1. A unified approach to coupled homogeneous linear wave propagation in generic gravity
- Author
-
Santana, Lucas T., Lobato, João C., Reis, Ribamar R. R., and Calvão, Maurício O.
- Subjects
General Relativity and Quantum Cosmology ,High Energy Physics - Phenomenology - Abstract
Wave propagation is a common occurrence in all of physics. A linear approximation provides a simpler way to describe various fields related to observable phenomena in laboratory physics as well as astronomy and cosmology, allowing us to probe gravitation through its effect on the trajectories of particles associated with those fields. This paper proposes a unified framework to describe the wave propagation of a set of interacting tensor fields that obey coupled homogeneous linear second-order partial differential equations for arbitrary curved spacetimes, both Lorentzian and metric-affine. We use JWKB Ans\"atze for all fields, written in terms of a perturbation parameter proportional to a representative wavelength among them, deriving a set of hierarchical algebraic and differential equations that link the fields' phases and different order amplitudes. This allows us to reobtain the well-known laws of geometrical optics and beyond geometrical optics in a generalized form, showing that these laws are independent of the rank of the fields involved. This is true as long as what we refer to as the kinetic tensor of a given field satisfies a set of diagonality conditions, which further imply a handful of simplifications on the transport equations obtained in the subleading orders of the JWKB Ans\"atze. We explore these results in several notable examples in Lorentzian and metric-affine spacetimes, illustrating the reach of our derivations in general relativity, reduced Horndeski theories, spacetimes with completely antisymmetric torsion and Weyl spacetimes. The formalism presented herein lays the groundwork for the study of rays associated with different types of waves in curved spacetimes and provides the tools to compute modifications to their brightness evolution laws, consequential distance duality relations, and beyond geometrical optics phenomena., Comment: 24 pages, 2 figures
- Published
- 2024