98 results on '"Retterer, K."'
Search Results
2. Non-coding region variants upstream of MEF2C cause severe developmental disorder through three distinct loss-of-function mechanisms
- Author
-
Wright, CF, Quaife, NM, Ramos-Hernández, L, Danecek, P, Ferla, MP, Samocha, KE, Kaplanis, J, Gardner, EJ, Eberhardt, RY, Chao, KR, Karczewski, KJ, Morales, J, Gallone, G, Balasubramanian, M, Banka, S, Gompertz, L, Kerr, B, Kirby, A, Lynch, SA, Morton, JEV, Pinz, H, Sansbury, FH, Stewart, H, Zuccarelli, BD, Consortium, Genomics England Research, Cook, SA, Taylor, JC, Juusola, J, Retterer, K, Firth, HV, Hurles, ME, Lara-Pezzi, E, Barton, PJR, Whiffin, N, Leducq Foundation for Cardiovascular Research, and Imperial College Healthcare NHS Trust- BRC Funding
- Subjects
Untranslated region ,medicine.medical_specialty ,DNA Copy Number Variations ,Developmental Disabilities ,Biology ,Article ,Cohort Studies ,03 medical and health sciences ,0302 clinical medicine ,Loss of Function Mutation ,Exome Sequencing ,Genetics ,medicine ,Coding region ,Humans ,Genetic Predisposition to Disease ,Child ,Exome ,Gene ,11 Medical and Health Sciences ,Genetics (clinical) ,Loss function ,Exome sequencing ,030304 developmental biology ,Genetics & Heredity ,0303 health sciences ,MEF2 Transcription Factors ,developmental disorders, clinical genetic testing, non-coding region variants, 5' UTR variants ,06 Biological Sciences ,Genomics England Research Consortium ,Medical genetics ,Haploinsufficiency ,5' Untranslated Regions ,030217 neurology & neurosurgery - Abstract
Clinical genetic testing of protein-coding regions identifies a likely causative variant in only around half of developmental disorder (DD) cases. The contribution of regulatory variation in non-coding regions to rare disease, including DD, remains very poorly understood. We screened 9,858 probands from the Deciphering Developmental Disorders (DDD) study for de novo mutations in the 5' untranslated regions (5' UTRs) of genes within which variants have previously been shown to cause DD through a dominant haploinsufficient mechanism. We identified four single-nucleotide variants and two copy-number variants upstream of MEF2C in a total of ten individual probands. We developed multiple bespoke and orthogonal experimental approaches to demonstrate that these variants cause DD through three distinct loss-of-function mechanisms, disrupting transcription, translation, and/or protein function. These non-coding region variants represent 23% of likely diagnoses identified in MEF2C in the DDD cohort, but these would all be missed in standard clinical genetics approaches. Nonetheless, these variants are readily detectable in exome sequence data, with 30.7% of 5' UTR bases across all genes well covered in the DDD dataset. Our analyses show that non-coding variants upstream of genes within which coding variants are known to cause DD are an important cause of severe disease and demonstrate that analyzing 5' UTRs can increase diagnostic yield. We also show how non-coding variants can help inform both the disease-causing mechanism underlying protein-coding variants and dosage tolerance of the gene.
- Published
- 2021
- Full Text
- View/download PDF
3. Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease
- Author
-
Beck, DB, Ferrada, MA, Sikora, KA, Ombrello, AK, Collins, JC, Pei, W, Balanda, N, Ross, DL, Ospina Cardona, D, Wu, Z, Patel, B, Manthiram, K, Groarke, EM, Gutierrez-Rodrigues, F, Hoffmann, P, Rosenzweig, S, Nakabo, S, Dillon, LW, Hourigan, CS, Tsai, WL, Gupta, S, Carmona-Rivera, C, Asmar, AJ, Xu, L, Oda, H, Goodspeed, W, Barron, KS, Nehrebecky, M, Jones, A, Laird, RS, Deuitch, N, Rowczenio, D, Rominger, E, Wells, KV, Lee, C-CR, Wang, W, Trick, M, Mullikin, J, Wigerblad, G, Brooks, S, Dell’Orso, S, Deng, Z, Chae, JJ, Dulau-Florea, A, Malicdan, MCV, Novacic, D, Colbert, RA, Kaplan, MJ, Gadina, M, Savic, S, Lachmann, HJ, Abu-Asab, M, Solomon, BD, Retterer, K, Gahl, WA, Burgess, SM, Aksentijevich, I, Young, NS, Calvo, KR, Werner, A, Kastner, DL, and Grayson, PC
- Abstract
BACKGROUND Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9–edited zebrafish were used as an in vivo model to assess gene function. RESULTS We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet’s syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.)
- Published
- 2020
4. Evidence for 28 genetic disorders discovered by combining healthcare and research data
- Author
-
Kaplanis, J., Samocha, K.E., Wiel, L., Zhang, Z., Arvai, K.J., Eberhardt, R.Y., Gallone, G., Lelieveld, S.H., Martin, H.C., McRae, J.F., Short, P.J., Torene, R.I., de Boer, E., Danecek, P., Gardner, E.J., Huang, N., Lord, J., Martincorena, I., Pfundt, R., Reijnders, M.R.F., Yeung, A., Yntema, H.G., Deciphering Developmental Disorders Study, Vissers, L.E.L.M., Juusola, J., Wright, C.F., Brunner, H.G., Firth, H.V., FitzPatrick, D.R., Barrett, J.C., Hurles, M.E., Gilissen, C., and Retterer, K.
- Abstract
De novo mutations in protein-coding genes are a well-established cause of developmental disorders. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent–offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.
- Published
- 2020
5. Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients
- Author
-
Bryant, L. (Laura), Li, D. (Dong), Cox, S.G. (Samuel G.), Marchione, D. (Dylan), Joiner, E.F. (Evan F.), Wilson, K. (Khadija), Janssen, K. (Kevin), Lee, P. (Pearl), March, K. (Keith), Nair, D. (Divya), Sherr, E. (Elliott), Fregeau, B. (Brieana), Wierenga, K.J. (Klaas J.), Wadley, A. (Alexandrea), Mancini, G.M.S. (Grazia), Powell-Hamilton, N. (Nina), Kamp, J.J.P. (Jacques) van de, Grebe, T. (Theresa), Dean, J. (John), Ross, A.J. (Alison), Crawford, H.P. (Heather P.), Powis, Z. (Zoe), Cho, M.T. (Megan T.), Willing, M.C. (Marcia C.), Manwaring, L. (Linda), Schot, R. (Rachel), Nava, C. (Caroline), Afenjar, A. (Alexandra), Lessel, D. (Davor), Wagner, M. (Matias), Klopstock, T. (Thomas), Winkelmann, B., Catarino, C.B. (Claudia B.), Retterer, K. (Kyle), Schuette, J.L. (Jane L.), Innis, J.W. (Jeffrey), Pizzino, A. (Amy), Lüttgen, S. (Sabine), Denecke, J. (Jonas), Strom, T.M. (Tim), Monaghan, K.G. (Kristin G.), Yuan, Z.-F. (Zuo-Fei), Dubbs, H. (Holly), Bend, R. (Renee), Lee, J.A. (Jennifer A.), Lyons, M.J. (Michael J.), Hoefele, J. (Julia), Günthner, R. (Roman), Reutter, H. (Heiko), Keren, B. (Boris), Radtke, K. (Kelly), Sherbini, O. (Omar), Mrokse, C. (Cameron), Helbig, K.L. (Katherine L.), Odent, S. (Sylvie), Cogne, B. (Benjamin), Mercier, S. (Sandra), Bezieau, S. (Stephane), Besnard, T. (Thomas), Kury, S. (Sebastien), Redon, R. (Richard), Reinson, K. (Karit), Wojcik, M.H. (Monica H.), Õunap, K. (Katrin), Ilves, P. (Pilvi), Innes, A.M. (A Micheil), Kernohan, K.D. (Kristin), Costain, G. (Gregory), Meyn, M.S. (M Stephen), Chitayat, D. (David), Zackai, E. (Elaine), Lehman, A. (Anna), Kitson, H. (Hilary), Martin, M.G. (Martin G.), Martinez-Agosto, J.A. (Julian A.), Nelson, S.F. (Stan F.), Palmer, C.G.S. (Christina G S), Papp, J.C. (Jeanette C.), Parker, N.H. (Neil H.), Sinsheimer, J.S. (Janet S.), Vilain, E. (Eric), Wan, J. (Jijun), Yoon, A.J. (Amanda J.), Zheng, A. (Allison), Brimble, E. (Elise), Ferrero, G.B. (Giovanni Battista), Radio, F.C. (Francesca Clementina), Carli, D. (Diana), Barresi, S. (Sabina), Brusco, A. (Alfredo), Tartaglia, M. (Marco), Thomas, J.M. (Jennifer Muncy), Umana, L. (Luis), Weiss, M.M. (Marjan M.), Gotway, G. (Garrett), Stuurman, K.E. (Kyra), Thompson, M.L. (Michelle L.), McWalter, K. (Kirsty), Stumpel, C.T.R.M. (Constance T R M), Stevens, S.J.C. (Servi J C), Stegmann, A.P.A. (Alexander P A), Tveten, K. (Kristian), Vøllo, A. (Arve), Prescott, T. (Trine), Fagerberg, C. (Christina), Laulund, L.W. (Lone Walentin), Larsen, M.J. (Martin J.), Byler, M. (Melissa), Lebel, R.R. (Robert Roger), Hurst, A.C. (Anna C.), Dean, J. (Joy), Schrier Vergano, S.A. (Samantha A.), Norman, J. (Jennifer), Mercimek-Andrews, S. (Saadet), Neira, J. (Juanita), Van Allen, M.I. (Margot I.), Longo, N. (Nicola), Sellars, E. (Elizabeth), Louie, R.J. (Raymond J.), Cathey, S.S. (Sara S.), Brokamp, E. (Elly), Héron, D. (Delphine), Snyder, M. (Molly), Vanderver, A. (Adeline), Simon, C. (Celeste), de la Cruz, X. (Xavier), Padilla, N. (Natália), Crump, J.G. (J Gage), Chung, W. (Wendy), Garcia, B. (Benjamin), Hakonarson, H. (Hakon), Bhoj, E.J. (Elizabeth J.), Bryant, L. (Laura), Li, D. (Dong), Cox, S.G. (Samuel G.), Marchione, D. (Dylan), Joiner, E.F. (Evan F.), Wilson, K. (Khadija), Janssen, K. (Kevin), Lee, P. (Pearl), March, K. (Keith), Nair, D. (Divya), Sherr, E. (Elliott), Fregeau, B. (Brieana), Wierenga, K.J. (Klaas J.), Wadley, A. (Alexandrea), Mancini, G.M.S. (Grazia), Powell-Hamilton, N. (Nina), Kamp, J.J.P. (Jacques) van de, Grebe, T. (Theresa), Dean, J. (John), Ross, A.J. (Alison), Crawford, H.P. (Heather P.), Powis, Z. (Zoe), Cho, M.T. (Megan T.), Willing, M.C. (Marcia C.), Manwaring, L. (Linda), Schot, R. (Rachel), Nava, C. (Caroline), Afenjar, A. (Alexandra), Lessel, D. (Davor), Wagner, M. (Matias), Klopstock, T. (Thomas), Winkelmann, B., Catarino, C.B. (Claudia B.), Retterer, K. (Kyle), Schuette, J.L. (Jane L.), Innis, J.W. (Jeffrey), Pizzino, A. (Amy), Lüttgen, S. (Sabine), Denecke, J. (Jonas), Strom, T.M. (Tim), Monaghan, K.G. (Kristin G.), Yuan, Z.-F. (Zuo-Fei), Dubbs, H. (Holly), Bend, R. (Renee), Lee, J.A. (Jennifer A.), Lyons, M.J. (Michael J.), Hoefele, J. (Julia), Günthner, R. (Roman), Reutter, H. (Heiko), Keren, B. (Boris), Radtke, K. (Kelly), Sherbini, O. (Omar), Mrokse, C. (Cameron), Helbig, K.L. (Katherine L.), Odent, S. (Sylvie), Cogne, B. (Benjamin), Mercier, S. (Sandra), Bezieau, S. (Stephane), Besnard, T. (Thomas), Kury, S. (Sebastien), Redon, R. (Richard), Reinson, K. (Karit), Wojcik, M.H. (Monica H.), Õunap, K. (Katrin), Ilves, P. (Pilvi), Innes, A.M. (A Micheil), Kernohan, K.D. (Kristin), Costain, G. (Gregory), Meyn, M.S. (M Stephen), Chitayat, D. (David), Zackai, E. (Elaine), Lehman, A. (Anna), Kitson, H. (Hilary), Martin, M.G. (Martin G.), Martinez-Agosto, J.A. (Julian A.), Nelson, S.F. (Stan F.), Palmer, C.G.S. (Christina G S), Papp, J.C. (Jeanette C.), Parker, N.H. (Neil H.), Sinsheimer, J.S. (Janet S.), Vilain, E. (Eric), Wan, J. (Jijun), Yoon, A.J. (Amanda J.), Zheng, A. (Allison), Brimble, E. (Elise), Ferrero, G.B. (Giovanni Battista), Radio, F.C. (Francesca Clementina), Carli, D. (Diana), Barresi, S. (Sabina), Brusco, A. (Alfredo), Tartaglia, M. (Marco), Thomas, J.M. (Jennifer Muncy), Umana, L. (Luis), Weiss, M.M. (Marjan M.), Gotway, G. (Garrett), Stuurman, K.E. (Kyra), Thompson, M.L. (Michelle L.), McWalter, K. (Kirsty), Stumpel, C.T.R.M. (Constance T R M), Stevens, S.J.C. (Servi J C), Stegmann, A.P.A. (Alexander P A), Tveten, K. (Kristian), Vøllo, A. (Arve), Prescott, T. (Trine), Fagerberg, C. (Christina), Laulund, L.W. (Lone Walentin), Larsen, M.J. (Martin J.), Byler, M. (Melissa), Lebel, R.R. (Robert Roger), Hurst, A.C. (Anna C.), Dean, J. (Joy), Schrier Vergano, S.A. (Samantha A.), Norman, J. (Jennifer), Mercimek-Andrews, S. (Saadet), Neira, J. (Juanita), Van Allen, M.I. (Margot I.), Longo, N. (Nicola), Sellars, E. (Elizabeth), Louie, R.J. (Raymond J.), Cathey, S.S. (Sara S.), Brokamp, E. (Elly), Héron, D. (Delphine), Snyder, M. (Molly), Vanderver, A. (Adeline), Simon, C. (Celeste), de la Cruz, X. (Xavier), Padilla, N. (Natália), Crump, J.G. (J Gage), Chung, W. (Wendy), Garcia, B. (Benjamin), Hakonarson, H. (Hakon), and Bhoj, E.J. (Elizabeth J.)
- Abstract
Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A (H3F3A) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation.
- Published
- 2020
- Full Text
- View/download PDF
6. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases
- Author
-
Perenthaler, E., Nikoncuk, A., Yousefi, S., Berdowski, W.M., Alsagob, M., Capo, I., Linde, H.C. van der, Berg, P. van den, Jacobs, E.H., Putar, D., Ghazvini, M., Aronica, E., van, I.W.F., Valk, W.G. de, Herik, E. Medici-van den, Slegtenhorst, M. van, Brick, L., Kozenko, M., Kohler, J.N., Bernstein, J.A., Monaghan, K.G., Begtrup, A., Torene, R., Futaisi, A. Al, Murshedi, F. Al, Mani, R., Azri, F. Al, Kamsteeg, E.J., Mojarrad, M., Eslahi, A., Khazaei, Z., Darmiyan, F.M., Doosti, M., Karimiani, E.G., Vandrovcova, J., Zafar, F., Rana, N., Kandaswamy, K.K., Hertecant, J., Bauer, P., AlMuhaizea, M.A., Salih, M.A., Aldosary, M., Almass, R., Al-Quait, L., Qubbaj, W., Coskun, S., Alahmadi, K.O., Hamad, M.H.A., Alwadaee, S., Awartani, K., Dababo, A.M., Almohanna, F., Colak, D., Dehghani, M., Mehrjardi, M.Y.V., Gunel, M., Ercan-Sencicek, A.G., Passi, G.R., Cheema, H.A., Efthymiou, S., Houlden, H., Bertoli-Avella, A.M., Brooks, A.S., Retterer, K., Maroofian, R., Kaya, N., Ham, T.J. van, Barakat, T.S., Perenthaler, E., Nikoncuk, A., Yousefi, S., Berdowski, W.M., Alsagob, M., Capo, I., Linde, H.C. van der, Berg, P. van den, Jacobs, E.H., Putar, D., Ghazvini, M., Aronica, E., van, I.W.F., Valk, W.G. de, Herik, E. Medici-van den, Slegtenhorst, M. van, Brick, L., Kozenko, M., Kohler, J.N., Bernstein, J.A., Monaghan, K.G., Begtrup, A., Torene, R., Futaisi, A. Al, Murshedi, F. Al, Mani, R., Azri, F. Al, Kamsteeg, E.J., Mojarrad, M., Eslahi, A., Khazaei, Z., Darmiyan, F.M., Doosti, M., Karimiani, E.G., Vandrovcova, J., Zafar, F., Rana, N., Kandaswamy, K.K., Hertecant, J., Bauer, P., AlMuhaizea, M.A., Salih, M.A., Aldosary, M., Almass, R., Al-Quait, L., Qubbaj, W., Coskun, S., Alahmadi, K.O., Hamad, M.H.A., Alwadaee, S., Awartani, K., Dababo, A.M., Almohanna, F., Colak, D., Dehghani, M., Mehrjardi, M.Y.V., Gunel, M., Ercan-Sencicek, A.G., Passi, G.R., Cheema, H.A., Efthymiou, S., Houlden, H., Bertoli-Avella, A.M., Brooks, A.S., Retterer, K., Maroofian, R., Kaya, N., Ham, T.J. van, and Barakat, T.S.
- Abstract
Contains fulltext : 218287.pdf (Publisher’s version ) (Open Access), Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
- Published
- 2020
7. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability
- Author
-
Cogne, B., Ehresmann, S., Beauregard-Lacroix, E., Rousseau, J., Besnard, T., Garcia, T., Petrovski, S., Avni, S., McWalter, K., Blackburn, P.R., Sanders, S.J., Uguen, K., Harris, J., Cohen, J.S., Blyth, M., Lehman, A., Berg, J ., Li, M.H., Kini, U., Joss, S., Lippe, C., Gordon, C.T., Humberson, J.B., Robak, L., Scott, D.A., Sutton, V.R., Skraban, C.M., Johnston, J.J., Poduri, A., Nordenskjold, M., Shashi, V., Gerkes, E.H., Bongers, E.M.H.F., Gilissen, C.F., Zarate, Y.A., Kvarnung, M., Lally, K.P., Kulch, P.A., Daniels, B., Hernandez-Garcia, A., Stong, N., McGaughran, J., Retterer, K., Tveten, K., Sullivan, J., Geisheker, M.R., Stray-Pedersen, A., Tarpinian, J.M., Klee, E.W., Sapp, J.C., Zyskind, J., Holla, O.L., Bedoukian, E., Filippini, F., Guimier, A., Picard, A., Busk, O.L., Punetha, J., Pfundt, R.P., Lindstrand, A., Nordgren, A., Kalb, F., Desai, M., Ebanks, A.H., Jhangiani, S.N., Dewan, T., Akdemir, Z.H. Coban, Telegrafi, A., Zackai, E.H., Begtrup, A., Song, X., Toutain, A., Wentzensen, I.M., Odent, S., Bonneau, D., Latypova, X., Deb, W., Redon, S., Bilan, F., Legendre, M., Troyer, C., Whitlock, K., Caluseriu, O., Murphree, M.I., Pichurin, P.N., Agre, K., Gavrilova, R., Rinne, T.K., Park, M., Shain, C., Heinzen, E.L., Xiao, R., Amiel, J., Lyonnet, S., Isidor, B., Biesecker, L.G., Lowenstein, D., Posey, J.E., Denomme-Pichon, A.S., Ferec, C., et al., Cogne, B., Ehresmann, S., Beauregard-Lacroix, E., Rousseau, J., Besnard, T., Garcia, T., Petrovski, S., Avni, S., McWalter, K., Blackburn, P.R., Sanders, S.J., Uguen, K., Harris, J., Cohen, J.S., Blyth, M., Lehman, A., Berg, J ., Li, M.H., Kini, U., Joss, S., Lippe, C., Gordon, C.T., Humberson, J.B., Robak, L., Scott, D.A., Sutton, V.R., Skraban, C.M., Johnston, J.J., Poduri, A., Nordenskjold, M., Shashi, V., Gerkes, E.H., Bongers, E.M.H.F., Gilissen, C.F., Zarate, Y.A., Kvarnung, M., Lally, K.P., Kulch, P.A., Daniels, B., Hernandez-Garcia, A., Stong, N., McGaughran, J., Retterer, K., Tveten, K., Sullivan, J., Geisheker, M.R., Stray-Pedersen, A., Tarpinian, J.M., Klee, E.W., Sapp, J.C., Zyskind, J., Holla, O.L., Bedoukian, E., Filippini, F., Guimier, A., Picard, A., Busk, O.L., Punetha, J., Pfundt, R.P., Lindstrand, A., Nordgren, A., Kalb, F., Desai, M., Ebanks, A.H., Jhangiani, S.N., Dewan, T., Akdemir, Z.H. Coban, Telegrafi, A., Zackai, E.H., Begtrup, A., Song, X., Toutain, A., Wentzensen, I.M., Odent, S., Bonneau, D., Latypova, X., Deb, W., Redon, S., Bilan, F., Legendre, M., Troyer, C., Whitlock, K., Caluseriu, O., Murphree, M.I., Pichurin, P.N., Agre, K., Gavrilova, R., Rinne, T.K., Park, M., Shain, C., Heinzen, E.L., Xiao, R., Amiel, J., Lyonnet, S., Isidor, B., Biesecker, L.G., Lowenstein, D., Posey, J.E., Denomme-Pichon, A.S., and Ferec, C., et al.
- Abstract
Contains fulltext : 202928.pdf (publisher's version ) (Open Access), Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants.
- Published
- 2019
8. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases
- Author
-
Perenthaler, E. (Elena), Nikoncuk, A. (Anita), Yousefi, S. (Soheil), Berdowski, W.M. (Woutje M.), Alsagob, M. (Maysoon), Capo, I. (Ivan), Linde, H.C. (Herma) van der, van den Berg, P. (Paul), Jacobs, E.H. (Edwin H.), Putar, D. (Darija), Ghazvini, M. (Mehrnaz), Aronica, E.M.A. (Eleonora), IJcken, W.F.J. (Wilfred) van, de Valk, W.G. (Walter G.), Medici-van den Herik, E. (Evita), Slegtenhorst, M.A. (Marjon) van, Brick, L. (Lauren), Kozenko, M. (Mariya), Kohler, J.N. (Jennefer N.), Bernstein, J.A. (Jonathan A.), Monaghan, K.G. (Kristin G.), Begtrup, A. (Amber), Torene, R. (Rebecca), Al Futaisi, A. (Amna), Al Murshedi, F. (Fathiya), Mani, R. (Renjith), Al Azri, F. (Faisal), Kamsteeg, E.J. (Erik-Jan), Mojarrad, M. (Majid), Eslahi, A. (Atieh), Khazaei, Z. (Zaynab), Darmiyan, F.M. (Fateme Massinaei), Doosti, M. (Mohammad), Karimiani, E.G. (Ehsan Ghayoor), Vandrovcova, J. (Jana), Zafar, F. (Faisal), Rana, N. (Nuzhat), Kandaswamy, K.K. (Krishna K.), Hertecant, J. (Jozef), Bauer, P. (Peter), AlMuhaizea, M.A. (Mohammed A.), Salih, M.A. (Mustafa A.), Aldosary, M. (Mazhor), Almass, R. (Rawan), Al-Quait, L. (Laila), Qubbaj, W. (Wafa), Coskun, S. (Serdar), Alahmadi, K.O. (Khaled O.), Hamad, M.H.A. (Muddathir H. A.), Alwadaee, S. (Salem), Awartani, K. (Khalid), Dababo, A.M. (Anas M.), Almohanna, F. (Futwan), Colak, D. (Dilek), Dehghani, M. (Mohammadreza), Mehrjardi, M.Y.V. (Mohammad Yahya Vahidi), Günel, M. (Murat), Ercan-Sencicek, A.G. (A. Gulhan), Passi, G.R. (Gouri Rao), Cheema, H.A. (Huma Arshad), Efthymiou, S. (Stephanie), Houlden, H. (Henry), Bertoli Avella, A.M. (Aida), Brooks, A.S. (Alice), Retterer, K. (Kyle), Maroofian, R. (Reza), Kaya, N. (Namik), Ham, T.J. (Tjakko) van, Barakat, T.S. (Tahsin Stefan), Perenthaler, E. (Elena), Nikoncuk, A. (Anita), Yousefi, S. (Soheil), Berdowski, W.M. (Woutje M.), Alsagob, M. (Maysoon), Capo, I. (Ivan), Linde, H.C. (Herma) van der, van den Berg, P. (Paul), Jacobs, E.H. (Edwin H.), Putar, D. (Darija), Ghazvini, M. (Mehrnaz), Aronica, E.M.A. (Eleonora), IJcken, W.F.J. (Wilfred) van, de Valk, W.G. (Walter G.), Medici-van den Herik, E. (Evita), Slegtenhorst, M.A. (Marjon) van, Brick, L. (Lauren), Kozenko, M. (Mariya), Kohler, J.N. (Jennefer N.), Bernstein, J.A. (Jonathan A.), Monaghan, K.G. (Kristin G.), Begtrup, A. (Amber), Torene, R. (Rebecca), Al Futaisi, A. (Amna), Al Murshedi, F. (Fathiya), Mani, R. (Renjith), Al Azri, F. (Faisal), Kamsteeg, E.J. (Erik-Jan), Mojarrad, M. (Majid), Eslahi, A. (Atieh), Khazaei, Z. (Zaynab), Darmiyan, F.M. (Fateme Massinaei), Doosti, M. (Mohammad), Karimiani, E.G. (Ehsan Ghayoor), Vandrovcova, J. (Jana), Zafar, F. (Faisal), Rana, N. (Nuzhat), Kandaswamy, K.K. (Krishna K.), Hertecant, J. (Jozef), Bauer, P. (Peter), AlMuhaizea, M.A. (Mohammed A.), Salih, M.A. (Mustafa A.), Aldosary, M. (Mazhor), Almass, R. (Rawan), Al-Quait, L. (Laila), Qubbaj, W. (Wafa), Coskun, S. (Serdar), Alahmadi, K.O. (Khaled O.), Hamad, M.H.A. (Muddathir H. A.), Alwadaee, S. (Salem), Awartani, K. (Khalid), Dababo, A.M. (Anas M.), Almohanna, F. (Futwan), Colak, D. (Dilek), Dehghani, M. (Mohammadreza), Mehrjardi, M.Y.V. (Mohammad Yahya Vahidi), Günel, M. (Murat), Ercan-Sencicek, A.G. (A. Gulhan), Passi, G.R. (Gouri Rao), Cheema, H.A. (Huma Arshad), Efthymiou, S. (Stephanie), Houlden, H. (Henry), Bertoli Avella, A.M. (Aida), Brooks, A.S. (Alice), Retterer, K. (Kyle), Maroofian, R. (Reza), Kaya, N. (Namik), Ham, T.J. (Tjakko) van, and Barakat, T.S. (Tahsin Stefan)
- Abstract
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with
- Published
- 2019
- Full Text
- View/download PDF
9. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability
- Author
-
Kury, S., Woerden, G.M. van, Besnard, T., Onori, M.P., Latypova, X., Towne, M.C., Cho, M.T., Prescott, T.E., Ploeg, M.A., Sanders, S., Stessman, H.A.F., Pujol, A., Distel, ben, Robak, L.A., Bernstein, J.A., Denomme-Pichon, A.S., Lesca, G., Sellars, E.A., Berg, J., Carre, W., Busk, O.L., Bon, B.W.M. van, Waugh, J.L., Deardorff, M., Hoganson, G.E., Bosanko, K.B., Johnson, D.S., Dabir, T., Holla, O.L., Sarkar, A., Tveten, K., Bellescize, J. de, Braathen, G.J., Terhal, P.A., Grange, D.K., Haeringen, A. van, Lam, C., Mirzaa, G., Burton, J., Bhoj, E.J., Douglas, J., Santani, A.B., Nesbitt, A.I., Helbig, K.L., Andrews, M.V., Begtrup, A., Tang, S., Gassen, K.L.I. van, Juusola, J., Foss, K., Enns, G.M., Moog, U., Hinderhofer, K., Paramasivam, N., Lincoln, S., Kusako, B.H., Lindenbaum, P., Charpentier, E., Nowak, C.B., Cherot, E., Simonet, T., Ruivenkamp, C.A.L., Hahn, S., Brownstein, C.A., Xia, F., Schmitt, S., Deb, W., Bonneau, D., Nizon, M., Quinquis, D., Chelly, J., Rudolf, G., Sanlaville, D., Parent, P., Gilbert-Dussardier, B., Toutain, A., Sutton, V.R., Thies, J., Peart-Vissers, L.E.L.M., Boisseau, P., Vincent, M., Grabrucker, A.M., Dubourg, C., Tan, W.H., Verbeek, N.E., Granzow, M., Santen, G.W.E., Shendure, J., Isidor, B., Pasquier, L., Redon, R., Yang, Y.P., State, M.W., Kleefstra, T., Cogne, B., Petrovski, S., Retterer, K., Eichler, E.E., Rosenfeld, J.A., Agrawal, P.B., Bezieau, S., Odent, S., Elgersma, Y., Mercier, S., Undiagnosed Dis Network, GEM HUGO, Deciphering Dev Dis Study, Service de génétique médicale [CHU Nantes], Centre hospitalier universitaire de Nantes (CHU Nantes), Department of Neuroscience [Rotterdam, the Netherlands], Erasmus University Medical Center [Rotterdam] (Erasmus MC), Expertise Center for Neurodevelopmental Disorders [Rotterdam, the Netherlands] (ENCORE), Genomics Program and Division of Genetics [Boston, USA], Harvard Medical School [Boston] (HMS)-Boston Children's Hospital-The Manton Center for Orphan Disease Research, Gene Discovery Core [Boston, MA, USA] ( The Manton Center for Orphan Disease Research), Harvard Medical School [Boston] (HMS)-Boston Children's Hospital, GeneDx [Gaithersburg, MD, USA], Department of Medical Genetics [Skien, Norway], Telemark Hospital Trust [Skien, Norway], Department of Psychiatry [San Francisco, CA, USA], University of California [San Francisco] (UCSF), University of California-University of California, Department of Genome Sciences [Seattle] (GS), University of Washington [Seattle], Department of Pharmacology [Omaha, NE, USA], Creighton University Medical School [Omaha, NE, USA], Neurometabolic Diseases Laboratory [Barcelona, Spain], Institut d'Investigació Biomèdica de Bellvitge [Barcelone] (IDIBELL), Centre for Biomedical Research on Rare Diseases [Barcelona, Spain] (CIBERER), Hospital Sant Joan de Déu [Barcelona], Institució Catalana de Recerca i Estudis Avançats (ICREA), Department of Medical Biochemistry [Amsterdam, the Netherlands] (Academic Medical Center), University of Amsterdam [Amsterdam] (UvA), Department of Molecular and Human Genetics [Houston, USA], Baylor College of Medecine, Department of Pediatrics [Stanford], Stanford Medicine, Stanford University-Stanford University, Département de Biochimie et Génétique [Angers], Université d'Angers (UA)-Centre Hospitalier Universitaire d'Angers (CHU Angers), PRES Université Nantes Angers Le Mans (UNAM)-PRES Université Nantes Angers Le Mans (UNAM), Biologie Neurovasculaire et Mitochondriale Intégrée (BNMI), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université d'Angers (UA), Service de Génétique [HCL, Lyon] (Centre de Référence des Anomalies du Développement), Hospices civils de Lyon (HCL), Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Section of Genetics and Metabolism [Little Rock, AR, USA], University of Arkansas for Medical Sciences (UAMS), Molecular and Clinical Medicine [Dundee, UK] (School of Medicine), University of Dundee [UK]-Ninewells Hospital & Medical School [Dundee, UK], Laboratoire de Génétique Moléculaire & Génomique [CHU Rennes], CHU Pontchaillou [Rennes], Department of Human Genetics [Nijmegen], Radboud University Medical Center [Nijmegen], Department of Neurology [Boston], Harvard Medical School [Boston] (HMS)-Massachusetts General Hospital [Boston], Department of Pediatrics [Philadelphia, PA, USA] (Division of Genetics), Children’s Hospital of Philadelphia (CHOP ), Department of Pediatrics [Chicago, IL, USA] (College of Medicine), University of Illinois [Chicago] (UIC), University of Illinois System-University of Illinois System, Sheffield Children's NHS Foundation Trust, Northern Ireland Regional Genetics Centre [Belfast, UK], Belfast City Hospital-Belfast Health and Social Care Trust, Nottingham Regional Genetics Service [Nottingham, UK], City Hospital Campus [Nottingham, UK]-Nottingham University Hospitals NHS Trust [UK], Département d'Epilepsie, Sommeil et Neurophysiologie Pédiatrique [HCL, Lyon], Hospices Civils de Lyon (HCL), Department of Genetics [Utrecht, the Netherlands], University Medical Center [Utrecht], Department of Pediatrics [Saint Louis, MO, USA] (Division of Genetics and Genomic Medicine), Washington University in Saint Louis (WUSTL), Department of Clinical Genetics [Leiden, the Netherlands], Leiden University Medical Center (LUMC), Department of Pediatrics [Seattle, WA, USA] (Division of Genetic Medicine), University of Washington [Seattle]-Seattle Children’s Hospital, Center for Integrative Brain Research [Seattle, WA, USA], University of Washington [Seattle]-Seattle Children's Research Institute, The Center for Applied Genomics [Philadelphia, PA, USA], Division of Human Genetics [Philadelphia, PA, USA], Department of Pathology and Laboratory Medicine [Philadelphia, PA, USA], University of Pennsylvania [Philadelphia]-Perelman School of Medicine, University of Pennsylvania [Philadelphia], Department of Pathology and Laboratory Medicine [Philadelphia, PA, USA] (Perelman School of Medicine), Division of Clinical Genomics [Aliso Viejo, CA, USA], Ambry Genetics [Aliso Viejo, CA, USA], Division of Neurology [Philadelphia, PA, USA], Institute of Human Genetics [Heidelberg, Germany], Universität Heidelberg [Heidelberg], University of Heidelberg, Medical Faculty, unité de recherche de l'institut du thorax UMR1087 UMR6291 (ITX), Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Diagnostic Génétique [CHU Strasbourg], Université de Strasbourg (UNISTRA)-CHU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg (UNISTRA), Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Service de Neurologie [CHU Strasbourg], Hôpital de Hautepierre [Strasbourg]-Centre Hospitalier Universitaire de Strasbourg (CHU de Strasbourg ), Département de génétique médicale en pédiatrie [CHRU Brest], Centre Hospitalier Régional Universitaire de Brest (CHRU Brest), Service de Génétique [CHU Poitiers], Centre hospitalier universitaire de Poitiers (CHU Poitiers), Service de Génétique [CHRU Tours], Centre Hospitalier Régional Universitaire de Tours (CHRU TOURS), Department of Biological Sciences [Limerick, Ireland], University of Limerick (UL), Bernal Institute [Limerick, Ireland], Howard Hughes Medical Institute [Seattle], Howard Hughes Medical Institute (HHMI), Institut de Génétique et Développement de Rennes (IGDR), Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique )-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES), Service de Génétique Clinique [CHU Rennes] (Réseau de Génétique et Génomique Médicale), Hôpitaux Universitaires du Grand Ouest, The Wellcome Trust Sanger Institute [Cambridge], Department of Medicine [Melbourne, Australia], University of Melbourne-Austin Health, Division of Newborn Medicine [Boston, MA, USA], Immunobiology of Human αβ and γδ T Cells and Immunotherapeutic Applications (CRCINA-ÉQUIPE 1), Centre de Recherche en Cancérologie et Immunologie Nantes-Angers (CRCINA), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA), Neurosciences, Physiopathologie Cardiovasculaire et Mitochondriale (MITOVASC), Université d'Angers (UA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Régional Universitaire de Tours (CHRU Tours), Univ Angers, Okina, University of California [San Francisco] (UC San Francisco), University of California (UC)-University of California (UC), Centre de recherche en neurosciences de Lyon - Lyon Neuroscience Research Center (CRNL), Université de Lyon-Université de Lyon-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de génétique moléculaire et génomique médicale [CHU Rennes], Nottingham University Hospitals NHS Trust (NUH)-City Hospital Campus [Nottingham, UK], Universiteit Leiden-Universiteit Leiden, Department of Pediatrics [Seattle, WA, USA], University of Pennsylvania-Perelman School of Medicine, University of Pennsylvania, Universität Heidelberg [Heidelberg] = Heidelberg University, Unité de recherche de l'institut du thorax (ITX-lab), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR de Médecine et des Techniques Médicales (UFR MEDECINE), Université de Nantes (UN)-Université de Nantes (UN), Université de Strasbourg (UNISTRA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS)-Structure Fédérative de Recherche en Biologie et Santé de Rennes ( Biosit : Biologie - Santé - Innovation Technologique ), Service de génétique clinique [Rennes], Université de Rennes (UR)-CHU Pontchaillou [Rennes]-hôpital Sud, Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes)-Université d'Angers (UA)-Université de Nantes (UN)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre hospitalier universitaire de Nantes (CHU Nantes), Amsterdam Gastroenterology Endocrinology Metabolism, Medical Biochemistry, and Bernardo, Elizabeth
- Subjects
0301 basic medicine ,Male ,de novo mutations ,AMPAR ,medicine.disease_cause ,Inbred C57BL ,Mice ,0302 clinical medicine ,Intellectual disability ,CAMK2A ,Exome ,Phosphorylation ,Genetics (clinical) ,Genetics ,Neurons ,Mutation ,[SDV.MHEP] Life Sciences [q-bio]/Human health and pathology ,Brain ,Phenotype ,NMDAR ,intellectual disability ,Female ,Signal transduction ,Rare cancers Radboud Institute for Health Sciences [Radboudumc 9] ,Signal Transduction ,Glutamic Acid ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,Biology ,Article ,Cell Line ,03 medical and health sciences ,[SDV.CAN] Life Sciences [q-bio]/Cancer ,medicine ,Journal Article ,Animals ,Humans ,Protein kinase A ,Neurodevelopmental disorders Donders Center for Medical Neuroscience [Radboudumc 7] ,synaptic plasticity ,medicine.disease ,Mice, Inbred C57BL ,CAMK2 ,CAMK2B ,030104 developmental biology ,HEK293 Cells ,Synaptic plasticity ,Calcium-Calmodulin-Dependent Protein Kinase Type 2 ,030217 neurology & neurosurgery ,[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology - Abstract
Contains fulltext : 182539.pdf (Publisher’s version ) (Closed access) Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.
- Published
- 2017
- Full Text
- View/download PDF
10. High Rate of Recurrent De Novo Mutations in Developmental and Epileptic Encephalopathies
- Author
-
Hamdan, F.F., Myers, C.T., Cossette, P., Lemay, P., Spiegelman, D., Laporte, A.D., Nassif, C., Diallo, O., Monlong, J., Cadieux-Dion, M., Dobrzeniecka, S., Meloche, C., Retterer, K., Cho, M.T., Rosenfeld, J.A., Bi, W., Massicotte, C., Miguet, M., Brunga, L., Regan, B.M., Mo, K., Tam, C., Schneider, A., Hollingsworth, G., FitzPatrick, D.R., Donaldson, A., Canham, N., Blair, E., Kerr, B., Fry, A.E., Thomas, R.H., Shelagh, J., Hurst, J.A., Brittain, H., Blyth, M., Lebel, R.R., Gerkes, E.H., Davis-Keppen, L., Stein, Q., Chung, W.K., Dorison, S.J., Benke, P.J., Fassi, E., Corsten-Janssen, N., Kamsteeg, E.J., Mau-Them, F.T., Bruel, A.L., Verloes, A., Ounap, K., Wojcik, M.H., Albert, D.V.F., Venkateswaran, S., Ware, T., Jones, D., Liu, Y.C., Mohammad, S.S., Bizargity, P., Bacino, C.A., Leuzzi, V., Martinelli, S., Dallapiccola, B., Tartaglia, M., Blumkin, L., Wierenga, K.J., Purcarin, G., O'Byrne, J.J., Stockler, S., Lehman, A., Keren, B., Nougues, M.C., Mignot, C., Auvin, S., Nava, C., Hiatt, S.M., Bebin, M., Shao, Y., Scaglia, F., Lalani, S.R., Frye, R.E., Jarjour, I.T., Jacques, S., Boucher, R.M., Riou, E., Srour, M., Carmant, L., Lortie, A., Major, P., Diadori, P., Dubeau, F., D'Anjou, G., Bourque, G., Berkovic, S.F., Sadleir, L.G., Campeau, P.M., Kibar, Z., Lafreniere, R.G., Girard, S.L., Mercimek-Mahmutoglu, S., Boelman, C., Rouleau, G.A., et al., Hamdan, F.F., Myers, C.T., Cossette, P., Lemay, P., Spiegelman, D., Laporte, A.D., Nassif, C., Diallo, O., Monlong, J., Cadieux-Dion, M., Dobrzeniecka, S., Meloche, C., Retterer, K., Cho, M.T., Rosenfeld, J.A., Bi, W., Massicotte, C., Miguet, M., Brunga, L., Regan, B.M., Mo, K., Tam, C., Schneider, A., Hollingsworth, G., FitzPatrick, D.R., Donaldson, A., Canham, N., Blair, E., Kerr, B., Fry, A.E., Thomas, R.H., Shelagh, J., Hurst, J.A., Brittain, H., Blyth, M., Lebel, R.R., Gerkes, E.H., Davis-Keppen, L., Stein, Q., Chung, W.K., Dorison, S.J., Benke, P.J., Fassi, E., Corsten-Janssen, N., Kamsteeg, E.J., Mau-Them, F.T., Bruel, A.L., Verloes, A., Ounap, K., Wojcik, M.H., Albert, D.V.F., Venkateswaran, S., Ware, T., Jones, D., Liu, Y.C., Mohammad, S.S., Bizargity, P., Bacino, C.A., Leuzzi, V., Martinelli, S., Dallapiccola, B., Tartaglia, M., Blumkin, L., Wierenga, K.J., Purcarin, G., O'Byrne, J.J., Stockler, S., Lehman, A., Keren, B., Nougues, M.C., Mignot, C., Auvin, S., Nava, C., Hiatt, S.M., Bebin, M., Shao, Y., Scaglia, F., Lalani, S.R., Frye, R.E., Jarjour, I.T., Jacques, S., Boucher, R.M., Riou, E., Srour, M., Carmant, L., Lortie, A., Major, P., Diadori, P., Dubeau, F., D'Anjou, G., Bourque, G., Berkovic, S.F., Sadleir, L.G., Campeau, P.M., Kibar, Z., Lafreniere, R.G., Girard, S.L., Mercimek-Mahmutoglu, S., Boelman, C., and Rouleau, G.A., et al.
- Abstract
Item does not contain fulltext, Developmental and epileptic encephalopathy (DEE) is a group of conditions characterized by the co-occurrence of epilepsy and intellectual disability (ID), typically with developmental plateauing or regression associated with frequent epileptiform activity. The cause of DEE remains unknown in the majority of cases. We performed whole-genome sequencing (WGS) in 197 individuals with unexplained DEE and pharmaco-resistant seizures and in their unaffected parents. We focused our attention on de novo mutations (DNMs) and identified candidate genes containing such variants. We sought to identify additional subjects with DNMs in these genes by performing targeted sequencing in another series of individuals with DEE and by mining various sequencing datasets. We also performed meta-analyses to document enrichment of DNMs in candidate genes by leveraging our WGS dataset with those of several DEE and ID series. By combining these strategies, we were able to provide a causal link between DEE and the following genes: NTRK2, GABRB2, CLTC, DHDDS, NUS1, RAB11A, GABBR2, and SNAP25. Overall, we established a molecular diagnosis in 63/197 (32%) individuals in our WGS series. The main cause of DEE in these individuals was de novo point mutations (53/63 solved cases), followed by inherited mutations (6/63 solved cases) and de novo CNVs (4/63 solved cases). De novo missense variants explained a larger proportion of individuals in our series than in other series that were primarily ascertained because of ID. Moreover, these DNMs were more frequently recurrent than those identified in ID series. These observations indicate that the genetic landscape of DEE might be different from that of ID without epilepsy.
- Published
- 2017
11. De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability
- Author
-
Küry, S. (Sébastien), Woerden, G.M. (Geeske) van, Besnard, T. (Thomas), Proietti-Onori, M. (Martina), Latypova, X. (Xénia), Towne, M.C. (Meghan C.), Cho, M.T. (Megan T.), Prescott, T. (Trine), Ploeg, M.A. (Melissa), Sanders, S. (Stephan), Stessman, H.A.F. (Holly A F), Pujol, A. (Aurora), Distel, B. (Ben), Robak, L.A. (Laurie A.), Bernstein, J.A. (Jonathan A.), Denommé-Pichon, A.-S. (Anne-Sophie), Lesca, G. (Gaëtan), Sellars, E.A. (Elizabeth A.), Berg, J. (Jonathan), Carré, W. (Wilfrid), Busk, ØL. (Øyvind Løvold), Bon, B. (Bregje) van, Waugh, J.L. (Jeff L.), Deardorff, M.A. (Matthew), Hoganson, G.E. (George E.), Bosanko, K.B. (Katherine B.), Johnson, D.S. (Diana S.), Dabir, T. (Tabib), Holla, ØL. (Øystein Lunde), Sarkar, A. (Ajoy), Tveten, K. (Kristian), de Bellescize, J. (Julitta), Braathen, G.J. (Geir J.), Terhal, P. (Paulien), Grange, D.K. (Dorothy K.), Haeringen, A. (Arie) van, Lam, C. (Christina), Mirzaa, G.M. (Ghayda), Burton, J. (Jennifer), Bhoj, E.J. (Elizabeth J.), Douglas, J. (Jessica), Santani, A.B. (Avni B.), Nesbitt, A.I. (Addie I.), Helbig, K.L. (Katherine L.), Andrews, M.V. (Marisa V.), Begtrup, A. (Amber), Tang, S. (Sha), van Gassen, K.L.I. (Koen L.I.), Juusola, J. (Jane), Foss, K. (Kimberly), Enns, G. (Gregory), Moog, U. (Ute), Hinderhofer, K. (Katrin), Paramasivam, N. (Nagarajan), Lincoln, S. (Sharyn), Kusako, B.H. (Brandon H.), Lindenbaum, P. (Pierre), Charpentier, E. (Eric), Nowak, C.B. (Catherine B.), Cherot, E. (Elouan), Simonet, T. (Thomas), Ruivenkamp, C.A. (Claudia), Hahn, S. (Sihoun), Brownstein, C.A. (Catherine A.), Xia, F. (Fan), Schmitt, S. (Sébastien), Deb, W. (Wallid), Bonneau, D. (Dominique), Nizon, M. (Mathilde), Quinquis, D. (Delphine), Chelly, J. (Jamel), Rudolf, G. (Gabrielle), Sanlaville, D. (Damien), Parent, P. (Philippe), Gilbert-Dussardier, B. (Brigitte), Toutain, A. (Annick), Sutton, V.R. (V. Reid), Thies, J. (Jenny), Peart-Vissers, L.E.L.M. (Lisenka E L M), Boisseau, P. (Pierre), Vincent, M. (Marie), Grabrucker, A.M. (Andreas M.), Dubourg, C. (Christèle), Tan, W.-H. (Wen-Hann), Verbeek, N.E. (Nienke), Granzow, M. (Martin), Santen, G.W.E. (Gijs), Shendure, J. (Jay), Isidor, B. (Bertrand), Pasquier, L. (Laurent), Redon, R. (Richard), Yang, Y. (Yaping), State, M.W. (Matthew), Kleefstra, T. (Tjitske), Cogné, B. (Benjamin), Petrovski, S. (Slavé), Retterer, K. (Kyle), Eichler, E.E. (Evan), Rosenfeld, J.A. (Jill), Agrawal, P.B. (Pankaj B.), Bézieau, S. (Stéphane), Odent, S. (Sylvie), Elgersma, Y. (Ype), Mercier, S. (Sandra), Küry, S. (Sébastien), Woerden, G.M. (Geeske) van, Besnard, T. (Thomas), Proietti-Onori, M. (Martina), Latypova, X. (Xénia), Towne, M.C. (Meghan C.), Cho, M.T. (Megan T.), Prescott, T. (Trine), Ploeg, M.A. (Melissa), Sanders, S. (Stephan), Stessman, H.A.F. (Holly A F), Pujol, A. (Aurora), Distel, B. (Ben), Robak, L.A. (Laurie A.), Bernstein, J.A. (Jonathan A.), Denommé-Pichon, A.-S. (Anne-Sophie), Lesca, G. (Gaëtan), Sellars, E.A. (Elizabeth A.), Berg, J. (Jonathan), Carré, W. (Wilfrid), Busk, ØL. (Øyvind Løvold), Bon, B. (Bregje) van, Waugh, J.L. (Jeff L.), Deardorff, M.A. (Matthew), Hoganson, G.E. (George E.), Bosanko, K.B. (Katherine B.), Johnson, D.S. (Diana S.), Dabir, T. (Tabib), Holla, ØL. (Øystein Lunde), Sarkar, A. (Ajoy), Tveten, K. (Kristian), de Bellescize, J. (Julitta), Braathen, G.J. (Geir J.), Terhal, P. (Paulien), Grange, D.K. (Dorothy K.), Haeringen, A. (Arie) van, Lam, C. (Christina), Mirzaa, G.M. (Ghayda), Burton, J. (Jennifer), Bhoj, E.J. (Elizabeth J.), Douglas, J. (Jessica), Santani, A.B. (Avni B.), Nesbitt, A.I. (Addie I.), Helbig, K.L. (Katherine L.), Andrews, M.V. (Marisa V.), Begtrup, A. (Amber), Tang, S. (Sha), van Gassen, K.L.I. (Koen L.I.), Juusola, J. (Jane), Foss, K. (Kimberly), Enns, G. (Gregory), Moog, U. (Ute), Hinderhofer, K. (Katrin), Paramasivam, N. (Nagarajan), Lincoln, S. (Sharyn), Kusako, B.H. (Brandon H.), Lindenbaum, P. (Pierre), Charpentier, E. (Eric), Nowak, C.B. (Catherine B.), Cherot, E. (Elouan), Simonet, T. (Thomas), Ruivenkamp, C.A. (Claudia), Hahn, S. (Sihoun), Brownstein, C.A. (Catherine A.), Xia, F. (Fan), Schmitt, S. (Sébastien), Deb, W. (Wallid), Bonneau, D. (Dominique), Nizon, M. (Mathilde), Quinquis, D. (Delphine), Chelly, J. (Jamel), Rudolf, G. (Gabrielle), Sanlaville, D. (Damien), Parent, P. (Philippe), Gilbert-Dussardier, B. (Brigitte), Toutain, A. (Annick), Sutton, V.R. (V. Reid), Thies, J. (Jenny), Peart-Vissers, L.E.L.M. (Lisenka E L M), Boisseau, P. (Pierre), Vincent, M. (Marie), Grabrucker, A.M. (Andreas M.), Dubourg, C. (Christèle), Tan, W.-H. (Wen-Hann), Verbeek, N.E. (Nienke), Granzow, M. (Martin), Santen, G.W.E. (Gijs), Shendure, J. (Jay), Isidor, B. (Bertrand), Pasquier, L. (Laurent), Redon, R. (Richard), Yang, Y. (Yaping), State, M.W. (Matthew), Kleefstra, T. (Tjitske), Cogné, B. (Benjamin), Petrovski, S. (Slavé), Retterer, K. (Kyle), Eichler, E.E. (Evan), Rosenfeld, J.A. (Jill), Agrawal, P.B. (Pankaj B.), Bézieau, S. (Stéphane), Odent, S. (Sylvie), Elgersma, Y. (Ype), and Mercier, S. (Sandra)
- Abstract
Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.
- Published
- 2017
- Full Text
- View/download PDF
12. Additional de novo missense genetic variants in NALCN associated with CLIFAHDD syndrome
- Author
-
Vivero, M., primary, Cho, M.T., additional, Begtrup, A., additional, Wentzensen, I.M., additional, Walsh, L., additional, Payne, K., additional, Zarate, Y.A., additional, Bosanko, K., additional, Schaefer, G.B., additional, DeBrosse, S., additional, Pollack, L., additional, Mason, K., additional, Retterer, K., additional, DeWard, S., additional, Juusola, J., additional, and Chung, W.K., additional
- Published
- 2017
- Full Text
- View/download PDF
13. Association of the missense variant p.Arg203Trp in PACS1 as a cause of intellectual disability and seizures
- Author
-
Stern, D., primary, Cho, M.T., additional, Chikarmane, R., additional, Willaert, R., additional, Retterer, K., additional, Kendall, F., additional, Deardorff, M., additional, Hopkins, S., additional, Bedoukian, E., additional, Slavotinek, A., additional, Schrier Vergano, S., additional, Spangler, B., additional, McDonald, M., additional, McConkie-Rosell, A., additional, Burton, B.K., additional, Kim, K.H., additional, Oundjian, N., additional, Kronn, D., additional, Chandy, N., additional, Baskin, B., additional, Guillen Sacoto, M.J., additional, Wentzensen, I.M., additional, McLaughlin, H.M., additional, McKnight, D., additional, and Chung, W.K., additional
- Published
- 2017
- Full Text
- View/download PDF
14. Mutations in HIVEP2 are associated with developmental delay, intellectual disability, and dysmorphic features
- Author
-
Steinfeld, H. (Hallie), Cho, M.T. (Megan T.), Retterer, K. (Kyle), Person, R. (Rick), Schaefer, G.B. (G. Bradley), Danylchuk, N. (Noelle), Malik, S. (Saleem), Wechsler, S.B. (Stephanie Burns), Wheeler, P.G. (Patricia G.), van Gassen, K.L.I. (Koen L.I.), Terhal, P. (Paulien), Verhoeven, V.J.M. (Virginie), Slegtenhorst, M.A. (Marjon) van, Monaghan, K.G. (Kristin G.), Henderson, L.B. (Lindsay B.), Chung, W. (Wendy), Steinfeld, H. (Hallie), Cho, M.T. (Megan T.), Retterer, K. (Kyle), Person, R. (Rick), Schaefer, G.B. (G. Bradley), Danylchuk, N. (Noelle), Malik, S. (Saleem), Wechsler, S.B. (Stephanie Burns), Wheeler, P.G. (Patricia G.), van Gassen, K.L.I. (Koen L.I.), Terhal, P. (Paulien), Verhoeven, V.J.M. (Virginie), Slegtenhorst, M.A. (Marjon) van, Monaghan, K.G. (Kristin G.), Henderson, L.B. (Lindsay B.), and Chung, W. (Wendy)
- Abstract
Human immunodeficiency virus type I enhancer binding protein 2 (HIVEP2) has been previously associated with intellectual disability and developmental delay in three patients. Here, we describe six patients with developmental delay, intellectual disability, and dysmorphic features with de novo likely gene-damaging variants in HIVEP2 identified by whole-exome sequencing (WES). HIVEP2 encodes a large transcription factor that regulates various neurodevelopmental pathways. Our findings provide further evidence that pathogenic variants in HIVEP2 lead to intellectual disabilities and developmental delay.
- Published
- 2016
- Full Text
- View/download PDF
15. De novo loss of function mutations in KIAA2022 are associated with epilepsy and neurodevelopmental delay in females
- Author
-
Webster, R., primary, Cho, M.T., additional, Retterer, K., additional, Millan, F., additional, Nowak, C., additional, Douglas, J., additional, Ahmad, A., additional, Raymond, G.V., additional, Johnson, M.R., additional, Pujol, A., additional, Begtrup, A., additional, McKnight, D., additional, Devinsky, O., additional, and Chung, W.K., additional
- Published
- 2016
- Full Text
- View/download PDF
16. Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling
- Author
-
Snijders Blok, C., Madsen, E., Juusola, J., Gilissen, C.F., Baralle, D., Reijnders, M.R.F., Venselaar, H., Helsmoortel, C., Cho, M.T., Hoischen, A., Vissers, L.E., Koemans, T.S., Wissink, W.M., Eichler, E.E., Romano, C, Esch, H. Van, Stumpel, C., Vreeburg, M., Smeets, E., Oberndorff, K., Bon, B.W. van, Shaw, M., Gecz, J., Haan, E., Bienek, M., Jensen, C., Loeys, B.L., Dijck, A. Van, Innes, A.M., Racher, H., Vermeer, S., Donato, N. Di, Rump, A., Tatton-Brown, K., Parker, M.J., Henderson, A., Lynch, S.A., Fryer, A., Ross, A., Vasudevan, P., Kini, U., Newbury-Ecob, R., Chandler, K., Male, A., Dijkstra, S, Schieving, J., Giltay, J., Gassen, K.L. van, Schuurs-Hoeijmakers, J., Tan, P.L., Pediaditakis, I., Haas, S.A., Retterer, K., Reed, P., Monaghan, K.G., Haverfield, E., Natowicz, M., Myers, A., Kruer, M.C., Stein, Q., Strauss, K.A., Brigatti, K.W., Keating, K., Burton, B.K., Kim, K.H., Charrow, J., Norman, J., Foster-Barber, A., Kline, A.D., Kimball, A., Zackai, E., Harr, M., Fox, J., McLaughlin, J., Lindstrom, K., Haude, K.M., Roozendaal, K. van, Brunner, H.G., Chung, W.K., Kooy, R.F., Pfundt, R., Kalscheuer, V., Mehta, S.G., Katsanis, N., Kleefstra, T., Snijders Blok, C., Madsen, E., Juusola, J., Gilissen, C.F., Baralle, D., Reijnders, M.R.F., Venselaar, H., Helsmoortel, C., Cho, M.T., Hoischen, A., Vissers, L.E., Koemans, T.S., Wissink, W.M., Eichler, E.E., Romano, C, Esch, H. Van, Stumpel, C., Vreeburg, M., Smeets, E., Oberndorff, K., Bon, B.W. van, Shaw, M., Gecz, J., Haan, E., Bienek, M., Jensen, C., Loeys, B.L., Dijck, A. Van, Innes, A.M., Racher, H., Vermeer, S., Donato, N. Di, Rump, A., Tatton-Brown, K., Parker, M.J., Henderson, A., Lynch, S.A., Fryer, A., Ross, A., Vasudevan, P., Kini, U., Newbury-Ecob, R., Chandler, K., Male, A., Dijkstra, S, Schieving, J., Giltay, J., Gassen, K.L. van, Schuurs-Hoeijmakers, J., Tan, P.L., Pediaditakis, I., Haas, S.A., Retterer, K., Reed, P., Monaghan, K.G., Haverfield, E., Natowicz, M., Myers, A., Kruer, M.C., Stein, Q., Strauss, K.A., Brigatti, K.W., Keating, K., Burton, B.K., Kim, K.H., Charrow, J., Norman, J., Foster-Barber, A., Kline, A.D., Kimball, A., Zackai, E., Harr, M., Fox, J., McLaughlin, J., Lindstrom, K., Haude, K.M., Roozendaal, K. van, Brunner, H.G., Chung, W.K., Kooy, R.F., Pfundt, R., Kalscheuer, V., Mehta, S.G., Katsanis, N., and Kleefstra, T.
- Abstract
Contains fulltext : 153453.pdf (publisher's version ) (Closed access), Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.
- Published
- 2015
17. Association of the missense variant p. Arg203Trp in PACS1 as a cause of intellectual disability and seizures.
- Author
-
Stern, D., Cho, M.T., Chikarmane, R., Willaert, R., Retterer, K., Kendall, F., Deardorff, M., Hopkins, S., Bedoukian, E., Slavotinek, A., Schrier Vergano, S., Spangler, B., McDonald, M., McConkie‐Rosell, A., Burton, B.K., Kim, K.H., Oundjian, N., Kronn, D., Chandy, N., and Baskin, B.
- Subjects
INTELLECTUAL disabilities ,SEIZURES (Medicine) ,CRANIOFACIAL abnormalities - Abstract
Graphical abstract key: ADHD, attention deficit hyperactivity disorder; ASD, atrial septal defect; DD, developmental delay; EEG, electroencephalogram; Ht, height; ID, intellectual disability; OCD, obsessive‐compulsive disorder; OFC, open fontanelle; PDA, patent ductus arteriosis; PFO, patent foramen ovale; VSD, ventricular septal defect; Wt, weight. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
18. De novo loss of function mutations in KIAA2022 are associated with epilepsy and neurodevelopmental delay in females.
- Author
-
Webster, R., Cho, M.T., Retterer, K., Millan, F., Nowak, C., Douglas, J., Ahmad, A., Raymond, G.V., Johnson, M.R., Pujol, A., Begtrup, A., McKnight, D., Devinsky, O., and Chung, W.K.
- Subjects
GENETIC mutation ,EPILEPSY ,BRAIN diseases ,INTELLECTUAL disabilities ,AUTISM - Abstract
Copyright of Clinical Genetics is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
- Published
- 2017
- Full Text
- View/download PDF
19. Dual molecular effects of dominant RORA mutations cause two variants of syndromic intellectual disability with either autistic features or cerebellar ataxia
- Author
-
Latypova, X., Guissart, C., Khan, T. N., Rollier, P., Stamberger, H., Mcwalter, K., Cho, M. T., Kjaergaard, S., Weckhuysen, S., Lesca, G., Besnard, T., KATRIN OUNAP, Schema, L., Chiocchetti, A. G., Mcdonald, M., Bellescize, J., Vincent, M., Esch, H., Sattler, S., Forghani, I., Thiffault, I., Freitag, C. M., Barbouth, D., Cadieux-Dion, M., Saffina, N. P., Grote, L., Carre, W., Saunders, C., Pajusalu, S., Boland, A., Karlowicz, D. Hays, Deleuze, J., Wojcik, M. H., Pressman, R., Isidor, B., Vogels, A., Paesschen, W., Rivier, F., Leboucq, N., Cogne, B., Sasorith, S., Sanlaville, D., Retterer, K., Odent, S., Katsanis, N., Bezieau, S., Koenig, M., Pasquier, L., Davis, E. E., and Kury, S.
20. Monogenic disorders associated with motor speech phenotypes in children and adolescents undergoing clinical exome sequencing.
- Author
-
Mitchel MW, Oetjens M, Berry ASF, Johns A, Moreno-De-Luca A, Torene RI, Strande NT, DiStefano MT, Dyer LH, Brandt T, Finucane BM, Ledbetter DH, Retterer K, Martin CL, and Myers SM
- Abstract
Purpose: Prior studies investigating the genetic architecture of pediatric motor speech disorders (MSDs) have been limited by small sample sizes and an exclusive focus on apraxia. We aimed to identify pathogenic genomic variants associated with MSDs in a large pediatric population referred for exome sequencing (ES)., Methods: We identified pediatric patients with MSDs who had clinical ES between 2012-2022. The rate of pathogenic/likely pathogenic (P/LP) findings considered causative of the MSD phenotype was determined and delineated by sex and neurodevelopmental comorbidity. Gene-based burden testing compared the rate of P/LP variants in each gene in MSD cases vs. a comparison clinical ES cohort., Results: Positive diagnostic results were detected in 527 of 2004 (26.3%) patients with MSDs, with higher diagnostic rates for females and for individuals with neurodevelopmental comorbidities. P/LP sequence variants were detected in 262 genes. Gene-based, case-referent burden analysis revealed that 30 genes were nominally associated with MSDs, two of which (SETBP1, ADCY5) survived exome-wide correction., Conclusion: Over 25% of patients with MSDs were found to harbor P/LP variants in 262 genes, many of which have not previously been associated with MSDs. Potential clinical implications include early implementation of intensive speech therapy for children diagnosed with monogenic causes of MSDs., (Copyright © 2025. Published by Elsevier Inc.)
- Published
- 2025
- Full Text
- View/download PDF
21. Expanded Newborn Screening Using Genome Sequencing for Early Actionable Conditions.
- Author
-
Ziegler A, Koval-Burt C, Kay DM, Suchy SF, Begtrup A, Langley KG, Hernan R, Amendola LM, Boyd BM, Bradley J, Brandt T, Cohen LL, Coffey AJ, Devaney JM, Dygulska B, Friedman B, Fuleihan RL, Gyimah A, Hahn S, Hofherr S, Hruska KS, Hu Z, Jeanne M, Jin G, Johnson DA, Kavus H, Leibel RL, Lobritto SJ, McGee S, Milner JD, McWalter K, Monaghan KG, Orange JS, Pimentel Soler N, Quevedo Y, Ratner S, Retterer K, Shah A, Shapiro N, Sicko RJ, Silver ES, Strom S, Torene RI, Williams O, Ustach VD, Wynn J, Taft RJ, Kruszka P, Caggana M, and Chung WK
- Subjects
- Humans, Infant, Newborn, Prospective Studies, Female, New York City, Male, Whole Genome Sequencing, Feasibility Studies, Genetic Testing methods, Genetic Diseases, Inborn diagnosis, Ethnicity genetics, Neonatal Screening methods
- Abstract
Importance: The feasibility of implementing genome sequencing as an adjunct to traditional newborn screening (NBS) in newborns of different racial and ethnic groups is not well understood., Objective: To report interim results of acceptability, feasibility, and outcomes of an ongoing genomic NBS study in a diverse population in New York City within the context of the New York State Department of Health Newborn Screening Program., Design, Setting, and Participants: The Genomic Uniform-screening Against Rare Disease in All Newborns (GUARDIAN) study was a multisite, single-group, prospective, observational investigation of supplemental newborn genome screening with a planned enrollment of 100 000 participants. Parent-reported race and ethnicity were recorded at the time of recruitment. Results of the first 4000 newborns enrolled in 6 New York City hospitals between September 2022 and July 2023 are reported here as part of a prespecified interim analysis., Exposure: Sequencing of 156 early-onset genetic conditions with established interventions selected by the investigators were screened in all participants and 99 neurodevelopmental disorders associated with seizures were optional., Main Outcomes and Measures: The primary outcome was screen-positive rate. Additional outcomes included enrollment rate and successful completion of sequencing., Results: Over 11 months, 5555 families were approached and 4000 (72.0%) consented to participate. Enrolled participants reflected a diverse group by parent-reported race (American Indian or Alaska Native, 0.5%; Asian, 16.5%; Black, 25.1%; Native Hawaiian or Other Pacific Islander, 0.1%; White, 44.7%; 2 or more races, 13.0%) and ethnicity (Hispanic, 44.0%; not Hispanic, 56.0%). The majority of families consented to screening of both groups of conditions (both groups, 90.6%; disorders with established interventions only, 9.4%). Testing was successfully completed for 99.6% of cases. The screen-positive rate was 3.7%, including treatable conditions that are not currently included in NBS., Conclusions and Relevance: These interim findings demonstrate the feasibility of targeted interpretation of a predefined set of genes from genome sequencing in a population of different racial and ethnic groups. DNA sequencing offers an additional method to improve screening for conditions already included in NBS and to add those that cannot be readily screened because there is no biomarker currently detectable in dried blood spots. Additional studies are required to understand if these findings are generalizable to populations of different racial and ethnic groups and whether introduction of sequencing leads to changes in management and improved health outcomes., Trial Registration: ClinicalTrials.gov Identifier: NCT05990179.
- Published
- 2025
- Full Text
- View/download PDF
22. Genotype-First Analysis in an Unselected Health System-Based Population and Phenotypic Severity of COL4A5 Variants.
- Author
-
Zellers M, Solanki K, Kelly MA, Murphy KM, Retterer K, Kirchner HL, Bucaloiu ID, Moore B, Mirshahi T, and Chang AR
- Published
- 2024
- Full Text
- View/download PDF
23. Federated analysis of autosomal recessive coding variants in 29,745 developmental disorder patients from diverse populations.
- Author
-
Chundru VK, Zhang Z, Walter K, Lindsay SJ, Danecek P, Eberhardt RY, Gardner EJ, Malawsky DS, Wigdor EM, Torene R, Retterer K, Wright CF, Ólafsdóttir H, Guillen Sacoto MJ, Ayaz A, Akbeyaz IH, Türkdoğan D, Al Balushi AI, Bertoli-Avella A, Bauer P, Szenker-Ravi E, Reversade B, McWalter K, Sheridan E, Firth HV, Hurles ME, Samocha KE, Ustach VD, and Martin HC
- Subjects
- Humans, Female, Male, Exome genetics, Genetic Predisposition to Disease, Genetic Variation, Acyltransferases genetics, Cohort Studies, Mutation, Missense, Genes, Recessive, Developmental Disabilities genetics
- Abstract
Autosomal recessive coding variants are well-known causes of rare disorders. We quantified the contribution of these variants to developmental disorders in a large, ancestrally diverse cohort comprising 29,745 trios, of whom 20.4% had genetically inferred non-European ancestries. The estimated fraction of patients attributable to exome-wide autosomal recessive coding variants ranged from ~2-19% across genetically inferred ancestry groups and was significantly correlated with average autozygosity. Established autosomal recessive developmental disorder-associated (ARDD) genes explained 84.0% of the total autosomal recessive coding burden, and 34.4% of the burden in these established genes was explained by variants not already reported as pathogenic in ClinVar. Statistical analyses identified two novel ARDD genes: KBTBD2 and ZDHHC16. This study expands our understanding of the genetic architecture of developmental disorders across diverse genetically inferred ancestry groups and suggests that improving strategies for interpreting missense variants in known ARDD genes may help diagnose more patients than discovering the remaining genes., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
24. Genotype-first analysis in an unselected health system-based population reveals variable phenotypic severity of COL4A5 variants.
- Author
-
Zellers M, Solanki K, Kelly MA, Murphy KM, Retterer K, Kirchner HL, Bucaloiu ID, Moore B, Mirshahi T, and Chang AR
- Abstract
Introduction: Our knowledge of X-linked Alport Syndrome [AS] comes mostly from selected cohorts with more severe disease., Methods: We examined the phenotypic spectrum of X-linked AS in males and females with a genotype-based approach using data from the Geisinger MyCode DiscovEHR study, an unselected health system-based cohort with exome sequencing and electronic health records. Patients with COL4A5 variants reported as pathogenic (P) or likely pathogenic (LP) in ClinVar, or protein-truncating variants (PTVs), were each matched with up to 5 controls without COL4A3/4/5 variants by sociodemographics, diabetes diagnosis, and year of first outpatient encounter. AS-related phenotypes included dipstick hematuria, bilateral sensorineural hearing loss (BSHL), proteinuria, decreased eGFR, and ESKD., Results: Out of 170,856 patients, there were 29 hemizygous males (mean age 52.0 y [SD 20.0]) and 55 heterozygous females (mean age 59.3 y [SD 18.8]) with a COL4A5 P/LP variant, including 48 with the hypomorphic variant p.Gly624Asp. Overall, penetrance (having any AS phenotypic feature) was highest for non-p.Gly624Asp P/LP variants (males: 94%, females: 85%), intermediate for p.Gly624Asp (males: 77%, females: 69%), compared to controls (males: 32%; females: 50%). The proportion with ESKD was highest for males with P/LP variants (44%), intermediate for males with p.Gly624Asp (15%) and females with P/LP variants (10%), compared to controls (males: 3%, females 2%). Only 47% of individuals with COL4A5 had completed albuminuria screening, and a minority were taking renin-angiotensin aldosterone system (RAAS) inhibitors. Only 38% of males and 16% of females had a known diagnosis of Alport syndrome or thin basement membrane disease., Conclusion: In an unselected cohort, we show increased risks of AS-related phenotypes in men and women compared to matched controls, while showing a wider spectrum of severity than has been described previously and variability by genotype. Future studies are needed to determine whether early genetic diagnosis can improve outcomes in Alport Syndrome., Competing Interests: Conflicts of interest: No potential conflicts of interest relevant to this article were reported.
- Published
- 2024
- Full Text
- View/download PDF
25. Systematic analysis of variants escaping nonsense-mediated decay uncovers candidate Mendelian diseases.
- Author
-
Torene RI, Guillen Sacoto MJ, Millan F, Zhang Z, McGee S, Oetjens M, Heise E, Chong K, Sidlow R, O'Grady L, Sahai I, Martin CL, Ledbetter DH, Myers SM, Mitchell KJ, and Retterer K
- Subjects
- Humans, Retrospective Studies, Mutation genetics, Phenotype, Epilepsy genetics, Neurodevelopmental Disorders genetics
- Abstract
Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes., Competing Interests: Declaration of interests M.J.G.S. and F.M. are shareholders of GeneDx. D.H.L. consults with Natera, Inc.; MyOme, Inc.; X-Therma, Inc.; Nest Genomics, Inc.; Singular Genomics, Inc.; and CuriMeta, Inc. R.S. is on the advisory board for Guide Genetics., (Copyright © 2023 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
26. The landscape of reported VUS in multi-gene panel and genomic testing: Time for a change.
- Author
-
Rehm HL, Alaimo JT, Aradhya S, Bayrak-Toydemir P, Best H, Brandon R, Buchan JG, Chao EC, Chen E, Clifford J, Cohen ASA, Conlin LK, Das S, Davis KW, Del Gaudio D, Del Viso F, DiVincenzo C, Eisenberg M, Guidugli L, Hammer MB, Harrison SM, Hatchell KE, Dyer LH, Hoang LU, Holt JM, Jobanputra V, Karbassi ID, Kearney HM, Kelly MA, Kelly JM, Kluge ML, Komala T, Kruszka P, Lau L, Lebo MS, Marshall CR, McKnight D, McWalter K, Meng Y, Nagan N, Neckelmann CS, Neerman N, Niu Z, Paolillo VK, Paolucci SA, Perry D, Pesaran T, Radtke K, Rasmussen KJ, Retterer K, Saunders CJ, Spiteri E, Stanley C, Szuto A, Taft RJ, Thiffault I, Thomas BC, Thomas-Wilson A, Thorpe E, Tidwell TJ, Towne MC, and Zouk H
- Subjects
- Humans, Genomics, Exome genetics, North America, Genetic Predisposition to Disease, Genetic Testing methods
- Abstract
Purpose: Variants of uncertain significance (VUS) are a common result of diagnostic genetic testing and can be difficult to manage with potential misinterpretation and downstream costs, including time investment by clinicians. We investigated the rate of VUS reported on diagnostic testing via multi-gene panels (MGPs) and exome and genome sequencing (ES/GS) to measure the magnitude of uncertain results and explore ways to reduce their potentially detrimental impact., Methods: Rates of inconclusive results due to VUS were collected from over 1.5 million sequencing test results from 19 clinical laboratories in North America from 2020 to 2021., Results: We found a lower rate of inconclusive test results due to VUSs from ES/GS (22.5%) compared with MGPs (32.6%; P < .0001). For MGPs, the rate of inconclusive results correlated with panel size. The use of trios reduced inconclusive rates (18.9% vs 27.6%; P < .0001), whereas the use of GS compared with ES had no impact (22.2% vs 22.6%; P = ns)., Conclusion: The high rate of VUS observed in diagnostic MGP testing warrants examining current variant reporting practices. We propose several approaches to reduce reported VUS rates, while directing clinician resources toward important VUS follow-up., Competing Interests: Conflict of Interest All authors are or were employed by clinical laboratories offering genetic testing services, as indicated by their affiliations. Additional existing conflicts or those that were relevant at the time of data collection and publication include the following: Swaroop Aradhya, Elaine Chen, Kathryn E. Hatchell, and Dianalee McKnight - stockholders of Invitae Corp.; Christina DiVincenzo, Izabela D. Karbassi - stockholders of Quest Diagnostics; Kyle Retterer - past stockholder of Sema4 and Opko Health; Kyle W. Davis, Nir Neerman, and Christine Stanley - stockholders of Variantyx; Denise Perry, Ryan Taft, Erin Thorpe, and Brittany Thomas - stockholders of Illumina, Inc., (Copyright © 2023 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
27. Rare pathogenic variants in WNK3 cause X-linked intellectual disability.
- Author
-
Küry S, Zhang J, Besnard T, Caro-Llopis A, Zeng X, Robert SM, Josiah SS, Kiziltug E, Denommé-Pichon AS, Cogné B, Kundishora AJ, Hao LT, Li H, Stevenson RE, Louie RJ, Deb W, Torti E, Vignard V, McWalter K, Raymond FL, Rajabi F, Ranza E, Grozeva D, Coury SA, Blanc X, Brischoux-Boucher E, Keren B, Õunap K, Reinson K, Ilves P, Wentzensen IM, Barr EE, Guihard SH, Charles P, Seaby EG, Monaghan KG, Rio M, van Bever Y, van Slegtenhorst M, Chung WK, Wilson A, Quinquis D, Bréhéret F, Retterer K, Lindenbaum P, Scalais E, Rhodes L, Stouffs K, Pereira EM, Berger SM, Milla SS, Jaykumar AB, Cobb MH, Panchagnula S, Duy PQ, Vincent M, Mercier S, Gilbert-Dussardier B, Le Guillou X, Audebert-Bellanger S, Odent S, Schmitt S, Boisseau P, Bonneau D, Toutain A, Colin E, Pasquier L, Redon R, Bouman A, Rosenfeld JA, Friez MJ, Pérez-Peña H, Akhtar Rizvi SR, Haider S, Antonarakis SE, Schwartz CE, Martínez F, Bézieau S, Kahle KT, and Isidor B
- Subjects
- Brain abnormalities, Catalytic Domain genetics, Hemizygote, Humans, Loss of Function Mutation, Male, Maternal Inheritance genetics, Mutation, Missense, Phosphorylation, X-Linked Intellectual Disability genetics, Protein Serine-Threonine Kinases chemistry, Protein Serine-Threonine Kinases genetics, Symporters metabolism
- Abstract
Purpose: WNK3 kinase (PRKWNK3) has been implicated in the development and function of the brain via its regulation of the cation-chloride cotransporters, but the role of WNK3 in human development is unknown., Method: We ascertained exome or genome sequences of individuals with rare familial or sporadic forms of intellectual disability (ID)., Results: We identified a total of 6 different maternally-inherited, hemizygous, 3 loss-of-function or 3 pathogenic missense variants (p.Pro204Arg, p.Leu300Ser, p.Glu607Val) in WNK3 in 14 male individuals from 6 unrelated families. Affected individuals had ID with variable presence of epilepsy and structural brain defects. WNK3 variants cosegregated with the disease in 3 different families with multiple affected individuals. This included 1 large family previously diagnosed with X-linked Prieto syndrome. WNK3 pathogenic missense variants localize to the catalytic domain and impede the inhibitory phosphorylation of the neuronal-specific chloride cotransporter KCC2 at threonine 1007, a site critically regulated during the development of synaptic inhibition., Conclusion: Pathogenic WNK3 variants cause a rare form of human X-linked ID with variable epilepsy and structural brain abnormalities and implicate impaired phospho-regulation of KCC2 as a pathogenic mechanism., Competing Interests: Conflict of Interest E.T., K.M., K.R., I.M.W., K.G.M., and L.R. are employees of GeneDx, LLC. K.R. is a shareholder of OPKO Health, Inc. The Department of Molecular and Human Genetics at Baylor College of Medicine receives revenue from clinical genetic testing conducted at Baylor Genetics Laboratories. All other authors declare no conflicts of interest., (Copyright © 2022 American College of Medical Genetics and Genomics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
28. Response to Hamosh et al.
- Author
-
Biesecker LG, Adam MP, Alkuraya FS, Amemiya AR, Bamshad MJ, Beck AE, Bennett JT, Bird LM, Carey JC, Chung B, Clark RD, Cox TC, Curry C, Dinulos MBP, Dobyns WB, Giampietro PF, Girisha KM, Glass IA, Graham JM Jr, Gripp KW, Haldeman-Englert CR, Hall BD, Innes AM, Kalish JM, Keppler-Noreuil KM, Kosaki K, Kozel BA, Mirzaa GM, Mulvihill JJ, Nowaczyk MJM, Pagon RA, Retterer K, Rope AF, Sanchez-Lara PA, Seaver LH, Shieh JT, Slavotinek AM, Sobering AK, Stevens CA, Stevenson DA, Tan TY, Tan WH, Tsai AC, Weaver DD, Williams MS, Zackai E, and Zarate YA
- Published
- 2021
- Full Text
- View/download PDF
29. Uniparental disomy in a population of 32,067 clinical exome trios.
- Author
-
Scuffins J, Keller-Ramey J, Dyer L, Douglas G, Torene R, Gainullin V, Juusola J, Meck J, and Retterer K
- Subjects
- DNA Copy Number Variations genetics, Homozygote, Humans, Exome Sequencing, Exome genetics, Uniparental Disomy genetics
- Abstract
Purpose: Data on the clinical prevalence and spectrum of uniparental disomy (UPD) remain limited. Trio exome sequencing (ES) presents a comprehensive method for detection of UPD alongside sequence and copy-number variant analysis., Methods: We analyzed 32,067 ES trios referred for diagnostic testing to create a profile of UPD events and their disease associations. ES single-nucleotide polymorphism (SNP) and copy-number data were used to identify both whole-chromosome and segmental UPD and to categorize whole-chromosome results as isodisomy, heterodisomy, or mixed., Results: Ninety-nine whole-chromosome and 13 segmental UPD events were identified. Of these, 29 were associated with an imprinting disorder, and 16 were associated with a positive test result through homozygous sequence variants. Isodisomy was more commonly observed in large chromosomes along with a higher rate of homozygous pathogenic variants, while heterodisomy was more frequent in chromosomes associated with imprinting or trisomy mosaicism (14, 15, 16, 20, 22)., Conclusion: Whole-chromosome UPD was observed in 0.31% of cases, resulting in a diagnostic finding in 0.14%. Only three UPD-positive cases had a diagnostic finding unrelated to the UPD. Thirteen UPD events were identified in cases with prior normal SNP chromosomal microarray results, demonstrating the additional diagnostic value of UPD detection by trio ES.
- Published
- 2021
- Full Text
- View/download PDF
30. Author Correction: Mutations disrupting neuritogenesis genes confer risk for cerebral palsy.
- Author
-
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, and Kruer MC
- Published
- 2021
- Full Text
- View/download PDF
31. Molecular Diagnostic Yield of Exome Sequencing in Patients With Cerebral Palsy.
- Author
-
Moreno-De-Luca A, Millan F, Pesacreta DR, Elloumi HZ, Oetjens MT, Teigen C, Wain KE, Scuffins J, Myers SM, Torene RI, Gainullin VG, Arvai K, Kirchner HL, Ledbetter DH, Retterer K, and Martin CL
- Subjects
- Adolescent, Adult, Cerebral Palsy complications, Child, Child, Preschool, Cross-Sectional Studies, Female, Genetic Testing, Genetic Variation, Humans, Male, Middle Aged, Neurodevelopmental Disorders complications, Neurodevelopmental Disorders genetics, Prevalence, Retrospective Studies, Cerebral Palsy genetics, Mutation, Exome Sequencing
- Abstract
Importance: Cerebral palsy is a common neurodevelopmental disorder affecting movement and posture that often co-occurs with other neurodevelopmental disorders. Individual cases of cerebral palsy are often attributed to birth asphyxia; however, recent studies indicate that asphyxia accounts for less than 10% of cerebral palsy cases., Objective: To determine the molecular diagnostic yield of exome sequencing (prevalence of pathogenic and likely pathogenic variants) in individuals with cerebral palsy., Design, Setting, and Participants: A retrospective cohort study of patients with cerebral palsy that included a clinical laboratory referral cohort with data accrued between 2012 and 2018 and a health care-based cohort with data accrued between 2007 and 2017., Exposures: Exome sequencing with copy number variant detection., Main Outcomes and Measures: The primary outcome was the molecular diagnostic yield of exome sequencing., Results: Among 1345 patients from the clinical laboratory referral cohort, the median age was 8.8 years (interquartile range, 4.4-14.7 years; range, 0.1-66 years) and 601 (45%) were female. Among 181 patients in the health care-based cohort, the median age was 41.9 years (interquartile range, 28.0-59.6 years; range, 4.8-89 years) and 96 (53%) were female. The molecular diagnostic yield of exome sequencing was 32.7% (95% CI, 30.2%-35.2%) in the clinical laboratory referral cohort and 10.5% (95% CI, 6.0%-15.0%) in the health care-based cohort. The molecular diagnostic yield ranged from 11.2% (95% CI, 6.4%-16.2%) for patients without intellectual disability, epilepsy, or autism spectrum disorder to 32.9% (95% CI, 25.7%-40.1%) for patients with all 3 comorbidities. Pathogenic and likely pathogenic variants were identified in 229 genes (29.5% of 1526 patients); 86 genes were mutated in 2 or more patients (20.1% of 1526 patients) and 10 genes with mutations were independently identified in both cohorts (2.9% of 1526 patients)., Conclusions and Relevance: Among 2 cohorts of patients with cerebral palsy who underwent exome sequencing, the prevalence of pathogenic and likely pathogenic variants was 32.7% in a cohort that predominantly consisted of pediatric patients and 10.5% in a cohort that predominantly consisted of adult patients. Further research is needed to understand the clinical implications of these findings.
- Published
- 2021
- Full Text
- View/download PDF
32. A dyadic approach to the delineation of diagnostic entities in clinical genomics.
- Author
-
Biesecker LG, Adam MP, Alkuraya FS, Amemiya AR, Bamshad MJ, Beck AE, Bennett JT, Bird LM, Carey JC, Chung B, Clark RD, Cox TC, Curry C, Dinulos MBP, Dobyns WB, Giampietro PF, Girisha KM, Glass IA, Graham JM Jr, Gripp KW, Haldeman-Englert CR, Hall BD, Innes AM, Kalish JM, Keppler-Noreuil KM, Kosaki K, Kozel BA, Mirzaa GM, Mulvihill JJ, Nowaczyk MJM, Pagon RA, Retterer K, Rope AF, Sanchez-Lara PA, Seaver LH, Shieh JT, Slavotinek AM, Sobering AK, Stevens CA, Stevenson DA, Tan TY, Tan WH, Tsai AC, Weaver DD, Williams MS, Zackai E, and Zarate YA
- Subjects
- Cystic Fibrosis diagnosis, Cystic Fibrosis genetics, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Genotype, Humans, Mutation genetics, Phenotype, Genetic Diseases, Inborn diagnosis, Genetic Diseases, Inborn genetics, Genomics methods
- Abstract
The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships., (Copyright © 2020 American Society of Human Genetics. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
33. Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease.
- Author
-
Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, Pei W, Balanda N, Ross DL, Ospina Cardona D, Wu Z, Patel B, Manthiram K, Groarke EM, Gutierrez-Rodrigues F, Hoffmann P, Rosenzweig S, Nakabo S, Dillon LW, Hourigan CS, Tsai WL, Gupta S, Carmona-Rivera C, Asmar AJ, Xu L, Oda H, Goodspeed W, Barron KS, Nehrebecky M, Jones A, Laird RS, Deuitch N, Rowczenio D, Rominger E, Wells KV, Lee CR, Wang W, Trick M, Mullikin J, Wigerblad G, Brooks S, Dell'Orso S, Deng Z, Chae JJ, Dulau-Florea A, Malicdan MCV, Novacic D, Colbert RA, Kaplan MJ, Gadina M, Savic S, Lachmann HJ, Abu-Asab M, Solomon BD, Retterer K, Gahl WA, Burgess SM, Aksentijevich I, Young NS, Calvo KR, Werner A, Kastner DL, and Grayson PC
- Subjects
- Age of Onset, Aged, Aged, 80 and over, Cytokines blood, Exome genetics, Genotype, Giant Cell Arteritis genetics, Humans, Immunoblotting, Male, Middle Aged, Multiple Myeloma genetics, Myelodysplastic Syndromes genetics, Polyarteritis Nodosa genetics, Polychondritis, Relapsing genetics, Sequence Analysis, DNA, Sweet Syndrome genetics, Syndrome, Autoimmune Diseases genetics, Genetic Diseases, X-Linked genetics, Inflammation genetics, Mutation, Missense, Ubiquitin-Activating Enzymes genetics
- Abstract
Background: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders., Methods: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function., Results: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation., Conclusions: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.)., (Copyright © 2020 Massachusetts Medical Society.)
- Published
- 2020
- Full Text
- View/download PDF
34. Histone H3.3 beyond cancer: Germline mutations in Histone 3 Family 3A and 3B cause a previously unidentified neurodegenerative disorder in 46 patients.
- Author
-
Bryant L, Li D, Cox SG, Marchione D, Joiner EF, Wilson K, Janssen K, Lee P, March ME, Nair D, Sherr E, Fregeau B, Wierenga KJ, Wadley A, Mancini GMS, Powell-Hamilton N, van de Kamp J, Grebe T, Dean J, Ross A, Crawford HP, Powis Z, Cho MT, Willing MC, Manwaring L, Schot R, Nava C, Afenjar A, Lessel D, Wagner M, Klopstock T, Winkelmann J, Catarino CB, Retterer K, Schuette JL, Innis JW, Pizzino A, Lüttgen S, Denecke J, Strom TM, Monaghan KG, Yuan ZF, Dubbs H, Bend R, Lee JA, Lyons MJ, Hoefele J, Günthner R, Reutter H, Keren B, Radtke K, Sherbini O, Mrokse C, Helbig KL, Odent S, Cogne B, Mercier S, Bezieau S, Besnard T, Kury S, Redon R, Reinson K, Wojcik MH, Õunap K, Ilves P, Innes AM, Kernohan KD, Costain G, Meyn MS, Chitayat D, Zackai E, Lehman A, Kitson H, Martin MG, Martinez-Agosto JA, Nelson SF, Palmer CGS, Papp JC, Parker NH, Sinsheimer JS, Vilain E, Wan J, Yoon AJ, Zheng A, Brimble E, Ferrero GB, Radio FC, Carli D, Barresi S, Brusco A, Tartaglia M, Thomas JM, Umana L, Weiss MM, Gotway G, Stuurman KE, Thompson ML, McWalter K, Stumpel CTRM, Stevens SJC, Stegmann APA, Tveten K, Vøllo A, Prescott T, Fagerberg C, Laulund LW, Larsen MJ, Byler M, Lebel RR, Hurst AC, Dean J, Schrier Vergano SA, Norman J, Mercimek-Andrews S, Neira J, Van Allen MI, Longo N, Sellars E, Louie RJ, Cathey SS, Brokamp E, Heron D, Snyder M, Vanderver A, Simon C, de la Cruz X, Padilla N, Crump JG, Chung W, Garcia B, Hakonarson HH, and Bhoj EJ
- Subjects
- Animals, Forkhead Transcription Factors genetics, Germ-Line Mutation, Humans, Zebrafish genetics, Zebrafish metabolism, Zebrafish Proteins metabolism, Histones genetics, Histones metabolism, Neurodegenerative Diseases genetics
- Abstract
Although somatic mutations in Histone 3.3 (H3.3) are well-studied drivers of oncogenesis, the role of germline mutations remains unreported. We analyze 46 patients bearing de novo germline mutations in histone 3 family 3A ( H3F3A ) or H3F3B with progressive neurologic dysfunction and congenital anomalies without malignancies. Molecular modeling of all 37 variants demonstrated clear disruptions in interactions with DNA, other histones, and histone chaperone proteins. Patient histone posttranslational modifications (PTMs) analysis revealed notably aberrant local PTM patterns distinct from the somatic lysine mutations that cause global PTM dysregulation. RNA sequencing on patient cells demonstrated up-regulated gene expression related to mitosis and cell division, and cellular assays confirmed an increased proliferative capacity. A zebrafish model showed craniofacial anomalies and a defect in Foxd3-derived glia. These data suggest that the mechanism of germline mutations are distinct from cancer-associated somatic histone mutations but may converge on control of cell proliferation., (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).)
- Published
- 2020
- Full Text
- View/download PDF
35. Evidence for 28 genetic disorders discovered by combining healthcare and research data.
- Author
-
Kaplanis J, Samocha KE, Wiel L, Zhang Z, Arvai KJ, Eberhardt RY, Gallone G, Lelieveld SH, Martin HC, McRae JF, Short PJ, Torene RI, de Boer E, Danecek P, Gardner EJ, Huang N, Lord J, Martincorena I, Pfundt R, Reijnders MRF, Yeung A, Yntema HG, Vissers LELM, Juusola J, Wright CF, Brunner HG, Firth HV, FitzPatrick DR, Barrett JC, Hurles ME, Gilissen C, and Retterer K
- Subjects
- Cohort Studies, DNA Copy Number Variations genetics, Developmental Disabilities diagnosis, Europe, Female, Genetic Diseases, Inborn diagnosis, Germ-Line Mutation genetics, Haploinsufficiency genetics, Humans, Male, Mutation, Missense genetics, Penetrance, Perinatal Death, Sample Size, DNA Mutational Analysis, Data Analysis, Databases, Genetic, Datasets as Topic, Delivery of Health Care statistics & numerical data, Developmental Disabilities genetics, Genetic Diseases, Inborn genetics
- Abstract
De novo mutations in protein-coding genes are a well-established cause of developmental disorders
1 . However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2 . Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.- Published
- 2020
- Full Text
- View/download PDF
36. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy.
- Author
-
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, and Kruer MC
- Subjects
- Animals, Cerebral Palsy pathology, Cyclin D genetics, Cytoskeleton genetics, Drosophila genetics, Exome genetics, Extracellular Matrix genetics, Female, Focal Adhesions genetics, Genetic Predisposition to Disease, Genome, Human genetics, Humans, Male, Mutation genetics, Neurites metabolism, Neurites pathology, Risk Factors, Sequence Analysis, DNA, Signal Transduction genetics, Exome Sequencing, rhoB GTP-Binding Protein genetics, Cerebral Palsy genetics, F-Box Proteins genetics, Tubulin genetics, Tumor Suppressor Proteins genetics, beta Catenin genetics
- Abstract
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
- Published
- 2020
- Full Text
- View/download PDF
37. Mobile element insertion detection in 89,874 clinical exomes.
- Author
-
Torene RI, Galens K, Liu S, Arvai K, Borroto C, Scuffins J, Zhang Z, Friedman B, Sroka H, Heeley J, Beaver E, Clarke L, Neil S, Walia J, Hull D, Juusola J, and Retterer K
- Subjects
- Humans, Sequence Analysis, DNA, Exome Sequencing, Exome genetics, Genetic Testing
- Abstract
Purpose: Exome sequencing (ES) is increasingly used for the diagnosis of rare genetic disease. However, some pathogenic sequence variants within the exome go undetected due to the technical difficulty of identifying them. Mobile element insertions (MEIs) are a known cause of genetic disease in humans but have been historically difficult to detect via ES and similar targeted sequencing methods., Methods: We developed and applied a novel MEI detection method prospectively to samples received for clinical ES beginning in November 2017. Positive MEI findings were confirmed by an orthogonal method and reported back to the ordering provider. In this study, we examined 89,874 samples from 38,871 cases., Results: Diagnostic MEIs were present in 0.03% (95% binomial test confidence interval: 0.02-0.06%) of all cases and account for 0.15% (95% binomial test confidence interval: 0.08-0.25%) of cases with a molecular diagnosis. One diagnostic MEI was a novel founder event. Most patients with pathogenic MEIs had prior genetic testing, three of whom had previous negative DNA sequencing analysis of the diagnostic gene., Conclusion: MEI detection from ES is a valuable diagnostic tool, reveals molecular findings that may be undetected by other sequencing assays, and increases diagnostic yield by 0.15%.
- Published
- 2020
- Full Text
- View/download PDF
38. The tale of two genes: from next-generation sequencing to phenotype.
- Author
-
Rohanizadegan M, Siddharath A, Retterer K, Hung C, and Bodamer O
- Subjects
- Adolescent, Alleles, Craniosynostoses diagnosis, Craniosynostoses genetics, Developmental Disabilities diagnosis, Developmental Disabilities genetics, Facies, Genotype, Growth Charts, Humans, Intellectual Disability diagnosis, Intellectual Disability genetics, Male, Medical History Taking, Obesity, Morbid diagnosis, Obesity, Morbid genetics, Pedigree, Exome Sequencing, Genetic Association Studies, Mutation, Phenotype, Receptor, Melanocortin, Type 4 genetics, Repressor Proteins genetics
- Abstract
An 18-yr-old man with a history of intellectual disability, craniofacial dysmorphism, seizure disorder, and obesity was identified to carry a de novo, pathogenic variant in ASXL1 (c.4198G>T; p.E1400X) associated with the diagnosis of Bohring-Opitz syndrome based on exome sequencing. In addition, he was identified to carry a maternally inherited and likely pathogenic variant in MC4R (c.817C>T; p.Q273X) associated with monogenic obesity. Dual genetic diagnosis occurs in 4%-6% of patients and results in unique clinical phenotypes that are a function of tissue-specific gene expression, involved pathways, clinical expressivity, and penetrance. This case highlights the utility of next-generation sequencing in patients with an unusual combination of clinical presentations for several pillars of precision medicine including (1) diagnosis, (2) prognosis and outcome, (3) management and therapy, and (4) utilization of resources., (© 2020 Rohanizadegan et al.; Published by Cold Spring Harbor Laboratory Press.)
- Published
- 2020
- Full Text
- View/download PDF
39. Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases.
- Author
-
Perenthaler E, Nikoncuk A, Yousefi S, Berdowski WM, Alsagob M, Capo I, van der Linde HC, van den Berg P, Jacobs EH, Putar D, Ghazvini M, Aronica E, van IJcken WFJ, de Valk WG, Medici-van den Herik E, van Slegtenhorst M, Brick L, Kozenko M, Kohler JN, Bernstein JA, Monaghan KG, Begtrup A, Torene R, Al Futaisi A, Al Murshedi F, Mani R, Al Azri F, Kamsteeg EJ, Mojarrad M, Eslahi A, Khazaei Z, Darmiyan FM, Doosti M, Karimiani EG, Vandrovcova J, Zafar F, Rana N, Kandaswamy KK, Hertecant J, Bauer P, AlMuhaizea MA, Salih MA, Aldosary M, Almass R, Al-Quait L, Qubbaj W, Coskun S, Alahmadi KO, Hamad MHA, Alwadaee S, Awartani K, Dababo AM, Almohanna F, Colak D, Dehghani M, Mehrjardi MYV, Gunel M, Ercan-Sencicek AG, Passi GR, Cheema HA, Efthymiou S, Houlden H, Bertoli-Avella AM, Brooks AS, Retterer K, Maroofian R, Kaya N, van Ham TJ, and Barakat TS
- Subjects
- Animals, Child, Preschool, Female, Humans, Infant, Male, Mutation, Pedigree, Zebrafish, Brain Diseases genetics, Epileptic Syndromes genetics, Genes, Essential genetics, UTP-Glucose-1-Phosphate Uridylyltransferase genetics
- Abstract
Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies.
- Published
- 2020
- Full Text
- View/download PDF
40. Sex-Based Analysis of De Novo Variants in Neurodevelopmental Disorders.
- Author
-
Turner TN, Wilfert AB, Bakken TE, Bernier RA, Pepper MR, Zhang Z, Torene RI, Retterer K, and Eichler EE
- Subjects
- Child, Cohort Studies, Female, Gene Regulatory Networks, Genome-Wide Association Study, Humans, Male, Neurodevelopmental Disorders pathology, Phenotype, Sex Factors, Exome genetics, Genetic Markers, Mutation, Neurodevelopmental Disorders genetics
- Abstract
While genes with an excess of de novo mutations (DNMs) have been identified in children with neurodevelopmental disorders (NDDs), few studies focus on DNM patterns where the sex of affected children is examined separately. We considered ∼8,825 sequenced parent-child trios (n ∼26,475 individuals) and identify 54 genes with a DNM enrichment in males (n = 18), females (n = 17), or overlapping in both the male and female subsets (n = 19). A replication cohort of 18,778 sequenced parent-child trios (n = 56,334 individuals) confirms 25 genes (n = 3 in males, n = 7 in females, n = 15 in both male and female subsets). As expected, we observe significant enrichment on the X chromosome for females but also find autosomal genes with potential sex bias (females, CDK13, ITPR1; males, CHD8, MBD5, SYNGAP1); 6.5% of females harbor a DNM in a female-enriched gene, whereas 2.7% of males have a DNM in a male-enriched gene. Sex-biased genes are enriched in transcriptional processes and chromatin binding, primarily reside in the nucleus of cells, and have brain expression. By downsampling, we find that DNM gene discovery is greatest when studying affected females. Finally, directly comparing de novo allele counts in NDD-affected males and females identifies one replicated genome-wide significant gene (DDX3X) with locus-specific enrichment in females. Our sex-based DNM enrichment analysis identifies candidate NDD genes differentially affecting males and females and indicates that the study of females with NDDs leads to greater gene discovery consistent with the female-protective effect., (Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
41. Age-adjusted association of homologous recombination genes with ovarian cancer using clinical exomes as controls.
- Author
-
Arvai KJ, Roberts ME, Torene RI, Susswein LR, Marshall ML, Zhang Z, Carter NJ, Yackowski L, Rinella ES, Klein RT, Hruska KS, and Retterer K
- Abstract
Background: Genes in the homologous recombination pathway have shown varying results in the literature regarding ovarian cancer (OC) association. Recent case-control studies have used allele counts alone to quantify genetic associations with cancer., Methods: A retrospective case-control study was performed on 6,182 women with OC referred for hereditary cancer multi-gene panel testing (cases) and 4,690 mothers from trios who were referred for whole-exome sequencing (controls). We present age-adjusted odds ratios (OR
Adj ) to determine association of OC with pathogenic variants (PVs) in homologous recombination genes., Results: Significant associations with OC were observed in BRCA1, BRCA2, RAD51C and RAD51D. Other homologous recombination genes, BARD1, NBN, and PALB2, were not significantly associated with OC. ATM and CHEK2 were only significantly associated with OC by crude odds ratio (ORCrude ) or by ORAdj , respectively. However, there was no significant difference between ORCrude and ORAdj for these two genes. The significant association of PVs in BRIP1 by ORCrude (2.05, CI = 1.11 to 3.94, P = 0.03) was not observed by ORAdj (0.87, CI = 0.41 to 1.93, P = 0.73). Interestingly, the confidence intervals of the two effect sizes were significantly different ( P = 0.04)., Conclusion: The lack of association of PVs in BRIP1 with OC by ORAdj is inconsistent with some previous literature and current management recommendations, highlighted by the significantly older age of OC onset for BRIP1 PV carriers compared to non-carriers. By reporting ORAdj , this study presents associations that reflect more informed genetic contributions to OC when compared to traditional count-based methods., Competing Interests: Competing interestsThe following individuals are employed by GeneDx, Inc., a wholly owned subsidiary of OPKO Health, Inc.: Arvai, Roberts, Torene, Susswein, Marshall, Zhang, Carter, Yackowski, Rinella, Hruska, and Retterer. In addition, Dr. Hruska and Mr. Retterer have stock in OPKO Health, Inc.to disclose. Rachel Klein has stock options and employment with MyGeneTeam/OPKO Health, and indirect contractual relationships with GeneDx/BioReference Laboratories.- Published
- 2019
- Full Text
- View/download PDF
42. De novo variants in HK1 associated with neurodevelopmental abnormalities and visual impairment.
- Author
-
Okur V, Cho MT, van Wijk R, van Oirschot B, Picker J, Coury SA, Grange D, Manwaring L, Krantz I, Muraresku CC, Hulick PJ, May H, Pierce E, Place E, Bujakowska K, Telegrafi A, Douglas G, Monaghan KG, Begtrup A, Wilson A, Retterer K, Anyane-Yeboa K, and Chung WK
- Subjects
- Adolescent, Adult, Child, Female, Humans, Infant, Male, Retinitis Pigmentosa enzymology, Retinitis Pigmentosa genetics, Retinitis Pigmentosa pathology, Erythrocytes enzymology, Erythrocytes pathology, Hereditary Sensory and Motor Neuropathy enzymology, Hereditary Sensory and Motor Neuropathy genetics, Hereditary Sensory and Motor Neuropathy pathology, Hexokinase genetics, Hexokinase metabolism, Mutation, Missense, Pedigree
- Abstract
Hexokinase 1 (HK1) phosphorylates glucose to glucose-6-phosphate, the first rate-limiting step in glycolysis. Homozygous and heterozygous variants in HK1 have been shown to cause autosomal recessive non-spherocytic hemolytic anemia, autosomal recessive Russe type hereditary motor and sensory neuropathy, and autosomal dominant retinitis pigmentosa (adRP). We report seven patients from six unrelated families with a neurodevelopmental disorder associated with developmental delay, intellectual disability, structural brain abnormality, and visual impairments in whom we identified four novel, de novo missense variants in the N-terminal half of HK1. Hexokinase activity in red blood cells of two patients was normal, suggesting that the disease mechanism is not due to loss of hexokinase enzymatic activity.
- Published
- 2019
- Full Text
- View/download PDF
43. Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability.
- Author
-
Cogné B, Ehresmann S, Beauregard-Lacroix E, Rousseau J, Besnard T, Garcia T, Petrovski S, Avni S, McWalter K, Blackburn PR, Sanders SJ, Uguen K, Harris J, Cohen JS, Blyth M, Lehman A, Berg J, Li MH, Kini U, Joss S, von der Lippe C, Gordon CT, Humberson JB, Robak L, Scott DA, Sutton VR, Skraban CM, Johnston JJ, Poduri A, Nordenskjöld M, Shashi V, Gerkes EH, Bongers EMHF, Gilissen C, Zarate YA, Kvarnung M, Lally KP, Kulch PA, Daniels B, Hernandez-Garcia A, Stong N, McGaughran J, Retterer K, Tveten K, Sullivan J, Geisheker MR, Stray-Pedersen A, Tarpinian JM, Klee EW, Sapp JC, Zyskind J, Holla ØL, Bedoukian E, Filippini F, Guimier A, Picard A, Busk ØL, Punetha J, Pfundt R, Lindstrand A, Nordgren A, Kalb F, Desai M, Ebanks AH, Jhangiani SN, Dewan T, Coban Akdemir ZH, Telegrafi A, Zackai EH, Begtrup A, Song X, Toutain A, Wentzensen IM, Odent S, Bonneau D, Latypova X, Deb W, Redon S, Bilan F, Legendre M, Troyer C, Whitlock K, Caluseriu O, Murphree MI, Pichurin PN, Agre K, Gavrilova R, Rinne T, Park M, Shain C, Heinzen EL, Xiao R, Amiel J, Lyonnet S, Isidor B, Biesecker LG, Lowenstein D, Posey JE, Denommé-Pichon AS, Férec C, Yang XJ, Rosenfeld JA, Gilbert-Dussardier B, Audebert-Bellanger S, Redon R, Stessman HAF, Nellaker C, Yang Y, Lupski JR, Goldstein DB, Eichler EE, Bolduc F, Bézieau S, Küry S, and Campeau PM
- Subjects
- Adolescent, Adult, Amino Acid Sequence, Autistic Disorder metabolism, Autistic Disorder pathology, Child, Child, Preschool, Female, Genetic Association Studies, Humans, Infant, Intellectual Disability metabolism, Intellectual Disability pathology, Male, Prognosis, Sequence Homology, Syndrome, Young Adult, Adaptor Proteins, Signal Transducing genetics, Autistic Disorder etiology, Intellectual Disability etiology, Mutation, Missense, Nuclear Proteins genetics
- Abstract
Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants., (Copyright © 2019 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
44. De novo missense variants in MEIS2 recapitulate the microdeletion phenotype of cardiac and palate abnormalities, developmental delay, intellectual disability and dysmorphic features.
- Author
-
Douglas G, Cho MT, Telegrafi A, Winter S, Carmichael J, Zackai EH, Deardorff MA, Harr M, Williams L, Psychogios A, Erwin AL, Grebe T, Retterer K, and Juusola J
- Subjects
- Alleles, Child, Child, Preschool, Developmental Disabilities diagnosis, Developmental Disabilities genetics, Facies, Female, Gene Frequency, Genetic Association Studies, Heart Defects, Congenital diagnosis, Heart Defects, Congenital genetics, Humans, Infant, Intellectual Disability diagnosis, Intellectual Disability genetics, Male, Palate abnormalities, Syndrome, Exome Sequencing, Abnormalities, Multiple diagnosis, Abnormalities, Multiple genetics, Chromosome Deletion, Homeodomain Proteins genetics, Mutation, Missense, Phenotype, Transcription Factors genetics
- Abstract
Gross deletions involving the MEIS2 gene have been described in a small number of patients with overlapping phenotypes of atrial or ventricular septal defects, cleft palate, and variable developmental delays and intellectual disability. Non-specific dysmorphic features were noted in some patients, including broad forehead with high anterior hairline, arched eyebrows, thin or tented upper lip, and short philtrum. Recently, a patient with a de novo single amino acid deletion, c.998_1000delGAA (p.Arg333del), and a patient with a de novo nonsense variant, (c.611C>G, p.Ser204*), were reported with a similar, but apparently more severe phenotypes. Clinical whole exome sequencing (WES) performed at our clinical molecular diagnostic laboratory identified four additional patients with predicted damaging de novo MEIS2 missense variants. Our patients' features closely resembled those previously reported in patients with gross deletions, but also included some less commonly reported features, such as autism spectrum disorder, hearing loss, and short stature, as well as features that may be unique to nucleotide-level variants, such as hypotonia, failure to thrive, gastrointestinal, skeletal, limb, and skin abnormalities. All of the observed missense variants, Pro302Leu, Gln322Leu, Arg331Lys, and Val335Ala, are located in the functionally important MEIS2 homeodomain. Pro302Leu is found in the region between helix 1 and helix 2, while the other three are located in the DNA-binding helix 3. To our knowledge, these are the first described de novo missense variants in MEIS2, expanding the known mutation spectrum of the newly recognized human disorder caused by aberrations in this gene., (© 2018 Wiley Periodicals, Inc.)
- Published
- 2018
- Full Text
- View/download PDF
45. Holoprosencephaly: A clinical genomics perspective.
- Author
-
Solomon BD, Retterer K, and Juusola J
- Subjects
- Eye Proteins genetics, Genetics, Medical, Hedgehog Proteins genetics, Holoprosencephaly genetics, Homeodomain Proteins genetics, Humans, Nerve Tissue Proteins genetics, Nuclear Proteins genetics, Repressor Proteins genetics, Transcription Factors genetics, Homeobox Protein SIX3, Exome genetics, Holoprosencephaly etiology
- Abstract
New and rapidly evolving technologies have dramatically impacted the practice of clinical genetics as well as broader areas of medicine. To illustrate this trend from the perspective of a clinical molecular laboratory, we briefly summarize our general experience conducting exome testing for patients with holoprosencephaly (HPE). Though these cases are not representative of HPE more generally (i.e., cases undergoing exome sequencing represent a skewed sample), results include a 22% positive rate from exome testing. Of interest, 29% of reported results involved genes not considered to be classic HPE genes, indicating more evidence that HPE may fall within the severe spectrum of many other genetic conditions., (© 2018 Wiley Periodicals, Inc.)
- Published
- 2018
- Full Text
- View/download PDF
46. Dual Molecular Effects of Dominant RORA Mutations Cause Two Variants of Syndromic Intellectual Disability with Either Autism or Cerebellar Ataxia.
- Author
-
Guissart C, Latypova X, Rollier P, Khan TN, Stamberger H, McWalter K, Cho MT, Kjaergaard S, Weckhuysen S, Lesca G, Besnard T, Õunap K, Schema L, Chiocchetti AG, McDonald M, de Bellescize J, Vincent M, Van Esch H, Sattler S, Forghani I, Thiffault I, Freitag CM, Barbouth DS, Cadieux-Dion M, Willaert R, Guillen Sacoto MJ, Safina NP, Dubourg C, Grote L, Carré W, Saunders C, Pajusalu S, Farrow E, Boland A, Karlowicz DH, Deleuze JF, Wojcik MH, Pressman R, Isidor B, Vogels A, Van Paesschen W, Al-Gazali L, Al Shamsi AM, Claustres M, Pujol A, Sanders SJ, Rivier F, Leboucq N, Cogné B, Sasorith S, Sanlaville D, Retterer K, Odent S, Katsanis N, Bézieau S, Koenig M, Davis EE, Pasquier L, and Küry S
- Subjects
- Adolescent, Adult, Aged, 80 and over, Alleles, Animals, Autistic Disorder complications, Brain pathology, Cerebellar Ataxia complications, Child, Child, Preschool, DNA Copy Number Variations genetics, Disease Models, Animal, Female, Genetic Complementation Test, Humans, Intellectual Disability complications, Larva genetics, Magnetic Resonance Imaging, Male, Middle Aged, Purkinje Cells metabolism, Purkinje Cells pathology, Syndrome, Zebrafish genetics, Autistic Disorder genetics, Cerebellar Ataxia genetics, Genes, Dominant, Intellectual Disability genetics, Mutation, Missense genetics, Nuclear Receptor Subfamily 1, Group F, Member 1 genetics
- Abstract
RORα, the RAR-related orphan nuclear receptor alpha, is essential for cerebellar development. The spontaneous mutant mouse staggerer, with an ataxic gait caused by neurodegeneration of cerebellar Purkinje cells, was discovered two decades ago to result from homozygous intragenic Rora deletions. However, RORA mutations were hitherto undocumented in humans. Through a multi-centric collaboration, we identified three copy-number variant deletions (two de novo and one dominantly inherited in three generations), one de novo disrupting duplication, and nine de novo point mutations (three truncating, one canonical splice site, and five missense mutations) involving RORA in 16 individuals from 13 families with variable neurodevelopmental delay and intellectual disability (ID)-associated autistic features, cerebellar ataxia, and epilepsy. Consistent with the human and mouse data, disruption of the D. rerio ortholog, roraa, causes significant reduction in the size of the developing cerebellum. Systematic in vivo complementation studies showed that, whereas wild-type human RORA mRNA could complement the cerebellar pathology, missense variants had two distinct pathogenic mechanisms of either haploinsufficiency or a dominant toxic effect according to their localization in the ligand-binding or DNA-binding domains, respectively. This dichotomous direction of effect is likely relevant to the phenotype in humans: individuals with loss-of-function variants leading to haploinsufficiency show ID with autistic features, while individuals with de novo dominant toxic variants present with ID, ataxia, and cerebellar atrophy. Our combined genetic and functional data highlight the complex mutational landscape at the human RORA locus and suggest that dual mutational effects likely determine phenotypic outcome., (Copyright © 2018 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2018
- Full Text
- View/download PDF
47. Variants in EXOSC9 Disrupt the RNA Exosome and Result in Cerebellar Atrophy with Spinal Motor Neuronopathy.
- Author
-
Burns DT, Donkervoort S, Müller JS, Knierim E, Bharucha-Goebel D, Faqeih EA, Bell SK, AlFaifi AY, Monies D, Millan F, Retterer K, Dyack S, MacKay S, Morales-Gonzalez S, Giunta M, Munro B, Hudson G, Scavina M, Baker L, Massini TC, Lek M, Hu Y, Ezzo D, AlKuraya FS, Kang PB, Griffin H, Foley AR, Schuelke M, Horvath R, and Bönnemann CG
- Subjects
- Amino Acid Sequence, Animals, Atrophy, Base Sequence, Cerebellum diagnostic imaging, Child, Preschool, Exosome Multienzyme Ribonuclease Complex chemistry, Female, Fibroblasts metabolism, Fibroblasts pathology, Gene Knockdown Techniques, Haplotypes genetics, Humans, Infant, Male, Muscle, Skeletal metabolism, Pedigree, RNA-Binding Proteins chemistry, Zebrafish, Cerebellum pathology, Exosome Multienzyme Ribonuclease Complex genetics, Exosomes metabolism, Genetic Variation, Motor Neurons pathology, RNA-Binding Proteins genetics, Spinal Cord pathology
- Abstract
The exosome is a conserved multi-protein complex that is essential for correct RNA processing. Recessive variants in exosome components EXOSC3, EXOSC8, and RBM7 cause various constellations of pontocerebellar hypoplasia (PCH), spinal muscular atrophy (SMA), and central nervous system demyelination. Here, we report on four unrelated affected individuals with recessive variants in EXOSC9 and the effect of the variants on the function of the RNA exosome in vitro in affected individuals' fibroblasts and skeletal muscle and in vivo in zebrafish. The clinical presentation was severe, early-onset, progressive SMA-like motor neuronopathy, cerebellar atrophy, and in one affected individual, congenital fractures of the long bones. Three affected individuals of different ethnicity carried the homozygous c.41T>C (p.Leu14Pro) variant, whereas one affected individual was compound heterozygous for c.41T>C (p.Leu14Pro) and c.481C>T (p.Arg161
∗ ). We detected reduced EXOSC9 in fibroblasts and skeletal muscle and observed a reduction of the whole multi-subunit exosome complex on blue-native polyacrylamide gel electrophoresis. RNA sequencing of fibroblasts and skeletal muscle detected significant >2-fold changes in genes involved in neuronal development and cerebellar and motor neuron degeneration, demonstrating the widespread effect of the variants. Morpholino oligonucleotide knockdown and CRISPR/Cas9-mediated mutagenesis of exosc9 in zebrafish recapitulated aspects of the human phenotype, as they have in other zebrafish models of exosomal disease. Specifically, portions of the cerebellum and hindbrain were absent, and motor neurons failed to develop and migrate properly. In summary, we show that variants in EXOSC9 result in a neurological syndrome combining cerebellar atrophy and spinal motoneuronopathy, thus expanding the list of human exosomopathies., (Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2018
- Full Text
- View/download PDF
48. Diagnostic outcomes for genetic testing of 70 genes in 8565 patients with epilepsy and neurodevelopmental disorders.
- Author
-
Lindy AS, Stosser MB, Butler E, Downtain-Pickersgill C, Shanmugham A, Retterer K, Brandt T, Richard G, and McKnight DA
- Subjects
- Adolescent, Adult, Child, Child, Preschool, Comparative Genomic Hybridization, Female, High-Throughput Nucleotide Sequencing, Humans, Infant, Infant, Newborn, Male, Middle Aged, Molecular Diagnostic Techniques, Young Adult, Epilepsy diagnosis, Epilepsy genetics, Genetic Testing, Neurodevelopmental Disorders diagnosis, Neurodevelopmental Disorders genetics
- Abstract
Objective: We evaluated >8500 consecutive, unselected patients with epilepsy and neurodevelopmental disorders who underwent multigene panel testing to determine the average age at molecular diagnosis and diagnostic yield of 70 genes., Methods: We reviewed molecular test results for 70 genes known to cause epilepsy and neurodevelopmental disorders using next generation sequencing (NGS) and exon-level array comparative genomic hybridization (aCGH). A positive result was defined as the presence of 1 or 2 pathogenic or likely pathogenic (P/LP) variants in a single gene, depending on the mode of inheritance of the associated disorder., Results: Overall, 22 genes were found to have a high yield of positive findings by genetic testing, with SCN1A and KCNQ2 accounting for the greatest number of positive findings. In contrast, there were no positive findings in 16 genes. Most of the P/LP variants were sequence changes identified by NGS (90.9%), whereas ~9% were gross deletions or duplications detected by exon-level aCGH. The mean age of molecular diagnosis for the cohort was 5 years, 8 months (ranging from 1 week to 47 years). Recurrent P/LP variants were observed in 14 distinct genes, most commonly in MECP2, KCNQ2, SCN1A, SCN2A, STXBP1, and PRRT2. Parental testing was performed in >30% of positive cases. All variants identified in CDKL5, STXBP1, SCN8A, GABRA1, and FOXG1 were de novo, whereas 85.7% of variants in PRRT2 were inherited., Significance: Using a combined approach of NGS and exon-level aCGH, testing identified a genetic etiology in 15.4% of patients in this cohort and revealed the age at molecular diagnosis for patients. Our study highlights both high- and low-yield genes associated with epilepsy and neurodevelopmental disorders, indicating which genes may be considered for molecular diagnostic testing., (© 2018 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.)
- Published
- 2018
- Full Text
- View/download PDF
49. Biallelic Mutations in MRPS34 Lead to Instability of the Small Mitoribosomal Subunit and Leigh Syndrome.
- Author
-
Lake NJ, Webb BD, Stroud DA, Richman TR, Ruzzenente B, Compton AG, Mountford HS, Pulman J, Zangarelli C, Rio M, Boddaert N, Assouline Z, Sherpa MD, Schadt EE, Houten SM, Byrnes J, McCormick EM, Zolkipli-Cunningham Z, Haude K, Zhang Z, Retterer K, Bai R, Calvo SE, Mootha VK, Christodoulou J, Rötig A, Filipovska A, Cristian I, Falk MJ, Metodiev MD, and Thorburn DR
- Published
- 2018
- Full Text
- View/download PDF
50. High frequency of mosaic pathogenic variants in genes causing epilepsy-related neurodevelopmental disorders.
- Author
-
Stosser MB, Lindy AS, Butler E, Retterer K, Piccirillo-Stosser CM, Richard G, and McKnight DA
- Subjects
- Alleles, Amino Acid Substitution, Epilepsy diagnosis, Genetic Association Studies, Genetic Testing, Genotype, High-Throughput Nucleotide Sequencing, Humans, Neurodevelopmental Disorders diagnosis, Parents, Exome Sequencing, Epilepsy genetics, Gene Frequency, Genetic Predisposition to Disease, Genetic Variation, Mosaicism, Neurodevelopmental Disorders genetics
- Abstract
PurposeMosaicism probably represents an underreported cause of genetic disorders due to detection challenges during routine molecular diagnostics. The purpose of this study was to evaluate the frequency of mosaicism detected by next-generation sequencing in genes associated with epilepsy-related neurodevelopmental disorders.MethodsWe conducted a retrospective analysis of 893 probands with epilepsy who had a multigene epilepsy panel or whole-exome sequencing performed in a clinical diagnostic laboratory and were positive for a pathogenic or likely pathogenic variant in one of nine genes (CDKL5, GABRA1, GABRG2, GRIN2B, KCNQ2, MECP2, PCDH19, SCN1A, or SCN2A). Parental results were available for 395 of these probands.ResultsMosaicism was most common in the CDKL5, PCDH19, SCN2A, and SCN1A genes. Mosaicism was observed in GABRA1, GABRG2, and GRIN2B, which previously have not been reported to have mosaicism, and also in KCNQ2 and MECP2. Parental mosaicism was observed for pathogenic variants in multiple genes including KCNQ2, MECP2, SCN1A, and SCN2A.ConclusionMosaic pathogenic variants were identified frequently in nine genes associated with various neurological conditions. Given the potential clinical ramifications, our findings suggest that next-generation sequencing diagnostic methods may be utilized when testing these genes in a diagnostic laboratory.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.