8 results on '"Renfort textile"'
Search Results
2. Simulation of forming of fibrous reinforcement : New specific shell approach et experimental studies
- Author
-
Bai, Renzi, STAR, ABES, Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Mécanique multiphysique pour les matériaux et les procédés (MULTIMAP), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon, Philippe Boisse, and Naïm Naouar
- Subjects
Finite element method ,Renfort textile ,Woven reinforcement ,Matériaux ,3D deformation ,Renfort par fibre ,Mise en forme ,Déformation 3D ,[SPI.MAT] Engineering Sciences [physics]/Materials ,Shells ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Textile reinforcement ,Shaping ,Numerical model ,Fiber reinforcing ,Méthode par éléments finis ,Renfort tissé ,Coques ,Modélisation numérique ,Materials - Abstract
The deformation of textile composite reinforcements is strongly conditioned by their fibrous composition. Classic plate and shell theories are based on kinematic assumptions that are not verified for textile reinforcements. Experiments show that the slippage between fiber (layer) in the thickness makes the specificity of fibrous materials. The RTM process (one of the forming process) is widely used to obtain composite parts with complex geometry is with great importance. In order to optimize the manufacturing of product, numerical models are necessary. Therefore, a 3D shell approach specific to fiber reinforcements is proposed which is based on two specificities: the quasi-inextensibility of the fibers and the possible sliding between the fibers. This approach is developed in the frame of continuum-based shell, the new assumption who based on the conservation of the thickness is applied to the kinematic equation. The theory of virtual power reflects the specific deformation of the fibrous reinforcements. It considers the tensile and bending stiffness of the fibers and the in-plan shear stiffness. The friction between fibers is taken into account in a simple way in connection with bending. The present approach is based on the real physics of the deformation of textile reinforcements. It simulates the 3D deformations of textile reinforcements and provides displacements and deformations for all the points along the thickness of the fabric and simulates the correct rotations of the material director. Finally, experiments and simulations performed on multilayer reinforcements are presented in this work, and a new method of experimentation is proposed., La déformation des renforts composites textiles est fortement conditionnée par leur composition fibreuse. Les théories classiques des plaques et des coques sont basées sur des hypothèses cinématiques qui ne sont pas vérifiées pour les renforts textiles. Des expérimentations montrent que le glissement entre fibres (couche) dans l’épaisseur fait la spécificité des matériaux fibreux. Le processus RTM (Resin Transfer Molding) est largement utilisé pour obtenir des pièces composites avec géométrie complexe. La mise en forme est une étape très importante. Afin d’optimiser la fabrication de produit (spécialement le tissu multicouche), des modèles numériques sont nécessaires. Par conséquent une approche de coque 3D spécifique aux renforts fibreux est proposée. Elle est basée sur deux spécificités : la quasi-inextensibilité des fibres et le glissement possible entre les fibres. L'approche est développée dans le cadre « Continuum-based shells ». La nouvelle hypothèse basée sur la conservation d’épaisseur est appliquée dans l’équation cinématique. La forme de puissance virtuelle reflète les spécificités de la déformation des renforts fibreux. Il prend en compte la rigidité de traction et de flexion des fibres et aussi de cisaillement dans le plan. Le frottement entre fibres est pris en compte de manière simple en lien avec la flexion. La présente approche est basée sur la physique réelle de la déformation des renforts textiles. Il permet de simuler les déformations 3D des renforts textiles et fournit des déplacements et déformations pour tous les points dans l'épaisseur du tissu et les bonnes rotations du directeur matériel. Enfin, des expérimentations et simulations réalisées sur des renforts multicouches sont présentées dans ce travail, et une nouvelle méthode d’expérimentation est proposée.
- Published
- 2020
3. Prédiction par simulation des défauts de plissement lors de la mise en forme des matériaux composites mono et multiplis.
- Author
-
Wang, P., Hamila, N., and Boisse, P.
- Subjects
BENDING (Metalwork) ,STIFFNESS (Mechanics) ,TENSILE architecture ,SHEAR strength ,TEXTURED woven textiles ,STRAINS & stresses (Mechanics) - Abstract
Copyright of Matériaux et Techniques is the property of EDP Sciences and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2012
- Full Text
- View/download PDF
4. Composites à fibres de carbone recyclées : variabilité des sources et optimisation des performances mécaniques
- Author
-
Jlassi, Sabrine, Institut Clément Ader (ICA), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Ecole des Mines d'Albi-Carmaux, Gérard Bernhart, and Florentin Berthet
- Subjects
Vapo-thermolyse ,Renfort textile ,2.0 Composite ,Composite thermoplastique ,Fibre de carbone vierge/recyclée ,Textile reinforcement ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Non-tissé ,Composite 2.0 ,Steam-thermolysis ,Non-woven ,Virgin/Recycled carbon fiber ,Recycling ,Thermoplastic composite ,Recyclage - Abstract
There is a great deal of interest with carbon fiber reinforced composite recycling in order to respond to regulatory requirements and industrial needs. The major challenge is to recover carbon fibers in order to reintegrate them into second-generation (2.0) composites. The particularity of recycled carbon fibers coming from different sources is the variability of their properties. From an industrial and economical point of view, composite sorting by fiber type/grade before recycling seems to be not profitable. This project aims to evaluate the interest of recycling composites by steam-thermolysis without preliminary sorting and to validate at a representative scale the implementation conditions of recycled fibers into textile reinforcements and 2.0 thermoplastic composites. The study focused on development and mechanical characterization of new virgin carbon fiber non-woven reinforced composites. A design of experiments was carried out by using a Mixture Design methodology considering three carbon fiber grades cut into three different lengths in order to produce non-woven reinforcement by carding. It has been shown that the mixture of fibers with different properties and lengths induces reducing variability of composite properties. But the increase in mixture proportion of fibers having low mechanical properties leads to a drop-in composite performance. This part allowed a better understanding of fiber properties and non-woven reinforcement architecture influence on composite properties. The study was completed by a comparison of mechanical properties of two simple and comingled recycled carbon fiber non-woven reinforced composites. The results showed an excellent potential of recycled carbon fiber non-woven reinforcement compared to virgin carbon fiber and commercialized recycled carbon fiber non-wovens.; Le recyclage des matériaux composites renforcés de fibres de carbone suscite de plus en plus d’intérêt pour répondre aux exigences règlementaires et aux besoins industriels. Le défi majeur est de récupérer les fibres de carbone afin de les réintégrer dans des composites (2.0) de seconde génération. La particularité des fibres recyclées, provenant de diverses sources, réside dans la variabilité de leurs propriétés et d’un point de vue industriel et économique, le tri des composites par type/grade de fibres avant le recyclage semble onéreux. L’objectif de cette thèse est d’évaluer l’intérêt du traitement par vapo-thermolyse des composites usagés sans un tri préalable et de valider à une échelle représentative les conditions de remise en forme des fibres recyclées en renfort textile et de remise en œuvre des composites 2.0. L’étude s’est focalisée sur le développement et la caractérisation mécanique de nouveaux composites renforcés de non-tissés en fibres de carbone vierges. Les non-tissés ont été mis en forme par cardage en se basant sur un plan d’expériences type plan de mélanges prenant en compte trois grades de fibres de carbone coupées en trois longueurs différentes. Les résultats ont montré que le mélange de fibres de propriétés différentes et de longueurs permet de réduire la variabilité des propriétés des composites. Mais l’augmentation des proportions des fibres ayant de faibles propriétés mécaniques dans un mélange provoque une chute des performances. Ces résultats ont permis une meilleure compréhension de l’influence des propriétés des fibres et de l’architecture du renfort non-tissé sur les propriétés des composites. L’étude a été complétée par une comparaison des propriétés mécaniques de deux composites renforcés de non-tissés simples et comélés à base de fibres de carbone vierges et recyclées. Les résultats ont montré un excellent potentiel des renforts en fibres de carbone recyclées comparés aux renforts en fibres vierges et aux renforts en fibres recyclées actuellement commercialisés.
- Published
- 2019
5. Recycled carbon fiber composites : variability of sources and optimization of mechanical performances
- Author
-
Jlassi, Sabrine, Institut Clément Ader (ICA), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Ecole des Mines d'Albi-Carmaux, Gérard Bernhart, Florentin Berthet, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-IMT École nationale supérieure des Mines d'Albi-Carmaux (IMT Mines Albi), and Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO)
- Subjects
Vapo-thermolyse ,Renfort textile ,2.0 Composite ,Composite thermoplastique ,Fibre de carbone vierge/recyclée ,Textile reinforcement ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Non-tissé ,Composite 2.0 ,Steam-thermolysis ,Non-woven ,Virgin/Recycled carbon fiber ,Recycling ,Thermoplastic composite ,Recyclage - Abstract
There is a great deal of interest with carbon fiber reinforced composite recycling in order to respond to regulatory requirements and industrial needs. The major challenge is to recover carbon fibers in order to reintegrate them into second-generation (2.0) composites. The particularity of recycled carbon fibers coming from different sources is the variability of their properties. From an industrial and economical point of view, composite sorting by fiber type/grade before recycling seems to be not profitable. This project aims to evaluate the interest of recycling composites by steam-thermolysis without preliminary sorting and to validate at a representative scale the implementation conditions of recycled fibers into textile reinforcements and 2.0 thermoplastic composites. The study focused on development and mechanical characterization of new virgin carbon fiber non-woven reinforced composites. A design of experiments was carried out by using a Mixture Design methodology considering three carbon fiber grades cut into three different lengths in order to produce non-woven reinforcement by carding. It has been shown that the mixture of fibers with different properties and lengths induces reducing variability of composite properties. But the increase in mixture proportion of fibers having low mechanical properties leads to a drop-in composite performance. This part allowed a better understanding of fiber properties and non-woven reinforcement architecture influence on composite properties. The study was completed by a comparison of mechanical properties of two simple and comingled recycled carbon fiber non-woven reinforced composites. The results showed an excellent potential of recycled carbon fiber non-woven reinforcement compared to virgin carbon fiber and commercialized recycled carbon fiber non-wovens.; Le recyclage des matériaux composites renforcés de fibres de carbone suscite de plus en plus d’intérêt pour répondre aux exigences règlementaires et aux besoins industriels. Le défi majeur est de récupérer les fibres de carbone afin de les réintégrer dans des composites (2.0) de seconde génération. La particularité des fibres recyclées, provenant de diverses sources, réside dans la variabilité de leurs propriétés et d’un point de vue industriel et économique, le tri des composites par type/grade de fibres avant le recyclage semble onéreux. L’objectif de cette thèse est d’évaluer l’intérêt du traitement par vapo-thermolyse des composites usagés sans un tri préalable et de valider à une échelle représentative les conditions de remise en forme des fibres recyclées en renfort textile et de remise en œuvre des composites 2.0. L’étude s’est focalisée sur le développement et la caractérisation mécanique de nouveaux composites renforcés de non-tissés en fibres de carbone vierges. Les non-tissés ont été mis en forme par cardage en se basant sur un plan d’expériences type plan de mélanges prenant en compte trois grades de fibres de carbone coupées en trois longueurs différentes. Les résultats ont montré que le mélange de fibres de propriétés différentes et de longueurs permet de réduire la variabilité des propriétés des composites. Mais l’augmentation des proportions des fibres ayant de faibles propriétés mécaniques dans un mélange provoque une chute des performances. Ces résultats ont permis une meilleure compréhension de l’influence des propriétés des fibres et de l’architecture du renfort non-tissé sur les propriétés des composites. L’étude a été complétée par une comparaison des propriétés mécaniques de deux composites renforcés de non-tissés simples et comélés à base de fibres de carbone vierges et recyclées. Les résultats ont montré un excellent potentiel des renforts en fibres de carbone recyclées comparés aux renforts en fibres vierges et aux renforts en fibres recyclées actuellement commercialisés.
- Published
- 2019
6. Textile composite structural analysis taking into account the forming process
- Author
-
Aridhi, Abderrahmen, STAR, ABES, Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, École nationale d'ingénieurs de Tunis (Tunisie), Philippe Boisse, and Tarek Mabrouki
- Subjects
Hypoelasticité ,Renfort textile ,Matériaux ,Finite element analysis ,Mise en forme ,[SPI.MAT] Engineering Sciences [physics]/Materials ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Textile reinforcement ,Fiber reorientation ,Hypoelasticity ,Analyse par éléments finis ,Réorientation des fibres ,Forming ,Materials - Abstract
During the forming process, the woven fabric/prepreg can undergo large fiber rotations due to plane shear deformation. These rotations are mostly important in zones with complexe gometries such as double curvature. Therefore, the fiber reorientations in the new sheared fabric affects significantly the strength and performance of final product. The aim of this thesis work is to develop a constitutive model that taking into account the angle's between the weft and warp yarns. An hypoelastic model has been developed in order to simulate the forming of dry fabric. The forming simulation allows to determine the final reorientations between yarns through the shear angles. The later are transferred into an orthotropic elastic model, developed to perform a structural analysis of a cured composite after its forming. The orthotropic model has been validated by a tensile test on cured specimens after a bias extension test. Finally, to demonstrate the performance of this orthotropic model (taking into account the reorientation of yarns), FE analysis on cured hemisphere and double dome have been performed. The results obtained by the orthotropic model have been compared with those obtained from a model without taking into account the reorientation of yarns., Durant le procédé de thermoestampage, le renfort tissé/préimprégné peut subir des grandes rotations de fibres dues aux fortes déformations de cisaillement dans le plan. Ces rotations sont importantes surtout dans les zones à géométries complexes telles que celles à double courbure. Par conséquent, la réorientation des fibres dans le nouveau renfort cisaillé affecte significativement la résistance et la performance du produit final. L'objectif de ce travail de thèse est de développer un modèle de comportement qui tient compte des changements d'angle entre les réseaux de mèches (directions chaine et trame). Un modèle de comportement hypo élastique a été proposé afin de simuler la mise en forme des tissés secs. La simulation de la mise en forme permet de déterminer les réorientations finales entre les mèches par l'intermédiaire des angles de cisaillement. Ces derniers sont transférés dans un modèle élastique orthotrope élaboré pour effectuer une analyse structurelle d'un composite durci après sa mise en forme. Le modèle orthotrope a été validé expérimentalement par un test de traction sur des éprouvettes durcies après un bias extension test. Finalement, pour démontrer la performance de ce modèle élastique orthotrope (avec la prise en compte de la réorientation des mèches), des analyses EF sur un hémisphère et un double dôme durcis ont été réalisés. Les résultats obtenus par le modèle orthotrope ont été comparés avec ceux issus d'un modèle sans la prise en compte de la réorientation des mèches.
- Published
- 2019
7. Macro-meso simulation of the forming process of interlock woven reinforcements
- Author
-
Wang, Jie, STAR, ABES, Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), Mécanique multiphysique pour les matériaux et les procédés (MULTIMAP), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon, Philippe Boisse, and Nahiène Hamila
- Subjects
Finite element method ,Renfort textile ,Renforts tissés ,Modélisation macroscopique ,Forming process ,RTM process ,Composite Material ,Numerical simulation ,Comportement hyperélastique ,Mise en forme ,[SPI.MAT] Engineering Sciences [physics]/Materials ,Procédé RTM ,Textile reinforcements ,[SPI.MAT]Engineering Sciences [physics]/Materials ,Méthode par éléments finis ,Microtomography ,Macroscopic Modelling ,Mesoscopic modelling ,Woven Reinforcements ,Hyperelastic behaviour ,Modélisation mésoscopique ,Matériau composite ,Simulations numériques - Abstract
The forming stage in the RTM process is crucial because it strongly influences the mechanical behavior of composites in service. In order to better predict the appearance of possible defects of composite materials, numerical simulations are increasingly developed taking into account the duration and the cost of experiences. Deformations and orientations of yarns at the mesoscopic scale are essential to simulate the resin flow in the stage of injection. Given the number of elements and their complex interactions, it is difficult to conduct the shaping simulations for the entire reinforcement at this mesoscopic scale. This present thesis consists in developing a multiscale method that allows linking the macroscopic simulations of reinforcements and the mesoscopic modellings of RVE (representative volume element) during the forming process. Firstly, the numerical simulations for three different woven reinforcements at the macroscopic scale are carried out using an anisotropic hyperelastic constitutive law, by the finite element method with a dynamic explicit scheme. Then, the geometrical modelling of RVE at the mesoscopic scale are reconstituted based on the tomographic images. The mesoscopic displacement-deformation fields of woven reinforcements are determined from the macroscopic results and the position of the yarns. In order to take into consideration sliding effects of yarns, two approaches of mesoscopic simulations of RVE are developed. Finally, the mesoscopic numerical results are compared with the experimental results., L’étape de mise en forme dans le procédé RTM est importante car elle influence fortement le comportement mécanique du composite en service. Pour mieux prédire l’apparition de défauts éventuels des matériaux composites, les méthodes numériques sont de plus en plus développées compte tenu de la durée et du coût des essais. Déformations et orientations des mèches à l’échelle mésoscopiques sont essentielles pour simuler l’écoulement de la résine dans l’étape d’injection. Etant donné le nombre d’éléments et les interactions complexes, il est difficile d’effectuer les simulations de formage pour toute la pièce du renfort à l’échelle mésoscopique. La présente thèse consiste à développer une méthode multiéchelle qui permet de relier les simulations macroscopiques des renforts et les modélisations mésoscopiques de VER (volume élémentaire représentatif) lors de la mise en forme. D’abord, les simulations numériques macroscopiques pour trois renforts tissés différents sont réalisées à l’aide d’une loi de comportement hyperélastique, par la méthode des éléments finis avec un schéma explicite dynamique. Ensuite, les modélisations géométriques de VER à l’échelle mésoscopique sont reconstituées sur la base des images de tomographie X. Les champs de déplacements-déformations mésoscopiques des renforts tissés sont déterminés à partir des résultats macroscopiques et de la position des mèches. Pour prendre en compte les effets locaux de glissements des mèches, deux approches de simulations mésoscopiques de VER sont développées. Finalement, les résultats numériques mésoscopiques sont comparés avec ceux expérimentaux.
- Published
- 2019
8. Prédiction par simulation des défauts de plissement lors de la mise en forme des matériaux composites mono et multiplis
- Author
-
Nahiene Hamila, Philippe Boisse, Peng Wang, Laboratoire de Mécanique des Contacts et des Structures [Villeurbanne] (LaMCoS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and AMAC
- Subjects
[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph] ,020303 mechanical engineering & transports ,Renfort textile ,0203 mechanical engineering ,flambage ,[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph] ,General Materials Science ,02 engineering and technology ,plissements ,021001 nanoscience & nanotechnology ,0210 nano-technology ,analyse par éléments finis - Abstract
International audience; Lors de la mise en forme des renforts de composites l'apparition des plissements fait parti des défauts les plus courants. Ces plissements sont fréquents en raison des très faibles raideurs en flexion dues aux mouvements relatifs entre les fibres constituant chaque mèche. Il est nécessaire de détecter leur apparition, ainsi que leur évolution au cours de la phase de préformage, et ce afin de s'assurer qu'ils ne s'étendent pas à la partie utile de la pièce. La simulation des renforts de composites textiles en cours de mise en forme se fonde sur une forme simplifiée du travail virtuel des efforts internes de chaque cellule élémentaire, découplée en une énergie de tension, de cisaillement dans le plan et du moment fléchissant. L'influence des trois rigidités (traction, cisaillement dans le plan et flexion) sur l'apparition des plissements lors de la simulation est analysée. Même si la raideur en cisaillement dans le plan joue un rôle principal sur leur apparition, il n'y a pas de corrélation directe entre l'angle de cisaillement et les plis. Le plissement est un phénomène global dépendant autant des déformations, des raideurs et des conditions aux limites. La raideur en flexion joue un rôle principal sur la forme que prendront ces plis, et il n'est pas possible de simuler proprement un pli avec une approche membranaire seule.
- Published
- 2011
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.