1. Nanoscale Magnetic Bubbles in Nd2Fe14 B at Room Temperature
- Author
-
He, Y., Helm, T., Soldatov, I., Schneider, S., Pohl, D., Srivastava, A. K., Sharma, A. K., Kroder, J., Schnelle, W., Schaefer, R., Rellinghaus, B., Fecher, G. H., Parkin, S. S. P., Felser, C., He, Y., Helm, T., Soldatov, I., Schneider, S., Pohl, D., Srivastava, A. K., Sharma, A. K., Kroder, J., Schnelle, W., Schaefer, R., Rellinghaus, B., Fecher, G. H., Parkin, S. S. P., and Felser, C.
- Abstract
The increasing demand for computer data storage with a higher recording density can be addressed by using smaller magnetic objects, such as bubble domains. Small bubbles predominantly require a strong saturation magnetization combined with a large magnetocrystalline anisotropy to resist self-demagnetization. These conditions are well satisfied for highly anisotropic materials. Here, we study the domain structure of thin Nd2Fe14B lamellae. Magnetic bubbles with a minimum diameter of 74 nm were observed at room temperature, approaching even the range of magnetic skyrmions. The stripe domain width and the bubble size are both thickness dependent. Furthermore, a kind of bubble was observed below the spin-reorientation transition temperature that combine bubbles with opposite helicity. In this paper, we reveal Nd2Fe14B to be a good candidate for a high-density magnetic bubble-based memory. © 2022 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Open access publication funded by the Max Planck Society.
- Published
- 2022