1. Vibration Control of Flexible Launch Vehicles Using Fiber Bragg Grating Sensor Arrays.
- Author
-
van der Veek, Bartel, Gutierrez, Hector, Wise, Brian, Kirk, Daniel, and van Barschot, Leon
- Abstract
The effects of mechanical vibrations on control system stability could be significant in control systems designed on the assumption of rigid-body dynamics, such as launch vehicles. Vibrational loads can also cause damage to launch vehicles due to fatigue or excitation of structural resonances. This paper investigates a method to control structural vibrations in real time using a finite number of strain measurements from a fiber Bragg grating (FBG) sensor array. A scaled test article representative of the structural dynamics associated with an actual launch vehicle was designed and built. The main modal frequencies of the test specimen are extracted from finite element analysis. A model of the test article is developed, including frequency response, thruster dynamics, and sensor conversion matrices. A model-based robust controller is presented to minimize vibrations in the test article by using FBG measurements to calculate the required thrust in two cold gas actuators. Controller performance is validated both in simulation and on experiments with the proposed test article. The proposed controller achieves a 94% reduction in peak–peak vibration in the first mode, and 80% reduction in peak–peak vibration in the second mode, compared to the open loop response under continuously excited base motion. [ABSTRACT FROM AUTHOR]
- Published
- 2025
- Full Text
- View/download PDF