of ingestion of plastic by all living forms is quite natural, as the whole planet's environment is polluted with microplastic particles. The bioaccumulation of microplastics is a threat and the consequences for living beings are yet to be explored. Microplastics present in different drinking water sources like rivers, lakes, treatment units etc. are studied by several researchers, covering various aspects. Research carried out by various scientists on the microplastics in different drinking water sources is highlighted in this review. In view of the previous research carried out on various aspects of microplastic particles, the necessity of a uniform protocol for qualitative and quantitative analysis of microplastic is ascertained. Microplastic pollution is an ongoing environmental concern, it must be addressed and research should be expanded., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
36. A review on extraction of polysaccharides from crustacean wastes and their environmental applications.
- Author
-
Saravanan A, Kumar PS, Yuvaraj D, Jeevanantham S, Aishwaria P, Gnanasri PB, Gopinath M, and Rangasamy G
- Subjects
- Animals, Humans, Chitin chemistry, Seafood, Agriculture, Chitosan chemistry
- Abstract
Disposal of biodegradable waste of seashells leads to an environmental imbalance. A tremendous amount of wastes produced from flourishing shell fish industries while preparing crustaceans for human consumption can be directed towards proper utilization. The review of the present study focuses on these polysaccharides from crustaceans and a few important industrial applications. This review aimed to emphasize the current research on structural analyses and extraction of polysaccharides. The article summarises the properties of chitin, chitosan, and chitooligosaccharides and their derivatives that make them non-toxic, biodegradable, and biocompatible. Different extraction methods of chitin, chitosan, and chitooligosaccharides have been discussed in detail. Additionally, this information outlines possible uses for derivatives of chitin, chitosan, and chitooligosaccharides in the environmental, pharmaceutical, agricultural, and food industries. Additionally, it is essential to the textile, cosmetic, and enzyme-immobilization industries. This review focuses on new, insightful suggestions for raising the value of crustacean shell waste by repurposing a highly valuable material., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
37. A synergistic consequence of catalyst dosage, pH solution and reactive species of Fe-doped CdAl 2 O 4 nanoparticles on the degradation of toxic environmental pollutants.
- Author
-
Rajesh G, Kumar PS, Akilandeswari S, Rangasamy G, Mandal A, Shankar VU, Ramya M, Nirmala K, and Thirumalai K
- Subjects
- Photolysis, Catalysis, Hydrogen-Ion Concentration, Pharmaceutical Preparations, Environmental Pollutants, Nanoparticles chemistry
- Abstract
Industrial wastewater treatment techniques are one of the biggest challenges of the scientific community that necessitate an increased consciousness to address water scarcity worldwide. Herein, an eco-friendly and cost-effective process was demonstrated to cope with tannery, textile and pharmaceutical dye wastes through the co-precipitation of highly reusable Fe-doped CdAl
2 O4 samples. The XRD studies exposed the space group R 3‾ with no secondary phase step being found for all samples. The outcomes of optical absorbance spectra demonstrate that Fe doping diminished the energy gap from 3.66 to 1.67 eV. HR-TEM images of existing spherical particles and some of the particles' rod-like structures with little agglomeration were found for Fe (0.075 M) doped CdAl2 O4 nanoparticles. The PL emission outcomes show that Fe doping effectively prevented the charge carrier's recombination in CdAl2 O4 during photocatalysis. All Fe-doped CdAl2 O4 samples demonstrated higher photodegradation behaviors towards the effectual degradation of both dye solutions as compared to pure CdAl2 O4 samples. Particularly, Fe (0.075 M)-doped CdAl2 O4 samples exhibited improved photodegradation performance of 93 and 95% for both dye solutions. The amount of photodegradation was noticed to rely on dye pH, irradiation time, catalyst dosage, initial dye amount, and reactive species. The recyclability of the Fe (0.075 M) doped CdAl2 O4 nanoparticles denotes that 78 and 82% of BB and BG were removed up to the 6th run of usage. The outcomes of trapping tests,. OH- and h+ radicals were the major Scavenging in the photodegradation reaction. COD studies affirmed the whole mineralization of BB and BG dye molecules. It is expected that our present examination could offer to improve various spinal oxide materials for the photodegradation activity of pharmaceutical contaminants and environmental issues and can also resolve energy storage applications., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
38. Utilization of industrial waste - Liquid cheese whey for the batch fermentation of lovastatin using Fusarium nectrioides (MH173849) an endophytic fungus: Screening, production and characterization.
- Author
-
Manogaran S, Kilavan Packiam K, Senthil Kumar P, Rangasamy G, and Saravanan A
- Subjects
- Whey, Industrial Waste, Lovastatin, Fermentation, Fusarium chemistry, Cheese
- Abstract
In this current research, a novel way of utilizing the plant weed and dairy industrial waste for the cost-effective production of Lovastatin by the novel fungus Fusarium nectrioides (MH173849) under controlled conditions was reported for the first time with scientific evidence. A total of 25 endophytic fungi were isolated from the 90 tissue fragments of Euphorbia hirta (L) and identified based on morphological and microscopical characteristics. All the fungal isolates were screened for Lovastatin production using Neurospora crassa bioassay. Among the 25 fungal isolates, Fusarium sp2, Nigrospora sphaerica, and Fusarium sp 4 showed maximum zone of inhibition and they were further verified by Thin Layer Chromatography. Since the R
f values of Fusarium sp 4 and standard Lovastatin were the same, further characterization was preceded only with Fusarium sp 4. An evolutionary relationship of two positive isolates, Fusarium sp 2 and Fusarium sp 4 was studied with other Lovastatin-producing fungi. Gene sequencing and BLAST revealed that a novel fungus, Fusarium sp 4 was found to be Fusarium nectrioides (MH173849) and it was further used for batch fermentation of Lovastatin in the modified media using liquid cheese whey under controlled conditions, which enhanced the productivity up to 43.40 μg/mL with the minimum purification steps. LC-MS-MS and NMR studies confirmed the production of Lovastatin by F. nectrioides (MH173849) due to the presence of Pyran molecule hydrogen, Hydrogen fusing two molecules as intermediate with triplet signal groups, methylbutanoic acid, and hexahydro naphthalene. Therefore, this fungus may be utilized by industries for the cost-effective production of Lovastatin., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
39. Rhizobium mayense sp. Nov., an efficient plant growth-promoting nitrogen-fixing bacteria isolated from rhizosphere soil.
- Author
-
Shameem M R, Sonali J MI, Kumar PS, Rangasamy G, Gayathri KV, and Parthasarathy V
- Subjects
- Soil chemistry, Rhizosphere, Fertilizers, Plant Roots microbiology, Bacteria, Nitrogen, Soil Microbiology, Nitrogen-Fixing Bacteria genetics, Rhizobium genetics
- Abstract
The nitrogen-fixing bacterium has great prospects in replacing synthetic fertilizers with biofertilizers for plant growth. It would be a useful tool in eradicating chemical fertilizers from use. Five nitrogen-fixing bacteria were isolated from the Tea and Groundnut rhizosphere soil out of which RSKVG 02 proved to be the best. The optimized condition of RSKVG 02 was found to be pH 7 at 30 °C utilizing 1% glucose and 0.05% ammonium sulfate as the sole carbon and nitrogen source. Plant growth-promoting traits such as IAA and ammonia were estimated to be 82.97 ± 0.01254a μg/ml and 80.49 ± 0.23699a mg/ml respectively. Additionally, their phosphate and potassium solubilization efficiency were evaluated to be 46.69 ± 0.00125 b mg/ml and 50.29 ± 0.000266 mg/ml. Morphological, and biochemical methods characterized the isolated bacterial culture, and molecularly identified by 16 S rRNA sequencing as Rhizobium mayense. The isolate was further tested for its effects on the growth of Finger millet (Eleusine coracana) and Green gram (Vigna radiata) under pot conditions. The pot study experiments indicated that the bacterial isolates used as bio inoculants increased the total plant growth compared to the control and their dry weight showed similar results. The chlorophyll content of Green gram and Finger millet was estimated to be 19.54 ± 0.2784a mg/L and 15.3 ± 0.0035 mg/L which suggested that Rhizobium sp. Possesses high nitrogenase activity. The enzyme activity proved to use this bacterium as a biofertilizer property to enhance soil fertility, efficient farming, and an alternative chemical fertilizer. Therefore, Rhizobium mayense can be potentially used as an efficient biofertilizer for crop production and increase yield and soil fertility., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
40. Microplastics occurrence, detection and removal with emphasis on insect larvae gut microbiota.
- Author
-
Goveas LC, Nayak S, Kumar PS, Rangasamy G, Vidya SM, Vinayagam R, Selvaraj R, and Vo DVN
- Subjects
- Humans, Animals, Microplastics, Plastics, Ecosystem, Larva, Insecta, Gastrointestinal Microbiome, Water Pollutants, Chemical analysis
- Abstract
Microplastics have been identified in all living forms including human beings, the present need is to restrain its spread and devise measures to remediate microplastics from polluted ecosystems. In this regard, the present review emphasizes on the occurrence, sources detection and toxic effects of microplastics in various ecosystems. The removal of microplastics is prevalent by various physico-chemical and biological methods, although the removal efficiency by biological methods is low. It has been noted that the degradation of plastics by insect gut larvae is a well-known aspect, however, the underlying mechanism has not been completely identified. Studies conducted have shown the magnificent contribution of gut microbiota, which have been isolated and exploited for microplastic remediation. This review also focuses on this avenue, as it highlights the contribution of insect gut microbiota in microplastic degradation along with challenges faced and future prospects in this area., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
41. Biodegradation of oil-contaminated aqueous ecosystem using an immobilized fungi biomass and kinetic study.
- Author
-
Saravanan A, Karishma S, Kumar PS, and Rangasamy G
- Subjects
- Biodegradation, Environmental, Ecosystem, Biomass, Kinetics, Phylogeny, RNA, Ribosomal, 16S, Hydrocarbons, Water, Fungi genetics, Surface-Active Agents analysis, Petroleum analysis, Petroleum metabolism, Soil Pollutants analysis
- Abstract
Remediation of environmental oil pollution with the usage of fungal organisms has proven to be a successful cleanup bioremediation method for organic contaminants. To investigate the breakdown of oil pollutants in water environments, biosurfactant-producing fungi have been isolated from oil-polluted soil samples. 16s rRNA sequencing technique was performed to identify the fungal organism and phylogenetic tree has been constructed. A variety of biosurfactant screening tests have demonstrated the better biosurfactant producing ability of fungi. The emulsion's stability, which is essential for the biodegradation process, was indicated by the emulsification index of 68.48% and emulsification activity of 1.3. In the isolated biosurfactant, important functional groups such as amino groups, lipids, and sugars were found according to thin layer chromatography analysis with a maximum retention value of 0.85. A maximum oil degradation of around 64% was observed with immobilized beads within 12 days. The half-life, and degradation removal rate constant of 20.21 days and 0.03 day
-1 , respectively, have been determined by the degradation kinetic analysis. GCMS analysis confirmed the highly degraded hydrocarbons such as nonanoic acid and pyrrolidine. The immobilized fungi exhibit better oil biodegradability in aqueous solutions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Inc. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
42. Sensing of azo toxic dyes using nanomaterials and its health effects - A review.
- Author
-
Monisha B, Sridharan R, Kumar PS, Rangasamy G, Krishnaswamy VG, and Subhashree S
- Subjects
- Humans, Azo Compounds toxicity, No-Observed-Adverse-Effect Level, Coloring Agents toxicity, Nanostructures toxicity
- Abstract
Development of science has taken over our lives and made it mandatory to live with science. Synthetic technology takes more than it has given for our welfare. In the process of meeting the demand of the consumers, industries supported synthetic products to meet the same. One such sector that employs synthetic azo dyes for food coloring is the food industry. The result of the process is the production of a variety of colored foods which looks more appealing and palatable. The process not only meets the consumer's demand it also has an impact on customers' health because the consumption of azo-toxic dye-treated foods regularly or in direct contact with synthetic azo dyes can also cause severe human health consequences. Nanotechnology is a rapidly evolving branch of research in which nanosensors are being developed for a variety of applications, including sensing various azo-toxic dyes in food products, which provides a wider scope in the future, with the innovation in designing different nanosensors. The current review focuses on the different types of nanosensors, their key role in sensing, and the sensing of azo toxic dyes using nanosensors, their advantages over other sensors, applications of nanomaterials, and the health impacts of azo dyes on humans, appropriate parameters for maximum permissible limits, and an Acceptable Daily Intake (ADI) of azo toxic dye to be followed. The regulations followed on the application of colorants to the food are also elaborated. The review also focuses on the application of enzyme-based biosensors in detecting azo dyes in food products., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
43. A review on the applicability of adsorption techniques for remediation of recalcitrant pesticides.
- Author
-
Bose S, Senthil Kumar P, Rangasamy G, Prasannamedha G, and Kanmani S
- Subjects
- Humans, Ecosystem, Adsorption, Pesticides analysis, Metal-Organic Frameworks, Herbicides, Water Pollutants, Chemical analysis
- Abstract
Pesticide has revolutionised the agricultural industry by reducing yield losses and by enhancing productivity. But indiscriminate usage of such chemicals can negatively impact human health and ecosystem balance as certain pesticides can be recalcitrant in nature. Out of some of the suggested sustainable techniques to remove the pesticide load from the environment, adsorption is found to be highly efficient and can also be implemented on a large scale. It has been observed that natural adsorption that takes place after the application of the pesticide is not enough to reduce the pesticide load, hence, adsorbents like activated carbon, plant-based adsorbents, agricultural by-products, silica materials, polymeric adsorbents, metal organic framework etc are being experimented upon. It is becoming increasingly important to choose adsorbents which will not leave any secondary pollutant after treatment and the cost of production of such adsorbent should be feasible. In this review paper, it has been established that certain adsorbent like biochar, hydrochar, resin, metal organic framework etc can efficiently remove pesticides namely chlorpyrifos, diazinon, 2,4-Dichlorophenoxyacetic Acid, atrazine, fipronil, imidacloprid etc. The mechanism of adsorption, thermodynamics and kinetic part have been discussed in detail with respect to the pesticide and adsorbent under discussion. The reason behind choosing an adsorbent for the removal of a particular pesticide have also been explained. It is further highly recommended to carry out a cost analysis before implementing an absorbent because inspite of its efficacy, it might not be cost effective to use it for a particular type of pesticide or contaminant., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
44. Mesoporous calcium hydroxide nanoparticle synthesis from waste bivalve clamshells and evaluation of its adsorptive potential for the removal of Acid Blue 113 dye.
- Author
-
Pai S, Kini MS, Rangasamy G, and Selvaraj R
- Subjects
- Adsorption, Hydrogen-Ion Concentration, Thermodynamics, Kinetics, Methylene Blue, Coloring Agents, Calcium Hydroxide, Water Pollutants, Chemical analysis
- Abstract
Calcium hydroxide nanoadsorbent was prepared from waste bivalve clamshells and used for the adsorptive removal of Acid Blue 113 (AB113) dye. The morphology, elemental nature, functional groups, and thermal stability of the nanoadsorbent were characterized by various methods. The nanoadsorbent had a high monolayer adsorption capacity (153.53 mg/g) for AB113 dye. Langmuir and Temkin isotherms better fitted (R
2 > 0.95) the experimental data. The adsorption rate followed pseudo-second-order kinetics (R2 > 0.99). The thermodynamic study ascertained spontaneous and exothermic adsorption. This study confirmed the possibility of using calcium hydroxide as an adsorbent to effectively remove AB113 dye from aqueous solutions., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
45. A critical review on the environmental applications of carbon dots.
- Author
-
Hebbar A, Selvaraj R, Vinayagam R, Varadavenkatesan T, Kumar PS, Duc PA, and Rangasamy G
- Subjects
- Carbon chemistry, Fluorescence, Fluorescent Dyes chemistry, Quantum Dots chemistry, Nanoparticles
- Abstract
The discovery of zero-dimensional carbonaceous nanostructures called carbon dots (CDs) and their unique properties associated with fluorescence, quantum confinement and size effects have intrigued researchers. There has been a substantial increase in the amount of research conducted on the lines of synthesis, characterization, modification, and enhancement of properties by doping or design of composite materials, and a diversification of their applications in sensing, catalysis, optoelectronics, photovoltaics, and imaging, among many others. CDs fulfill the need for inexpensive, simple, and continuous environmental monitoring, detection, and remediation of various contaminants such as metals, dyes, pesticides, antibiotics, and other chemicals. The principles of green chemistry have also prompted researchers to rethink novel modes of nanoparticle synthesis by incorporating naturally available carbon precursors or developing micro reactor-based techniques. Photocatalysis using CDs has introduced the possibility of utilizing light to accelerate redox chemical transformations. This comprehensive review aims to provide the reader with a broader perspective of carbon dots by encapsulating the concepts of synthesis, characterization, applications in contaminant detection and photocatalysis, demerits and research gaps, and potential areas of improvement., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
46. Biofortification: A long-term solution to improve global health- a review.
- Author
-
Monika G, Melanie Kim SR, Kumar PS, Gayathri KV, Rangasamy G, and Saravanan A
- Subjects
- Humans, Plant Breeding, Micronutrients, Soil, Crops, Agricultural, Biofortification methods, Global Health
- Abstract
Biofortification is a revolutionary technique for improving plant nutrition and alleviating human micronutrient deficiency. Fertilizers can help increase crop yield and growth, but applying too much fertilizer can be a problem because it leads to the release of greenhouse gases and eutrophication. One of the major global hazards that affects more than two million people globally is the decreased availability of micronutrients in food crops, which results in micronutrient deficiencies or "hidden hunger" in people. Micronutrients, like macronutrients, perform a variety of roles in plant and human nutrition. This review has highlighted the importance of micronutrients as well as their advantages. The uneven distribution of micronutrients in geological areas is not the only factor responsible for micronutrient deficiencies, other parameters including soil moisture, temperature, texture of the soil, and soil pH significantly affects the micronutrient concentration and their availability in the soil. To overcome this, different biofortification approaches are assessed in the review in which microbes mediated, Agronomic approaches, Plant breeding, and transgenic approaches are discussed. Hidden hunger can result in risky health conditions and diseases such as cancer, cardiovascular disease, osteoporosis, neurological disorders, and many more. Microbes-mediated biofortification is a novel and promising solution for the bioavailability of nutrients to plants in order to address these problems. Biofortification is cost effective, feasible, and environmentally sustainable. Bio-fortified crops boost our immunity, which helps us to combat these deadly viruses. The studies we discussed in this review have demonstrated that they can aid in the alleviation of hidden hunger., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
47. Efficient decolorization and detoxification of triarylmethane and azo dyes by porous-cross-linked enzyme aggregates of Pleurotus ostreatus laccase.
- Author
-
George J, Rajendran DS, Senthil Kumar P, Sonai Anand S, Vinoth Kumar V, and Rangasamy G
- Subjects
- Azo Compounds metabolism, Porosity, Coloring Agents chemistry, Laccase chemistry, Pleurotus metabolism
- Abstract
In this preset study, porous-cross-linked enzyme aggregates (CLEAs) of Pleurotus ostreatus laccase were utilized for the spontaneous decolorization and detoxification of triarylmethane and azo dyes, reactive blue 2 (RB) and malachite green (MG). The specific surface area and pore radius of the porous-CLEAs are 136.3 m
2 /g and 19.47 Ao , and the higher specific surface indicated greater biocatalytic efficiency, as increased mass transfer and dye interaction with the CLEAs laccase. CLEAs laccase decolorized 500 ppm of MG and RB with 98.12-58.33% efficiency after 120 min, at pH 5.0 and 50°C, without a mediator. Furthermore, the biotransformation of the MG and RB with immobilized laccase was confirmed with the help of UV-visible spectroscopy, high-performance liquid chromatography, and Fourier transform infrared spectroscopy. The reusability potential of CLEAs was assessed in batch mode for 10 cycles of dye decolorization. The decolorization activities for the immobilized laccase were 89% and 12% at the 6th cycle for MG and RB, respectively. This immobilized enzyme could effectively remove dyes from aqueous solution, and demonstrated significant detoxification in experimental plants (Triticum aestivum and Phaseolus mungo) and plant growth-promoting rhizobacteria (Azospirillum brasilense, Bacillus megaterium, Rhizobium leguminosarum, Bacillus subtilis, and Pseudomonas fluorescens). In conclusion, porous CLEAs laccase could be useful as a potential bioremediation tool for the detoxification and decolorization of dyeing wastewater in future., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)- Published
- 2023
- Full Text
- View/download PDF
48. Strategies for microbial bioremediation of environmental pollutants from industrial wastewater: A sustainable approach.
- Author
-
Saravanan A, Kumar PS, Duc PA, and Rangasamy G
- Subjects
- Animals, Humans, Biodegradation, Environmental, Wastewater, Environmental Pollutants toxicity, Metals, Heavy toxicity, Water Pollutants, Soil Pollutants
- Abstract
Heavy metals are hazardous and bring about critical exposure risks to humans and animals, even at low concentrations. An assortment of approaches has been attempted to remove the water contaminants and keep up with water quality, for that microbial bioremediation is a promising way to mitigate these pollutants from the contaminated water. The flexibility of microorganisms to eliminate a toxic pollutant creates bioremediation an innovation that can be applied in various water and soil conditions. This review insight into the sources, occurrence of toxic heavy metals, and their hazardous human exposure risk. In this review, significant attention to microbial bioremediation for pollutant mitigation from various ecological lattices has been addressed. Mechanism of microbial bioremediation in the aspect of factors affecting, the role of microbes and interaction between the microbes and pollutants are the focal topics of this review. In addition, emerging strategies and technologies developed in the field of genetically engineered micro-organism and micro-organism-aided nanotechnology has shown up as powerful bioremediation tool with critical possibilities to eliminate water pollutants., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
49. Isolation of moderately halotolerant bacterial strains, associated with coral Porites lutea from Gulf of Kachchh: Antibacterial activity and PHB production.
- Author
-
Sridharan R, Krishnaswamy VG, Senthil Kumar P, Muralidharan M, Aishwarya S, Sivamurugan V, Rethnaraj C, Nisha JC, Satyanarayana C, and Rangasamy G
- Subjects
- Animals, Ecosystem, Staphylococcus aureus, Coral Reefs, Bacteria, Anti-Bacterial Agents toxicity, Anthozoa microbiology
- Abstract
The marine ecosystem contains a solution for food, shelter, pharmaceutical problems and has a key role in the economy of the country as tourism. The Gulf of Kachchh, known for its high tides and the coral reefs are less explored for its antibiotic activity due to the coral bleaching and diseases. The bacterial strains in the coral Porites lutea are determined to possess antibiotic activity against bacterial strains such as E.coli, P. aeruginosa, S. aureus and S. faecalis. Among thirty bacterial strains isolated from the tissue, skeleton and mucus, two bacterial strains resulted in the better antagonistic activity. The antibiotic compound extracted from both the bacteria elucidated to be 4-[(2E)-4-hydroxypent-2-en-1-yl]-5,6-dihydro-2H-pyran-2-one. Further, through ADMET prediction it was inferred that it is an effective drug lead as it reports less toxicity and better drug-likeliness. The study also includes the effect of Poly Hydroxy Butarate (PHB) production by the isolated bacterial strain., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
50. Strategies for enhancing the efficacy of anaerobic digestion of food industry wastewater: An insight into bioreactor types, challenges, and future scope.
- Author
-
Saravanan A, Senthil Kumar P, Rangasamy G, Hariharan R, Hemavathy RV, Deepika PD, Anand K, and Karthika S
- Subjects
- Anaerobiosis, Waste Disposal, Fluid, Food, Bioreactors, Food Industry, Methane analysis, Sewage, Wastewater, Refuse Disposal
- Abstract
Food waste have become a growing concern worldwide with raising population and economic growth. Wastewater discharged from food industries contains many valuable and toxic components that have a negative impact on the ecological system. Large amounts of wastewater are discharged from the food industry, which necessitates the creation of effective technologies. Wastewater from the food industry can be seen as a rich source of energy and a primary source for generating valuable products. Waste disposal and resource recovery are sustainably valued by anaerobic digestion of wastewater from the food sector. The characteristics, composition, and nature of wastewater produced from various food sectors are elaborated upon in this review. An overview of the anaerobic digestion process for wastewater treatment in the food industry is included. Enhancement strategies for the anaerobic digestion process have been discussed in detail. In addition, various types of reactors utilized for performing anaerobic digestion is illustrated. Though anaerobic digestion process possesses advantages, the challenges and future scope are examined for improving the outcome., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.