15 results on '"Richard C Sallari"'
Search Results
2. Oncogenic reactivation of young L1s is a hallmark of colon cancer
- Author
-
Devin Neu, Stevephen Hung, Cynthia F. Bartels, Zachary J. Faber, Katreya Lovrenert, W. Dean Pontius, Laura Morgan, Maharshi Chakraborty, Will Liao, Diana Chin, Ellen S. Hong, Jeremy Gray, Victor Moreno, Matthew Kalady, Ulrike Peters, Berkley Gryder, Richard C. Sallari, and Peter C. Scacheri
- Abstract
Transposable elements become increasingly active in both cancerous and aging cells, driven by loss of DNA methylation as cells divide. Here we leverage the epigenomes of colon cancers with matched adjacent tissue, in addition to non-cancerous normals and cell line models, to assess the role of transposable elements as drivers or passengers in cancer development. Using the baseline of activity from normal and adjacent tissue, we show that the youngest subfamilies of the LINE1 (L1) family exhibit a degree of activity and recurrence across patients that goes beyond what is expected from hypomethylation and cell division, suggesting an additional mechanism of oncogenic reactivation. We characterize this mechanism and find that the loss of the tumor suppressor PLZF drives young L1 reactivation in a cell-division-independent manner. PLZF de-repression exposes abundant motifs for tumor core factors in the L1 5’UTR. Active young L1s act as oncogenic enhancers, interacting with oncogenes via gained chromatin loops. We uncover oncogenic L1 reactivation as a hallmark of colon cancer, where young L1s activate universally in our cohort at high levels of recurrence, act as enhancers to oncogenes, and become wired into the core regulatory circuitry of colon cancer.
- Published
- 2023
- Full Text
- View/download PDF
3. Integrative analysis of 111 reference human epigenomes Open.
- Author
-
Roadmap Epigenomics Consortium, Anshul Kundaje, Wouter Meuleman, Jason Ernst, Misha Bilenky, Angela Yen, Alireza Heravi Moussavi, Pouya Kheradpour, ZhiZhuo Zhang, Jianrong Wang, Michael J. Ziller, Viren Amin, John W. Whitaker, Matthew D. Schultz, Lucas D. Ward, Abhishek Sarkar, Gerald T. Quon, Richard S. Sandstrom, Matthew L. Eaton, Yi-Chieh Wu, Andreas R. Pfenning, Xinchen Wang, Melina Claussnitzer, Yaping Liu, Cristian Coarfa, R. Alan Harris, Noam Shoresh, Charles B. Epstein, Elizabeta Gjoneska, Danny Leung, Wei Xie, R. David Hawkins, Ryan Lister, Chibo Hong, Philippe Gascard, Andrew J. Mungall, Richard A. Moore, Eric Chuah, Angela Tam, Theresa K. Canfield, R. Scott Hansen, Rajinder Kaul, Peter J. Sabo, Mukul S. Bansal, Annaick Carles, Jesse R. Dixon, Kyle Kai-How Farh, Soheil Feizi, Rosa Karlic, Ah-Ram Kim, Ashwinikumar Kulkarni, Daofeng Li, Rebecca F. Lowdon, GiNell Elliott, Tim R. Mercer, Shane J. Neph, Vitor Onuchic, Paz Polak, Nisha Rajagopal, Pradipta Ray, Richard C. Sallari, Kyle T. Siebenthall, Nicholas A. Sinnott-Armstrong, Michael Stevens, Robert E. Thurman, Jie Wu, Bo Zhang 0009, Xin Zhou, Arthur E. Beaudet, Laurie A. Boyer, Philip L. De Jager, Peggy J. Farnham, Susan J. Fisher, David Haussler, Steven J. M. Jones, Wei Li, Marco A. Marra, Michael T. McManus, Shamil R. Sunyaev, James A. Thomson, Thea D. Tlsty, Li-Huei Tsai, Wei Wang 0051, Robert A. Waterland, Michael Q. Zhang, Lisa H. Chadwick, Bradley E. Bernstein, Joseph F. Costello, Joseph R. Ecker, Martin Hirst, Alexander Meissner, Aleksandar Milosavljevic, Bing Ren, John A. Stamatoyannopoulos, Ting Wang, and Manolis Kellis
- Published
- 2015
- Full Text
- View/download PDF
4. Convergence of case-specific epigenetic alterations identify a confluence of genetic vulnerabilities tied to opioid dependence
- Author
-
Marina Iskhakova, Yanwei Song, An Hoang, Lizette Cuoto, Schahram Akbarian, Cynthia F. Bartels, Peter C. Scacheri, Katreya Lovrenert, Berkley E. Gryder, Dana B. Hancock, Bryan C. Quach, Bibi Kassim, Hannah M. Cates, Olivia Corradin, Richard C Sallari, Deborah Mash, Eric O. Johnson, Gabriella Hutta, and Cameron Hays
- Subjects
Opioid ,medicine ,Opioid use disorder ,Convergence (relationship) ,Disease ,GABBR2 ,Epigenetics ,Heritability ,Biology ,medicine.disease ,Gene ,Neuroscience ,medicine.drug - Abstract
Opioid dependence is a highly heterogeneous disease driven by a variety of genetic and environmental risk factors which have yet to be fully elucidated. We interrogated the effects of opioid dependence on the brain using ChIP-seq to quantify patterns of H3K27 acetylation in dorsolateral prefrontal cortical neurons isolated from 51 opioid-overdose cases and 51 accidental death controls. Among opioid cases, we observed global hypoacetylation and identified 388 putative enhancers consistently depleted for H3K27ac. Machine learning on H3K27ac patterns predicts case-control status with high accuracy. We focus on case-specific regulatory alterations, revealing 81,399 hypoacetylation events, uncovering vast inter-patient heterogeneity. We developed a strategy to decode this heterogeneity based on convergence analysis, which leveraged promoter-capture Hi-C to identify five genes over-burdened by alterations in their regulatory network or “plexus”: ASTN2, KCNMA1, DUSP4, GABBR2, ENOX1. These convergent loci are enriched for opioid use disorder risk genes and heritability for generalized anxiety, number of sexual partners, and years of education. Overall, our multi-pronged approach uncovers neurobiological aspects of opioid dependence and captures genetic and environmental factors perpetuating the opioid epidemic.
- Published
- 2021
- Full Text
- View/download PDF
5. A regulatory variant at 3q21.1 confers an increased pleiotropic risk for hyperglycemia and altered bone mineral density
- Author
-
Manuel A. Rivas, Melina Claussnitzer, David Karasik, Douglas P. Kiel, Gunnar Mellgren, Jonathan K. Pritchard, Cecilia M. Lindgren, Teresa Ferreira, Nasa Sinnott-Armstrong, Anyonya R. Guntur, Richard C Sallari, Elizabeth Rendina-Ruedy, Roger D. Cox, Simon N. Dankel, Eric S. Lander, Isabel S. Sousa, Samantha Laber, Yi-Hsiang Hsu, Hans Hauner, and Clifford J. Rosen
- Subjects
Adult ,Male ,0301 basic medicine ,Physiology ,Crispr-cas9 Variant Editing ,Osteoblast And Adipocyte Metabolism ,Pleiotropy Of Type 2 Diabetes And Bone Mineral Density ,Regulatory Genomics ,Variant-to-function Study ,Locus (genetics) ,Genome-wide association study ,Biology ,Polymorphism, Single Nucleotide ,Article ,03 medical and health sciences ,0302 clinical medicine ,pleiotropy of type 2 diabetes and bone mineral density ,regulatory genomics ,Bone Density ,Risk Factors ,Gene expression ,Adipocytes ,medicine ,Humans ,SNP ,Epigenetics ,Molecular Biology ,Cells, Cultured ,Genetic association ,Genetics ,variant-to-function study ,Osteoblasts ,Stem Cells ,CRISPR-Cas9 variant editing ,osteoblast and adipocyte metabolism ,Cell Differentiation ,Osteoblast ,Cell Biology ,Middle Aged ,Chromatin ,ddc ,030104 developmental biology ,medicine.anatomical_structure ,Diabetes Mellitus, Type 2 ,Haplotypes ,Genetic Loci ,Female ,Lipid Peroxidation ,Sterol Regulatory Element Binding Protein 1 ,030217 neurology & neurosurgery ,Adenylyl Cyclases ,Genome-Wide Association Study - Abstract
Summary Skeletal and glycemic traits have shared etiology, but the underlying genetic factors remain largely unknown. To identify genetic loci that may have pleiotropic effects, we studied Genome-wide association studies (GWASs) for bone mineral density and glycemic traits and identified a bivariate risk locus at 3q21. Using sequence and epigenetic modeling, we prioritized an adenylate cyclase 5 (ADCY5) intronic causal variant, rs56371916. This SNP changes the binding affinity of SREBP1 and leads to differential ADCY5 gene expression, altering the chromatin landscape from poised to repressed. These alterations result in bone- and type 2 diabetes-relevant cell-autonomous changes in lipid metabolism in osteoblasts and adipocytes. We validated our findings by directly manipulating the regulator SREBP1, the target gene ADCY5, and the variant rs56371916, which together imply a novel link between fatty acid oxidation and osteoblast differentiation. Our work, by systematic functional dissection of pleiotropic GWAS loci, represents a framework to uncover biological mechanisms affecting pleiotropic traits., Graphical abstract, Highlights • 3q21 variants are associated with type 2 diabetes and increased bone mineral density • 3q21 variants affect chromatin accessibility in mesenchymal cells • rs56371916 is a 3q21 causal variant and ADCY5 its target in adipocytes and osteoblasts • ADCY5 and rs56371916 affect lipid oxidation processes in adipocytes and osteoblasts, Nasa Sinnott-Armstrong and colleagues identify a pleiotropic risk locus at 3q21 that is associated with type 2 diabetes (T2D) and greater bone mineral density (BMD) and its associated cell-autonomous mechanisms in adipocytes and osteoblasts. Together, these findings provide a possible explanation for the perplexing finding that individuals with T2D have higher BMD but greater susceptibility to bone fracture.
- Published
- 2021
6. Loss of LDAH associated with prostate cancer and hearing loss
- Author
-
Kristen E Wong, Jacqueline Fung, Andrea Lunardi, Kerry K. Brown, Pier Paolo Pandolfi, Andrew Ivanov, Yanbo Yin, Markus Reschke, Garrett T Wong, Nikolaos A. Patsopoulos, Robin E. Williamson, Ann E. Hickox, Sabina Signoretti, Kathleen S. Arnos, M. Charles Liberman, Ming Chen, Maura Bríd Cotter, Cynthia C. Morton, Nicholas A Sinnott-Armstrong, Tammy Kammin, Richard C Sallari, Benjamin Currall, Jun Shen, Nahid G. Robertson, Kathryn L. Penney, Cinthya J. Zepeda-Mendoza, Bradley J. Quade, Manolis Kellis, and Alexander S. Banks
- Subjects
Adult ,Male ,0301 basic medicine ,Hearing loss ,Hearing Loss, Sensorineural ,Genome-wide association study ,Computational biology ,Biology ,Translocation, Genetic ,Germline ,Mice ,03 medical and health sciences ,Prostate cancer ,Genotype ,Genetics ,medicine ,Animals ,Humans ,P-Chloroamphetamine ,Molecular Biology ,Genetics (clinical) ,Aged ,Mice, Knockout ,Prostatic Neoplasms ,General Medicine ,medicine.disease ,Phenotype ,Germ Cells ,030104 developmental biology ,Sensorineural hearing loss ,Serine Proteases ,medicine.symptom ,Genome-Wide Association Study - Abstract
Great strides in gene discovery have been made using a multitude of methods to associate phenotypes with genetic variants, but there still remains a substantial gap between observed symptoms and identified genetic defects. Herein, we use the convergence of various genetic and genomic techniques to investigate the underpinnings of a constellation of phenotypes that include prostate cancer (PCa) and sensorineural hearing loss (SNHL) in a human subject. Through interrogation of the subject's de novo, germline, balanced chromosomal translocation, we first identify a correlation between his disorders and a poorly annotated gene known as lipid droplet associated hydrolase (LDAH). Using data repositories of both germline and somatic variants, we identify convergent genomic evidence that substantiates a correlation between loss of LDAH and PCa. This correlation is validated through both in vitro and in vivo models that show loss of LDAH results in increased risk of PCa and, to a lesser extent, SNHL. By leveraging convergent evidence in emerging genomic data, we hypothesize that loss of LDAH is involved in PCa and other phenotypes observed in support of a genotype-phenotype association in an n-of-one human subject.
- Published
- 2018
- Full Text
- View/download PDF
7. Pan-cancer screen for mutations in non-coding elements with conservation and cancer specificity reveals correlations with expression and survival
- Author
-
Morten Muhlig Nielsen, Tobias Madsen, Jakob Skou Pedersen, Torben F. Ørntoft, Michał P. Świtnicki, Malene Juul, Richard C Sallari, Asger Hobolth, Manolis Kellis, Nicholas A Sinnott-Armstrong, and Henrik Hornshøj
- Subjects
0301 basic medicine ,Genetics ,Mutation ,lcsh:QH426-470 ,lcsh:R ,Cancer ,lcsh:Medicine ,Biology ,medicine.disease ,medicine.disease_cause ,Article ,DNA binding site ,Gene expression profiling ,03 medical and health sciences ,lcsh:Genetics ,030104 developmental biology ,TOX3 ,Regulatory sequence ,CTCF ,medicine ,Journal Article ,Molecular Biology ,Genetics (clinical) ,Regulator gene - Abstract
Cancer develops by accumulation of somatic driver mutations, which impact cellular function. Mutations in non-coding regulatory regions can now be studied genome-wide and further characterized by correlation with gene expression and clinical outcome to identify driver candidates. Using a new two-stage procedure, called ncDriver, we first screened 507 ICGC whole-genomes from 10 cancer types for non-coding elements, in which mutations are both recurrent and have elevated conservation or cancer specificity. This identified 160 significant non-coding elements, including the TERT promoter, a well-known non-coding driver element, as well as elements associated with known cancer genes and regulatory genes (e.g., PAX5, TOX3, PCF11, MAPRE3). However, in some significant elements, mutations appear to stem from localized mutational processes rather than recurrent positive selection in some cases. To further characterize the driver potential of the identified elements and shortlist candidates, we identified elements where presence of mutations correlated significantly with expression levels (e.g., TERT and CDH10) and survival (e.g., CDH9 and CDH10) in an independent set of 505 TCGA whole-genome samples. In a larger pan-cancer set of 4128 TCGA exomes with expression profiling, we identified mutational correlation with expression for additional elements (e.g., near GATA3, CDC6, ZNF217, and CTCF transcription factor binding sites). Survival analysis further pointed to MIR122, a known marker of poor prognosis in liver cancer. In conclusion, the screen for significant mutation patterns coupled with correlative mutational analysis identified new individual driver candidates and suggest that some non-coding mutations recurrently affect expression and play a role in cancer development., Decoding the driver mutations of cancer Mutations in the “non-coding” part of the genome have been identified that could be involved in driving cancer development. Jakob Pedersen, Henrik Hornshøj and colleagues from Aarhus University Hospital in Denmark and MIT in the United States developed a two-stage procedure to identify elements that could be driving cancer development in the part of DNA that does not code for proteins. They conducted statisical analyses on catalogs of tumor genomes to identify recurrent mutations. They then evaluated how specific these mutations were to different cancer types, their predicted functional impact, and their association with gene expression and patient survival. The analyses identified mutations in the non-coding part of cancer genomes that could be driving tumor development, but further analyses on larger sample sets need to be conducted to validate the results, which could provide a basis for biomarker discovery and precision medical treatment.
- Published
- 2018
- Full Text
- View/download PDF
8. Functional enhancers shape extrachromosomal oncogene amplifications
- Author
-
Mathieu Lupien, Shashirekha Shetty, Qiulian Wu, Megan S. Piazza, Xiuxing Wang, Stephane Angers, Brian P. Rubin, Stephen C. Mack, Jeremy N. Rich, Ryan C. Gimple, Zachary J Faber, Nergiz Dogan-Artun, Peter B. Dirks, Richard C Sallari, Kevin C. Allan, Andrew R. Morton, Graham MacLeod, Cynthia F. Bartels, and Peter C. Scacheri
- Subjects
Cell Survival ,Carcinogenesis ,Locus (genetics) ,Computational biology ,Biology ,Genome ,General Biochemistry, Genetics and Molecular Biology ,Article ,Histones ,03 medical and health sciences ,0302 clinical medicine ,Cell Line, Tumor ,Extrachromosomal DNA ,Neoplasms ,Chromosomes, Human ,Humans ,Epigenetics ,Enhancer ,030304 developmental biology ,0303 health sciences ,CRISPR interference ,Gene Amplification ,Acetylation ,DNA, Neoplasm ,DNA ,Oncogenes ,Amplicon ,Chromatin ,ErbB Receptors ,Enhancer Elements, Genetic ,Genetic Loci ,CRISPR-Cas Systems ,Glioblastoma ,Neuroglia ,030217 neurology & neurosurgery ,Genes, Neoplasm - Abstract
Non-coding regions amplified beyond oncogene borders have largely been ignored. Using a computational approach, we find signatures of significant co-amplification of non-coding DNA beyond the boundaries of amplified oncogenes across five cancer types. In glioblastoma, EGFR is preferentially co-amplified with its two endogenous enhancer elements active in the cell type of origin. These regulatory elements, their contacts, and their contribution to cell fitness are preserved on high-level circular extrachromosomal DNA amplifications. Interrogating the locus with a CRISPR interference screening approach reveals a diversity of additional elements that impact cell fitness. The pattern of fitness dependencies mirrors the rearrangement of regulatory elements and accompanying rewiring of the chromatin topology on the extrachromosomal amplicon. Our studies indicate that oncogene amplifications are shaped by regulatory dependencies in the non-coding genome.
- Published
- 2019
9. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer
- Author
-
Rossanna C. Pezo, Trevor J. Pugh, Mark Dowar, David W. Cescon, Ken Kron, Jennifer Silvester, Tak W. Mak, Mathieu Lupien, Benjamin Haibe-Kains, Aislinn E. Treloar, S. Y. Cindy Yang, Philippe L. Bedard, Richard C Sallari, Parisa Mazrooei, Kinjal Desai, Kelsie L. Thu, Xue Wu, Nicholas A Sinnott-Armstrong, and Swneke D. Bailey
- Subjects
0301 basic medicine ,Estrogen receptor ,Breast Neoplasms ,Regulatory Sequences, Nucleic Acid ,Biology ,medicine.disease_cause ,Polymorphism, Single Nucleotide ,Article ,03 medical and health sciences ,Breast cancer ,Cell Line, Tumor ,Genetics ,medicine ,Humans ,Enhancer ,Regulation of gene expression ,Mutation ,Estrogen Receptor alpha ,Cancer ,medicine.disease ,Gene Expression Regulation, Neoplastic ,body regions ,030104 developmental biology ,Regulatory sequence ,MCF-7 Cells ,Female ,CRISPR-Cas Systems ,Estrogen receptor alpha ,Transcription Factors - Abstract
Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer risk-associated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer.
- Published
- 2016
- Full Text
- View/download PDF
10. Epigenetics and Epigenomics: Implications for Diabetes and Obesity
- Author
-
Klaus H. Kaestner, Richard C Sallari, Evan D. Rosen, Maike Sander, Rama Natarajan, Mary-Elizabeth Patti, and Katalin Susztak
- Subjects
0301 basic medicine ,Gerontology ,Epigenomics ,Endocrinology, Diabetes and Metabolism ,Medical and Health Sciences ,Epigenesis, Genetic ,03 medical and health sciences ,Diabetes mellitus genetics ,Endocrinology & Metabolism ,Genetic ,Diabetes mellitus ,Internal Medicine ,medicine ,Diabetes Mellitus ,Genetics ,Humans ,2.1 Biological and endogenous factors ,Epigenetics ,Obesity ,Aetiology ,Metabolic and endocrine ,Epigenesis ,Nutrition ,American diabetes association ,business.industry ,Prevention ,Diabetes ,Expert consensus ,DNA Methylation ,medicine.disease ,030104 developmental biology ,Perspectives in Diabetes ,business - Abstract
The American Diabetes Association convened a research symposium, “Epigenetics and Epigenomics: Implications for Diabetes and Obesity” on 17–19 November 2017. International experts in genetics, epigenetics, computational biology, and physiology discussed the current state of understanding of the relationships between genetics, epigenetics, and environment in diabetes and examined existing evidence for the role of epigenetic factors in regulating metabolism and the risk of diabetes and its complications. The authors summarize the presentations, which highlight how the complex interactions between genes and environment may in part be mediated through epigenetic changes and how information about nutritional and other environmental stimuli can be transmitted to the next generation. In addition, the authors present expert consensus on knowledge gaps and research recommendations for the field.
- Published
- 2018
11. Convergence of dispersed regulatory mutations predicts driver genes in prostate cancer
- Author
-
Nicholas A Sinnott-Armstrong, Jason Ho, Ken Kron, Stacey L. Edwards, Richard C Sallari, Vuk Stambolic, Juliet D. French, Manolis Kellis, Jason H. Moore, and Mathieu Lupien
- Subjects
Genetics ,0303 health sciences ,Cancer ,Genomics ,Biology ,medicine.disease ,Genome ,Chromatin ,Transcriptome ,03 medical and health sciences ,Prostate cancer ,0302 clinical medicine ,Regulatory sequence ,medicine ,Gene ,030217 neurology & neurosurgery ,030304 developmental biology - Abstract
Cancer sequencing predicts driver genes using recurrent protein-altering mutations, but detecting recurrence for non-coding mutations remains unsolved. Here, we present a convergence framework for recurrence analysis of non-coding mutations using three-dimensional co-localization of epigenomically-identified regions. We define the regulatory plexus of each gene as its cell-type-specific three-dimensional gene-regulatory neighborhood, inferred using Hi-C chromosomal interactions and chromatin state annotations. Using 16 matched tumor-normal prostate transcriptomes, we predict tumor-upregulated genes, and find enriched plexus mutations in distal regulatory regions normally repressed in prostate, suggesting out-of-context de-repression. Using 55 matched tumor-normal prostate genomes, we predict 15 driver genes by convergence of dispersed, low-frequency mutations into high-frequency dysregulation events along prostate-specific plexi, while controlling for mutational heterogeneity across regions, chromatin states, and patients. These putative drivers play roles in growth signaling, immune evasion, mitochondrial function, and vascularization, suggesting higher-order pathway-level convergence. We experimentally validate the PLCB4 plexus and its ability to affect the canonical PI3K cancer pathway.
- Published
- 2016
- Full Text
- View/download PDF
12. Variant Set Enrichment: An R package to Identify Dis-ease-Associated Functional Genomic Regions
- Author
-
Housheng Hansen He, Jason H. Moore, Musaddeque Ahmed, Mathieu Lupien, Haiyang Guo, and Richard C Sallari
- Subjects
Set (abstract data type) ,0303 health sciences ,03 medical and health sciences ,R package ,0302 clinical medicine ,Genetic predisposition ,Human genome ,Disease ,Computational biology ,Biology ,Genome ,030217 neurology & neurosurgery ,030304 developmental biology - Abstract
SummaryGenetic predispositions to diseases populate the noncoding regions of the human genome. Delineating their functional basis can inform on the mechanisms contributing to disease development. However, this remains a challenge due to the poor characterization of the noncoding genome. Variant Set Enrichment (VSE) is a fast method to calculate the enrichment of a set of disease-associated variants across functionally annotated genomic regions, consequently highlighting the mechanisms important in the etiology of the disease studied.Availability and ImplementationVSE is implemented as an R package and can easily be implemented in any system with R. See supplementary information for details.Contacthansenhe@uhnresearch.ca; mlupien@uhnresearch.ca
- Published
- 2016
- Full Text
- View/download PDF
13. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170
- Author
-
Jirong Long, Simon S. Cross, Marc Tischkowitz, Beth Y. Karlan, Trinidad Caldés, Fergus J. Couch, Charlotte Sagne, Ute Hamann, Olga M. Sinilnikova, Maria Kabisch, Richard C Sallari, Gad Rennert, Daniel Barrowdale, Elinor J. Sawyer, Anthony J. Swerdlow, Jenny Lester, Åke Borg, Anders Bojesen, Rosa B. Barkardottir, Simon A. Gayther, Heli Nevanlinna, Judy Garber, Norbert Arnold, Vilde Drageset Haakensen, Vessela N. Kristensen, Christopher G. Scott, Daehee Kang, Gillian Mitchell, Eitan Friedman, Laura Ottini, Diether Lambrechts, Manjeet K. Bolla, Robert L. Nussbaum, Tomasz Huzarski, Dieter Niederacher, Angela Cox, Rachel Laframboise, Maartje J. Hooning, Volker Arndt, Penny Soucy, Marjanka K. Schmidt, William Blot, Soo Hwang Teo, Anne Lise Børresen-Dale, Maria A. Caligo, Ana Osorio, Orland Diez, Gertraud Maskarinec, Johanna Rantala, Kelly-Anne Phillips, Pascal Guénel, Hidemi Ito, Miquel Angel Pujana, Anna H. Wu, Christy G. Woolcott, Maya Ghoussaini, Hatef Darabi, Sander Canisius, Kay-Tee Khaw, Irene Konstantopoulou, Carl Blomqvist, Christine Rappaport, Joan Brunet, Hermann Brenner, Sylvie Mazoyer, Irene L. Andrulis, Nicholas A Sinnott-Armstrong, Javier Benitez, Claudine Isaacs, Mahdi Moradi Marjaneh, Joseph Vijai, Jennifer Stone, Qin Wang, Caroline Seynaeve, Patricia A. Ganz, Sara Margolin, Paolo Radice, Janet E. Olson, Soo-Chin Lee, Mark H. Greene, Laura Papi, Carmel Apicella, Ava Kwong, Mitul Shah, Matthias W. Beckmann, Yael Laitman, Hoda Anton-Culver, Ans M.W. van den Ouweland, Sue K. Park, Annegien Broeks, Georgia Chenevix-Trench, Jonathan Beesley, Nadja Bogdanova-Markov, Paolo Peterlongo, Paraskevi Apostolou, Bernardo Bonanni, Frederik Marmé, Veli-Matti Kosma, Alfons Meindl, Brian E. Henderson, Rulla M. Tamimi, Siranoush Manoukian, Bent Ejlertsen, Miroslav Kapuscinski, Juliet D. French, Mark E. Sherman, Ji Yeob Choi, Graham G. Giles, Stacey L. Edwards, Evgeny N. Imyanitov, Kamila Czene, Thomas Hansen, Nick Orr, Susanne Kaufmann, Lenka Foretova, Celine M. Vachon, Edith Olah, Anja Rudolph, Arto Mannermaa, Phuong L. Mai, Isabel dos-Santos-Silva, Haran Sivakumaran, Francesca Damiola, Christian F. Singer, Muhammad Usman Rashid, Ed Dicks, Mikael Hartman, Antonis C. Antoniou, Dominique Stoppa-Lyonnet, Douglas F. Easton, Alison M. Dunning, John L. Hopper, Nadine Tung, Annika Lindblom, Kristiina Aittomäki, Kenneth Muir, Sue Healey, Cheng Har Yip, Mads Thomassen, Melissa C. Southey, Ramunas Janavicius, Cecilia M. Dorfling, Christine B. Ambrosone, Siddhartha Kar, Mary B. Daly, Artitaya Lophatananon, Rachel Rando, Banu Arun, Christopher A. Haiman, Catherine M. Phelan, Margaret Hills, Manuel R. Teixeira, Diana Torres, Hans Wildiers, Andrew K. Godwin, Keith Humphreys, Katri Pylkäs, Monika Jarosz, Susan L. Neuhausen, Montserrat Garcia-Closas, Robert Winqvist, Joe Dennis, Sook-Yee Yoon, Wei Zheng, Mitch Dowsett, Gord Glendon, Natasha Bogdanova, Suleeporn Sangrajrang, Steve Ellis, Paul Brennan, Lee Eunjung, Keitaro Matsuo, Jacek Gronwald, David E. Goldgar, Debra Frost, Chiu-Chen Tseng, Henrik Flyger, Kristine M. Hillman, Susan M. Domchek, Elena Lopez-Knowles, Bernard Peissel, Anna von Wachenfeldt, Karoline Kuchenbaecker, Anna Jakubowska, Paul D.P. Pharoah, Jose Ignacio Arias Perez, Kim De Leeneer, Roger L. Milne, Peter A. Fasching, Louise Izatt, Saundra S. Buys, Lesley McGuffog, Elizabeth J. van Rensburg, Pei-Ei Wu, Peter Devilee, Åslaug Helland, Qiuyin Cai, Peter J. Hulick, Miguel de la Hoya, Esther M. John, Kerstin Rhiem, Jan Lubinski, Karen A. Pooley, Marion Piedmonte, Catherine S. Healey, Mark S. Goldberg, Xiao-Ou Shu, Antoinette Hollestelle, Mary Beth Terry, Jenny Chang-Claude, Silje Nord, Chen-Yang Shen, Hiltrud Brauch, Kathleen Claes, Jason Sang Hun Lee, Sofia Khan, Katherine L. Nathanson, Hans Ehrencrona, Olufunmilayo I. Olopade, Stig E. Bojesen, Matti A. Rookus, Andrew Lee, Rita K. Schmutzler, Julian Peto, Jeffrey N. Weitzel, Barbara Burwinkel, Arjen R. Mensenkamp, Jacques Simard, Yu-Tang Gao, Robert Luben, S. Drury, Thilo Dörk, Laima Tihomirova, Per Hall, Barbara Perkins, Simona Agata, Jonine D. Figueroa, Julia A. Knight, Kenneth Offit, Kyriaki Michailidou, Anna González-Neira, Ian Tomlinson, Thérèse Truong, Amanda E. Toland, Anna Marie Mulligan, Noralane M. Lindor, Deborah J. Thompson, Marco Montagna, Clinical Genetics, Medical Oncology, Obstetrics & Gynecology, Dunning, Alison [0000-0001-6651-7166], Thompson, Deborah [0000-0003-1465-5799], Pooley, Karen [0000-0002-1274-9460], Dicks, Ed [0000-0002-0617-0401], Dennis, Joe [0000-0003-4591-1214], Wang, Jean [0000-0002-9139-0627], Ghoussaini, Maya [0000-0002-2415-2143], Lee, Andrew [0000-0003-0677-0252], Tischkowitz, Marc [0000-0002-7880-0628], Luben, Robert [0000-0002-5088-6343], Khaw, Kay-Tee [0000-0002-8802-2903], Pharoah, Paul [0000-0001-8494-732X], Antoniou, Antonis [0000-0001-9223-3116], Easton, Douglas [0000-0003-2444-3247], Apollo - University of Cambridge Repository, Targeted Gynaecologic Oncology (TARGON), Damage and Repair in Cancer Development and Cancer Treatment (DARE), and [ 1 ] Univ Cambridge, Dept Oncol, Ctr Canc Genet Epidemiol, Cambridge, England [ 2 ] Univ Cambridge, Dept Publ Hlth & Primary Care, Ctr Canc Genet Epidemiol, Cambridge, England [ 3 ] QIMR Berghofer Med Res Inst, Canc Div, Brisbane, Qld, Australia [ 4 ] Breakthrough Breast Canc Res Ctr, Breast Canc Res, London, England [ 5 ] Royal Marsden Hosp, Acad Biochem, London SW3 6JJ, England [ 6 ] Stanford Univ, Dept Genet, Sch Med, Stanford, CA 94305 USA [ 7 ] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA [ 8 ] Antoni van Leeuwenhoek Hosp, Netherlands Canc Inst, Amsterdam, Netherlands [ 9 ] Univ Melbourne, Sch Populat & Global Hlth, Ctr Biostat & Epidemiol, Melbourne, Vic, Australia [ 10 ] Univ Melbourne, Dept Pathol, Melbourne, Vic, Australia [ 11 ] Univ Warwick, Warwick Med Sch, Div Hlth Sci, Coventry CV4 7AL, W Midlands, England [ 12 ] Univ Manchester, Inst Populat Hlth, Manchester, Lancs, England [ 13 ] Univ Erlangen Nurnberg, Univ Hosp Erlangen, Dept Gynecol & Obstet, Comprehens Canc Ctr Erlangen Nuremberg Metropolit, D-91054 Erlangen, Germany [ 14 ] Univ Calif Los Angeles, David Geffen Sch Med, Div Hematol & Oncol, Dept Med, Los Angeles, CA 90095 USA [ 15 ] London Sch Hyg & Trop Med, Dept Noncommunicable Dis Epidemiol, London WC1, England [ 16 ] Kings Coll London, Guys Hosp, Div Canc Studies, Res Oncol, London, England [ 17 ] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England [ 18 ] Univ Oxford, Oxford Biomed Res Ctr, Oxford, England [ 19 ] German Canc Res Ctr, Div Mol Genet Epidemiol, Heidelberg, Germany [ 20 ] German Canc Res Ctr, Mol Epidemiol Grp, Heidelberg, Germany [ 21 ] Heidelberg Univ, Natl Ctr Tumor Dis, Heidelberg, Germany [ 22 ] Heidelberg Univ, Dept Obstet & Gynecol, Heidelberg, Germany [ 23 ] INSERM, Ctr Res Epidemiol & Populat Hlth, Environm Epidemiol Canc, Villejuif, France [ 24 ] Univ Paris Sud, Villejuif, France [ 25 ] Copenhagen Univ Hosp, Herlev Hosp, Copenhagen Gen Populat Study, Herlev, Denmark [ 26 ] Copenhagen Univ Hosp, Herlev Hosp, Dept Clin Biochem, Herlev, Denmark [ 27 ] Univ Copenhagen, Fac Hlth & Med Sci, Copenhagen, Denmark [ 28 ] Copenhagen Univ Hosp, Herlev Hosp, Dept Breast Surg, Herlev, Denmark [ 29 ] Spanish Natl Canc Ctr CNIO, Human Canc Genet Program, Madrid, Spain [ 30 ] Hosp Monte Naranco, Serv Cirugia Gen & Especialidades, Oviedo, Spain [ 31 ] Univ Calif Irvine, Dept Epidemiol, Irvine, CA USA [ 32 ] Univ So Calif, Keck Sch Med, Dept Prevent Med, Los Angeles, CA 90033 USA [ 33 ] German Canc Res Ctr, Div Clin Epidemiol & Aging Res, Heidelberg, Germany [ 34 ] German Canc Res Ctr, German Canc Consortium, Heidelberg, Germany [ 35 ] Tech Univ Munich, Dept Obstet & Gynaecol, D-80290 Munich, Germany [ 36 ] Univ Hosp Cologne, Dept Obstet & Gynaecol, Div Mol Gynecooncol, Cologne, Germany [ 37 ] Univ Hosp Cologne, Ctr Familial Breast & Ovarian Canc, Cologne, Germany [ 38 ] Univ Hosp, Ctr Integrated Oncol, Cologne, Germany [ 39 ] Dr Margarete Fischer Bosch Inst Clin Pharmacol, Auerbachstr 112, Stuttgart, Germany [ 40 ] Univ Tubingen, Tubingen, Germany [ 41 ] German Canc Res Ctr, Mol Genet Breast Canc, Heidelberg, Germany [ 42 ] Helsinki Univ Cent Hosp, Dept Clin Genet, Helsinki, Finland [ 43 ] Univ Helsinki, Helsinki Univ Cent Hosp, Dept Oncol, Helsinki, Finland [ 44 ] Aichi Canc Ctr Res Inst, Div Epidemiol & Prevent, Aichi, Japan [ 45 ] Aichi Canc Ctr Res Inst, Div Mol Med, Nagoya, Aichi, Japan [ 46 ] Hannover Med Sch, Radiat Oncol Res Unit, Hannover, Germany [ 47 ] Hannover Med Sch, Gynaecol Res Unit, Hannover, Germany [ 48 ] Karolinska Inst, Dept Mol Med & Surg, Stockholm, Sweden [ 49 ] Karolinska Univ Hosp, Dept Oncol Pathol, Stockholm, Sweden [ 50 ] Kuopio Univ Hosp, Ctr Canc, SF-70210 Kuopio, Finland [ 51 ] Univ Eastern Finland, Inst Clin Med Pathol & Forens Med, Kuopio, Finland [ 52 ] Kuopio Univ Hosp, Dept Clin Pathol, Imaging Ctr, SF-70210 Kuopio, Finland [ 53 ] Vesalius Res Ctr, Leuven, Belgium [ 54 ] Univ Leuven, Dept Oncol, Lab Translat Genet, Leuven, Belgium [ 55 ] Univ Hosp Leuven, Dept Gen Med Oncol, Multidisciplinary Breast Ctr, Leuven, Belgium [ 56 ] German Canc Res Ctr, Div Canc Epidemiol, Heidelberg, Germany [ 57 ] Univ Med Ctr Hamburg Eppendorf, UCCH, Hamburg, Germany [ 58 ] Fdn Ist FIRC Oncol Mol, IFOM, Milan, Italy [ 59 ] Fdn IRCCS Ist Nazl Tumori, Dept Prevent & Predict Med, Unit Mol Basis Genet Risk & Genet Testing, Milan, Italy [ 60 ] Mayo Clin, Dept Hlth Sci Res, Rochester, MN USA [ 61 ] Canc Council Victoria, Canc Epidemiol Ctr, Melbourne, Vic, Australia [ 62 ] McGill Univ, Dept Med, Montreal, PQ, Canada [ 63 ] McGill Univ, Royal Victoria Hosp, Div Clin Epidemiol, Montreal, PQ H3A 1A1, Canada [ 64 ] Sime Darby Med Ctr, Canc Res Initiat Fdn, Subang Jaya, Malaysia [ 65 ] Univ Malaya, Med Ctr, Canc Res Inst, Breast Canc Res Unit, Kuala Lumpur, Malaysia [ 66 ] Radiumhospitalet, Oslo Univ Hosp, Inst Canc Res, Dept Genet, Oslo, Norway [ 67 ] Univ Oslo, Inst Clin Med, Oslo, Norway [ 68 ] Univ Oslo, Oslo Univ Hosp, Dept Clin Mol Biol, Oslo, Norway [ 69 ] Vanderbilt Univ, Sch Med, Vanderbilt Ingram Canc Ctr, Div Epidemiol,Dept Med, Nashville, TN 37212 USA [ 70 ] Univ Oulu, NordLab Oulu Univ Hosp, Dept Clin Chem, Lab Canc Genet & Tumor Biol, Oulu, Finland [ 71 ] Univ Oulu, NordLab Oulu Univ Hosp, Bioctr Oulu, Oulu, Finland [ 72 ] Northern Finland Lab Ctr NordLab, Lab Canc Genet & Tumor Biol, Oulu, Finland [ 73 ] Mt Sinai Hosp, Lunenfeld Tanenbaum Res Inst, Toronto, ON M5G 1X5, Canada [ 74 ] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada [ 75 ] Mt Sinai Hosp, Lunenfeld Tanenbaum Res Inst, Prosserman Ctr Hlth Res, Toronto, ON M5G 1X5, Canada [ 76 ] Univ Toronto, Dalla Lana Sch Publ Hlth, Div Epidemiol, Toronto, ON, Canada [ 77 ] Leiden Univ Med Ctr, Dept Pathol, Leiden, Netherlands [ 78 ] Leiden Univ Med Ctr, Dept Human Genet, Leiden, Netherlands [ 79 ] Erasmus MC, Dept Med Oncol, Rotterdam, Netherlands [ 80 ] NCI, Div Canc Epidemiol & Genet, Rockville, MD USA [ 81 ] Karolinska Inst, Dept Med Epidemiol & Biostat, Stockholm, Sweden [ 82 ] Erasmus MC, Dept Clin Genet, Rotterdam, Netherlands [ 83 ] Shanghai Canc Inst, Dept Epidemiol, Shanghai, Peoples R China [ 84 ] Univ Sheffield, Sheffield Canc Res, Dept Oncol, Sheffield, S Yorkshire, England [ 85 ] Univ Sheffield, Dept Neurosci, Acad Unit Pathol, Sheffield, S Yorkshire, England [ 86 ] Int Epidemiol Inst, Rockville, MD USA [ 87 ] Seoul Natl Univ, Coll Med, Dept Prevent Med, Seoul, South Korea [ 88 ] Seoul Natl Univ, Coll Med, Dept Biomed Sci, Seoul, South Korea [ 89 ] Seoul Natl Univ, Coll Med, Canc Res Inst, Seoul, South Korea [ 90 ] Natl Univ Hlth Syst, Dept Haematol Oncol, Singapore, Singapore [ 91 ] Natl Univ Singapore, Canc Sci Inst Singapore, Singapore 117548, Singapore [ 92 ] Natl Univ Singapore, Saw Swee Hock Sch Publ Hlth, Singapore 117548, Singapore [ 93 ] Natl Univ Hlth Syst, Dept Surg, Singapore, Singapore [ 94 ] Pontificia Univ Javerianar, Inst Human Genet, Bogota, Colombia [ 95 ] Pomeranian Med Univ, Dept Genet & Pathol, Szczecin, Poland [ 96 ] Int Agcy Res Canc, 150 Cours Albert Thomas, F-69372 Lyon, France [ 97 ] Natl Canc Inst, Bangkok, Thailand [ 98 ] Roswell Pk Canc Inst, Buffalo, NY 14263 USA [ 99 ] Ohio State Univ, Ctr Comprehens Canc, Dept Mol Virol Immunol & Med Genet, Columbus, OH 43210 USA [ 100 ] China Med Univ, Sch Publ Hlth, Taichung, Taiwan [ 101 ] Acad Sinica, Inst Biomed Sci, Taiwan Biobank, Taipei, Taiwan [ 102 ] Inst Canc Res, Breakthrough Breast Canc Res Ctr, Div Canc Studies, London SW3 6JB, England [ 103 ] Inst Canc Res, Div Genet & Epidemiol, London SW3 6JB, England [ 104 ] Inst Canc Res, Div Breast Canc Res, London SW3 6JB, England [ 105 ] Univ Melbourne, Ctr Epidemiol & Biostat, Melbourne, Vic, Australia [ 106 ] Canc Prevent Inst Calif, Dept Epidemiol, Fremont, CA USA [ 107 ] Columbia Univ, Dept Epidemiol, Mailman Sch Publ Hlth, New York, NY USA [ 108 ] Fox Chase Canc Ctr, Dept Clin Genet, 7701 Burholme Ave, Philadelphia, PA 19111 USA [ 109 ] Univ Utah, Sch Med, Dept Dermatol, Huntsman Canc Inst, Salt Lake City, UT USA [ 110 ] Univ Utah, Sch Med, Dept Med, Huntsman Canc Inst, Salt Lake City, UT USA [ 111 ] State Res Inst Ctr Innovat Med, Vilnius, Lithuania [ 112 ] Latvian Biomed Res & Study Ctr, Riga, Latvia [ 113 ] Beth Israel Deaconess Med Ctr, Dept Med Oncol, Boston, MA 02215 USA [ 114 ] Univ Pretoria, Dept Genet, ZA-0002 Pretoria, South Africa [ 115 ] Beckman Res Inst City Hope, Dept Populat Sci, Duarte, CA USA [ 116 ] Copenhagen Univ Hosp, Rigshosp, Dept Oncol, Copenhagen, Denmark [ 117 ] Copenhagen Univ Hosp, Rigshosp, Ctr Genom Med, Copenhagen, Denmark [ 118 ] Spanish Natl Canc Ctr CNIO, Human Genet Grp, Madrid, Spain [ 119 ] Biomed Network Rare Dis CIBERER, Madrid, Spain [ 120 ] Spanish Natl Canc Res Ctr CNIO, Human Canc Genet Program, Human Genotyping CEGEN Unit, Madrid, Spain [ 121 ] City Hope Clin Canc Genom Community Res Network, Duarte, CA USA [ 122 ] City Hope Natl Med Ctr, Clin Canc Genet, Duarte, CA USA [ 123 ] Ist Europeo Oncol, Div Canc Prevent & Genet, Milan, Italy [ 124 ] Ist Nazl Tumori, Fdn Ist Ricovero & Cura Carattere Sci, Dept Prevent & Predict Med, Unit Med Genet, Via Venezian 1, I-20133 Milan, Italy [ 125 ] Univ Florence, Dept Biomed Expt & Clin Sci, Unit Med Genet, Florence, Italy [ 126 ] Univ Roma La Sapienza, Dept Mol Med, Piazzale Aldo Moro 5, I-00185 Rome, Italy [ 127 ] Aghia Paraskevi Attikis, Natl Ctr Sci Res Demokritos, INRASTES Inst Nucl & Radiol Sci & Technol, Mol Diagnost Lab, Athens, Greece [ 128 ] Dana Farber Canc Inst, Canc Risk & Prevent Clin, Boston, MA 02115 USA [ 129 ] Shaukat Khanum Mem Canc Hosp & Res Ctr, Dept Basic Sci, Lahore, Pakistan [ 130 ] Guys & St Thomas Natl Hlth Serv NHS Fdn Trust, Clin Genet, London, England [ 131 ] Univ Kansas, Med Ctr, Dept Pathol & Lab Med, Kansas City, KS 66103 USA [ 132 ] Univ Kiel, Univ Hosp Schleswig Holstein, Dept Gynaecol & Obstet, Campus Kiel, Kiel, Germany [ 133 ] Univ Dusseldorf, Dusseldorf, Germany [ 134 ] Univ Hosp Cologne, Ctr Mol Med Cologne, Dept Obstet & Gynaecol, Ctr Familial Breast & Ovarian Canc, Cologne, Germany [ 135 ] Univ Hosp Cologne, Ctr Mol Med Cologne, Ctr Integrated Oncol, Cologne, Germany [ 136 ] Univ Munster, Inst Human Genet, D-48149 Munster, Germany [ 137 ] Univ Lyon 1, CNRS UMR 5286, INSERM U1052, Ctr Rech Cancerol Lyon, F-69365 Lyon, France [ 138 ] Inst Curie, Dept Tumour Biol, Paris, France [ 139 ] Univ Paris 05, Sorbonne Paris Cite, Paris, France [ 140 ] Hosp Civils Lyon, Ctr Leon Berard, Unite Mixte Genet Constitutionnelle Canc Frequent, Lyon, France [ 141 ] Georgetown Univ, Lombardi Comprehens Canc Ctr, Washington, DC USA [ 142 ] Univ Ghent, Ctr Med Genet, B-9000 Ghent, Belgium [ 143 ] Hosp Clin San Carlos, IdISSC, Mol Oncol Lab, Madrid, Spain [ 144 ] Univ Helsinki, Dept Obstet & Gynecol, Helsinki, Finland [ 145 ] Univ Helsinki, Cent Hosp, Helsinki, Finland [ 146 ] Radboud Univ Nijmegen, Med Ctr, Dept Human Genet, NL-6525 ED Nijmegen, Netherlands [ 147 ] Erasmus Univ, Med Ctr, Family Canc Clin, Dept Med Oncol, Rotterdam, Netherlands [ 148 ] Netherlands Canc Inst, Dept Epidemiol, Amsterdam, Netherlands [ 149 ] Hong Kong Sanat & Hosp, Canc Genet Ctr, Hong Kong Hereditary Breast Canc Family Registry, Hong Kong, Hong Kong, Peoples R China [ 150 ] Univ Hong Kong, Dept Surg, Hong Kong, Hong Kong, Peoples R China [ 151 ] Natl Inst Oncol, Dept Mol Genet, Budapest, Hungary [ 152 ] Vall dHebron Univ Hosp, VHIO, Oncogenet Lab, Barcelona, Spain [ 153 ] Catalan Inst Oncol, IDIBGI, Hereditary Canc Program, Genet Counseling Unit, Girona, Spain [ 154 ] Catalan Inst Oncol, IDIBELL Bellvitge Biomed Res Inst, Breast Canc & Syst Biol Unit, Barcelona, Spain [ 155 ] Univ Iceland, Fac Med, Landspitali Univ Hosp, Dept Pathol, Reykjavik, Iceland Organization-Enhanced Name(s) Landspitali National University Hospital University of Iceland [ 156 ] Univ Iceland, Fac Med, Biomed Ctr BMC, Reykjavik, Iceland [ 157 ] Ctr Hosp Univ Quebec, Div Med Genet, Quebec City, PQ, Canada [ 158 ] Univ Laval, Quebec City, PQ, Canada [ 159 ] Ctr Hosp Univ Quebec, Quebec City, PQ, Canada [ 160 ] IRCCS, IOV, Immunol & Mol Oncol Unit, Padua, Italy [ 161 ] Portuguese Oncol Inst, Dept Genet, Oporto, Portugal [ 162 ] Univ Porto, Biomed Sci Inst ICBAS, Rua Campo Alegre 823, P-4100 Oporto, Portugal [ 163 ] Mayo Clin, Dept Lab Med & Pathol, Rochester, MN USA [ 164 ] McGill Univ, Program Canc Genet, Montreal, PQ, Canada [ 165 ] Masaryk Univ, Masaryk Mem Canc Inst, Brno, Czech Republic [ 166 ] Masaryk Univ, Fac Med, Brno, Czech Republic [ 167 ] Mem Sloan Kettering Canc Ctr, Dept Med, 1275 York Ave, New York, NY 10021 USA [ 168 ] Med Univ Vienna, Ctr Comprehens Canc, Dept Obstet & Gynecol, Vienna, Austria [ 169 ] Univ S Florida, H Lee Moffitt Canc Ctr, Dept Canc Epidemiol, Tampa, FL 33682 USA [ 170 ] NCI, Clin Genet Branch, Div Canc Epidemiol & Genet, US NIH, Rockville, MD USA [ 171 ] Carmel Hosp, Dept Community Med & Epidemiol, Haifa, Israel [ 172 ] Technion Israel Inst Technol, Bruce Rappaport Fac Med, POB 9649, IL-31096 Haifa, Israel [ 173 ] Clalit Natl Israeli Canc Control Ctr, Haifa, Israel [ 174 ] NN Petrov Oncol Res Inst, St Petersburg, Russia [ 175 ] NorthShore Univ Hlth Syst, Ctr Med Genet, Evanston, IL USA [ 176 ] Peter MacCallum Canc Ctr, Div Canc Med, East Melbourne, Vic, Australia [ 177 ] Roswell Pk Canc Inst, Stat & Data Management Ctr, NRG Oncol, Buffalo, NY 14263 USA [ 178 ] Univ Hlth Network, Lab Med Program, Toronto, ON, Canada [ 179 ] Univ Toronto, Dept Lab Med & Pathobiol, Toronto, ON, Canada [ 180 ] Vejle Hosp, Dept Clin Genet, Vejle, Denmark [ 181 ] Odense Univ Hosp, Dept Clin Genet, DK-5000 Odense, Denmark [ 182 ] Univ Pisa, Dept Lab Med, Sect Genet Oncol, Pisa, Italy [ 183 ] Univ Hosp Pisa, Pisa, Italy [ 184 ] Univ Malaya, Univ Malaya Med Ctr, Fac Med, Univ Malaya Canc Res Inst, Kuala Lumpur, Malaysia [ 185 ] Chaim Sheba Med Ctr, Susanne Levy Gertner Oncogenet Unit, IL-52621 Tel Hashomer, Israel [ 186 ] Lund Univ, Dept Oncol, Lund, Sweden [ 187 ] Uppsala Univ, Dept Immunol Genet & Pathol, Uppsala, Sweden [ 188 ] Univ Lund Hosp, Dept Clin Genet, S-22185 Lund, Sweden [ 189 ] Karolinska Univ Hosp, Dept Clin Genet, Stockholm, Sweden [ 190 ] Univ Chicago, Med Ctr, Ctr Clin Canc Genet & Global Hlth, Chicago, IL 60637 USA [ 191 ] Univ Calif Los Angeles, Sch Med, Johnsson Comprehens Canc Ctr, Div Canc Prevent & Control Res, Los Angeles, CA USA [ 192 ] Univ Calif Los Angeles, Sch Publ Hlth, Johnsson Comprehens Canc Ctr, Div Canc Prevent & Control Res, Los Angeles, CA USA [ 193 ] Univ Calif San Francisco, Dept Med & Genet, San Francisco, CA 94143 USA [ 194 ] Univ Penn, Abramson Canc Ctr, Perelman Sch Med, Philadelphia, PA 19104 USA [ 195 ] Univ Texas MD Anderson Canc Ctr, Houston, TX 77030 USA [ 196 ] Peter MacCallum Canc Ctr, Familial Canc Ctr, Melbourne, Vic, Australia [ 197 ] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Melbourne, Vic, Australia [ 198 ] Cedars Sinai Med Ctr, Samuel Oschin Comprehens Canc Inst, Womens Canc Program, Los Angeles, CA 90048 USA [ 199 ] Univ Hawaii, Ctr Canc, Honolulu, HI 96822 USA [ 200 ] Dalhousie Univ, Dept Obstet Gynaecol & Pediat, Halifax, NS, Canada [ 201 ] Univ Western Australia, Ctr Genet Origins Hlth & Dis, Perth, WA 6009, Australia [ 202 ] Brigham & Womens Hosp, Dept Med, Channing Div Network Med, 75 Francis St, Boston, MA 02115 USA [ 203 ] Harvard Univ, Sch Med, Boston, MA USA [ 204 ] Harvard Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02115 USA [ 205 ] Harvard Univ, Sch Publ Hlth, Program Genet Epidemiol & Stat Genet, 665 Huntington Ave, Boston, MA 02115 USA [ 206 ] Univ Cambridge, Dept Publ Hlth & Primary Care, Clin Gerontol, Cambridge, England
- Subjects
0301 basic medicine ,Genes, BRCA2 ,Estrogen receptor ,MODIFIERS ,Gene Expression ,Genome-wide association study ,Cell Cycle Proteins ,DISEASE ,Breast cancer ,Risk Factors ,Brjóstakrabbamein ,BRCA2 MUTATION CARRIERS ,Tumours of the digestive tract Radboud Institute for Molecular Life Sciences [Radboudumc 14] ,SUSCEPTIBILITY LOCUS ,MAMMOGRAPHIC DENSITY ,Regulation of gene expression ,Genetics ,Research Support, Non-U.S. Gov't ,Estrogen Receptor alpha/genetics ,Phenotype ,3. Good health ,Gene Expression Regulation, Neoplastic ,Medical genetics ,Chromosomes, Human, Pair 6 ,Female ,BONE-MINERAL DENSITY ,NAF12 ,Protein Binding ,EXPRESSION ,medicine.medical_specialty ,Locus (genetics) ,Breast Neoplasms ,Estrògens ,Biology ,Breast Neoplasms/genetics ,Polymorphism, Single Nucleotide ,Article ,Càncer de mama ,03 medical and health sciences ,Research Support, N.I.H., Extramural ,SDG 3 - Good Health and Well-being ,REVEALS ,medicine ,Journal Article ,cancer ,Humans ,Genetic Predisposition to Disease ,GENOME-WIDE ASSOCIATION ,METAANALYSIS ,breast ,Genetic Association Studies ,Base Sequence ,Estrogen Receptor alpha ,Genetic Variation ,Arfgengi ,medicine.disease ,Estrogen ,030104 developmental biology ,breast cancer, BRCA1, BRCA2 ,Carrier Proteins ,Estrogen receptor alpha ,Research Support, U.S. Gov't, Non-P.H.S ,Meta-Analysis - Abstract
To access publisher's full text version of this article click on the hyperlink at the bottom of the page We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression. National Institute for Health Research (NIHR) info:eu-repo/grantAgreement/EC/FP7/223175 Cancer Research UK C1287/A10118 C1287/A10710 C12292/A11174 C1281/A12014 C5047/A8384 C5047/A15007 C5047/A10692 C8197/A16565 US National Institutes of Health (NIH) CA128978 CA192393 CA116167 CA176785 US National Institutes of Health (NIH Specialized Program of Research Excellence (SPORE) in Breast Cancer) CA116201 Post-Cancer GWAS initiative 1U19 CA148537 1U19 CA148065 1U19 CA148112 Post-Cancer GWAS initiative (GAME-ON initiative) US Department of Defense W81XWH-10-1-0341 Canadian Institutes of Health Research (CIHR) Komen Foundation for the Cure Breast Cancer Research Foundation Ovarian Cancer Research Fund
- Published
- 2016
- Full Text
- View/download PDF
14. SMAD4-dependent polysome RNA recruitment in human pancreatic cancer cells
- Author
-
Sinny Wang, Heidi W. Trask, Murray Korc, Jason H. Moore, Craig R. Tomlinson, Richard C Sallari, Jessica A. Thornley, Carol S. Ringelberg, and Christian J.A. Ridley
- Subjects
Cytoplasm ,Cancer Research ,Biology ,Article ,Transforming Growth Factor beta ,Polysome ,Gene expression ,Translational regulation ,Tumor Cells, Cultured ,medicine ,Humans ,RNA, Messenger ,Molecular Biology ,Gene ,Smad4 Protein ,Cell Nucleus ,Regulation of gene expression ,Messenger RNA ,RNA ,Molecular biology ,Cell biology ,Gene Expression Regulation, Neoplastic ,Pancreatic Neoplasms ,Cell nucleus ,medicine.anatomical_structure ,Polyribosomes ,Signal Transduction - Abstract
Pancreatic cancer is the fourth leading cause of cancer death in the United States because most patients are diagnosed too late in the course of the disease to be treated effectively. Thus, there is a pressing need to more clearly understand how gene expression is regulated in cancer cells and to identify new biomarkers and therapeutic targets. Translational regulation is thought to occur primarily through non-SMAD directed signaling pathways. We tested the hypothesis that SMAD4-dependent signaling does play a role in the regulation of mRNA entry into polysomes and that novel candidate genes in pancreatic cancer could be identified using polysome RNA from the human pancreatic cancer cell line BxPC3 with or without a functional SMAD4 gene. We found that (i) differentially expressed whole cell and cytoplasm RNA levels are both poor predictors of polysome RNA levels; (ii) for a majority of RNAs, differential RNA levels are regulated independently in the nucleus, cytoplasm, and polysomes; (iii) for most of the remaining polysome RNA, levels are regulated via a "tagging" of the RNAs in the nucleus for rapid entry into the polysomes; (iv) a SMAD4-dependent pathway appears to indeed play a role in regulating mRNA entry into polysomes; and (v) a gene list derived from differentially expressed polysome RNA in BxPC3 cells generated new candidate genes and cell pathways potentially related to pancreatic cancer.
- Published
- 2011
- Full Text
- View/download PDF
15. Integrative analysis of 111 reference human epigenomes
- Author
-
Daofeng Li, Tim R. Mercer, Wei Li, Lisa Helbling Chadwick, Jesse R. Dixon, Pouya Kheradpour, Joseph F. Costello, Pradipta R. Ray, John W. Whitaker, Peggy J. Farnham, Angela Tam, Vitor Onuchic, Robert A. Waterland, Misha Bilenky, James A. Thomson, Zhizhuo Zhang, Yaping Liu, Gerald Quon, Andrew J. Mungall, Steven J.M. Jones, Bradley E. Bernstein, Alexander Meissner, Melina Claussnitzer, Charles B. Epstein, Andreas R. Pfenning, Li-Huei Tsai, Laurie A. Boyer, Angela Yen, Ting Wang, Rajinder Kaul, Alireza Heravi-Moussavi, Danny Leung, Noam Shoresh, Michael T. McManus, Michael Stevens, John A. Stamatoyannopoulos, Mukul S. Bansal, Thea D. Tlsty, Susan J. Fisher, Manolis Kellis, Michael Q. Zhang, Aleksandar Milosavljevic, Viren Amin, Martin Hirst, Matthew D. Schultz, Joseph R. Ecker, Xinchen Wang, Jie Wu, Marco A. Marra, Kyle Siebenthall, Wei Wang, Ashwinikumar Kulkarni, Peter J. Sabo, R. Scott Hansen, Jianrong Wang, Michael J. Ziller, Richard A. Moore, Shane Neph, Richard C Sallari, Robert E. Thurman, Paz Polak, Wei Xie, Eric Chuah, Jason Ernst, Bing Ren, Nisha Rajagopal, Anshul Kundaje, Xin Zhou, Yi-Chieh Wu, Shamil R. Sunyaev, Ginell Elliott, Philippe Gascard, Soheil Feizi, Chibo Hong, R. Alan Harris, Ah Ram Kim, Philip L. De Jager, Rosa Karlic, R. David Hawkins, Matthew L. Eaton, Ryan Lister, Rebecca F. Lowdon, Annaick Carles, Elizabeta Gjoneska, David Haussler, Abhishek Sarkar, Nicholas A Sinnott-Armstrong, Wouter Meuleman, Lucas D. Ward, Kai How Farh, Richard Sandstrom, Arthur E. Beaudet, Theresa K. Canfield, Cristian Coarfa, Bo Zhang, Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology. Department of Biology, Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science, Picower Institute for Learning and Memory, Kundaje, Anshul, Meuleman, Wouter, Ernst, Jason, Yen, Angela, Kheradpour, Pouya, Zhang, Zhizhuo, Wang, Jianrong, Ward, Lucas D., Sarkar, Abhishek Kulshreshtha, Quon, Gerald, Eaton, Matthew Lucas, Wu, Yi-Chieh, Pfenning, Andreas R., Wang, Xinchen, Claussnitzer, Melina, Liu, Yaping, Bansal, Mukul S., Feizi-Khankandi, Soheil, Kim, Ah Ram, Cowper Sal-lari, Richard, Sinnott-Armstrong, Nicholas A., Kellis, Manolis, Boyer, Laurie, Gjoneska, Elizabeta, and Tsai, Li-Huei
- Subjects
Epigenomics ,Datasets as Topic ,ATAC-seq ,Computational biology ,Biology ,Article ,Epigenesis, Genetic ,Histones ,Reference Values ,Computational epigenetics ,Chromosomes, Human ,Humans ,Cell Lineage ,Epigenetics ,Cells, Cultured ,Genetics ,Regulation of gene expression ,Multidisciplinary ,Base Sequence ,Genome, Human ,Genetic Variation ,DNA ,Epigenome ,DNA Methylation ,Chromatin ,Human genetics ,Enhancer Elements, Genetic ,Organ Specificity ,RNA ,Human genome ,chromatin ,histone ,epigenome ,tissue specificity ,Genome-Wide Association Study - Abstract
The reference human genome sequence set the stage for studies of genetic variation and its association with human disease, but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease., National Human Genome Research Institute (U.S.) (RC1HG005334), National Human Genome Research Institute (U.S.) (R01HG004037), National Human Genome Research Institute (U.S.) (R01HG004037-S1), National Human Genome Research Institute (U.S.) (RO1NS078839), National Science Foundation (U.S.) (CAREER Award 1254200)
- Published
- 2014
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.