1. Nonlinear non-periodic homogenization: Existence, local uniqueness and estimates
- Author
-
Recke, Lutz
- Subjects
Mathematics - Classical Analysis and ODEs ,34B15 34C29 35B27 47J07 58C15 - Abstract
We consider periodic homogenization with localized defects of boundary value problems for semilinear ODE systems of the type $$ \Big((A(x/\varepsilon)+B(x/\varepsilon))u'(x)+c(x,u(x))\Big)'= d(x,u(x)) \mbox{ for } x \in (0,1),\; u(0)=u(1)=0. $$ For small $\varepsilon>0$ we show existence of weak solutions $u=u_\varepsilon$ as well as their local uniqueness for $\|u-u_0\|_\infty \approx 0$, where $u=u_0$ is a given solution to the homogenized problem $$ \Big(A_0u'+c(x,u(x))\Big)'= d(x,u(x)) \mbox{ for } x \in (0,1),\; u(0)=u(1)=0,\; A_0:=\left(\int_0^1A(y)^{-1}dy\right)^{-1} $$ such that the linearized problem $$ \Big(A_0u'+\partial_uc(x,u_0(x))u(x)\Big)'= \partial_ud(x,u_0(x))u(x) \mbox{ for } x \in (0,1),\; u(0)=u(1)=0 $$ does not have weak solutions $u\not=0$. Further, we prove that $\|u_\varepsilon-u_0\|_\infty\to 0$ and, if $c(\cdot,u)\in W^{1,\infty}((0,1);\mathbb{R}^n)$, that $\|u_\varepsilon-u_0\|_\infty=O(\varepsilon)$ for $\varepsilon \to 0$. We assume that $A \in L^\infty(\mathbb{R};\mathbb{M}_n)$ is 1-periodic, $B \in L^\infty(\mathbb{R};\mathbb{M}_n)\cap L^1(\mathbb{R};\mathbb{M}_n)$, $A(y)$ and $A(y)+B(y)$ are positive definite uniformly with respect to $y$, $c(x,\cdot),d(x,\cdot)\in C^1(\mathbb{R}^n;\mathbb{R}^n)$ and $c(\cdot,u),d(\cdot,u) \in L^\infty((0,1);\mathbb{R}^n)$. The main tool of the proofs is an abstract result of implicit function theorem type which has been tailored for applications to nonlinear singular perturbation and homogenization problems., Comment: arXiv admin note: substantial text overlap with arXiv:2309.15611
- Published
- 2024