38 results on '"Robert I. Citron"'
Search Results
2. Erratum: 'Reduced Atmospheres of Post-impact Worlds: The Early Earth' (2022, PSJ, 3, 115)
- Author
-
Jonathan P. Itcovitz, Auriol S. P. Rae, Robert I. Citron, Sarah T. Stewart, Catriona A. Sinclair, Paul B. Rimmer, and Oliver Shorttle
- Subjects
Astronomy ,QB1-991 - Published
- 2023
- Full Text
- View/download PDF
3. Erratum: 'Large Impacts onto the Early Earth: Planetary Sterilization and Iron Delivery' (2022, PSJ, 3, 116)
- Author
-
Robert I. Citron and Sarah T. Stewart
- Subjects
Astronomy ,QB1-991 - Published
- 2023
- Full Text
- View/download PDF
4. Effects of Heat‐Producing Elements on the Stability of Deep Mantle Thermochemical Piles
- Author
-
Robert I. Citron, Diogo L. Lourenço, Alfred J. Wilson, Antoniette G. Grima, Scott A. Wipperfurth, Maxwell L. Rudolph, Sanne Cottaar, and Laurent G. J. Montési
- Subjects
deep mantle ,LLSVPs ,thermochemical piles ,heat‐producing elements ,mantle heterogeneity ,primordial reservoirs ,Geophysics. Cosmic physics ,QC801-809 ,Geology ,QE1-996.5 - Abstract
Abstract Geochemical observations of ocean island and mid‐ocean ridge basalts suggest that abundances of heat‐producing elements (HPEs: U, Th, and K) vary within the mantle. Combined with bulk silicate Earth models and constraints on the Earth's heat budget, these observations suggest the presence of a more enriched (potentially deep and undepleted) reservoir in the mantle. Such a reservoir may be related to seismically observed deep mantle structures known as large low shear velocity provinces (LLSVPs). LLSVPs might represent thermochemical piles of an intrinsically denser composition, and many studies have shown such piles to remain stable over hundreds of Myr or longer. However, few studies have examined if thermochemical piles can remain stable if they are enriched in HPEs, a necessary condition for them to constitute an enriched HPE reservoir. We conduct a suite of mantle convection simulations to examine the effect of HPE enrichment up to 25× the ambient mantle on pile stability. Model results are evaluated against present‐day pile morphology and tested for resulting seismic signatures using self‐consistent potential pile compositions. We find that stable piles can form from an initial basal layer of dense material even if the layer is enriched in HPEs, depending on the density of the layer and degree of HPE enrichment, with denser basal layers requiring increased HPE enrichment to form pile‐like morphology instead of a stable layer. Thermochemical piles or LLSVPs may therefore constitute an enriched reservoir in the deep mantle.
- Published
- 2020
- Full Text
- View/download PDF
5. Recovery of meteorites using an autonomous drone and machine learning
- Author
-
Robert I. Citron, Peter Jenniskens, Christopher Watkins, Sravanthi Sinha, Amar Shah, Chedy Raissi, Hadrien Devillepoix, and Jim Albers
- Published
- 2021
- Full Text
- View/download PDF
6. Hydrodynamic instability at impact interfaces and planetary implications
- Author
-
Robert I. Citron, Raymond Jeanloz, and Avi Ravid
- Subjects
Multidisciplinary ,010504 meteorology & atmospheric sciences ,Science ,General Physics and Astronomy ,General Chemistry ,Experimental validation ,Mechanics ,01 natural sciences ,Instability ,General Biochemistry, Genetics and Molecular Biology ,Article ,Meteorite ,Fluid dynamics ,Planet ,Bolide ,Meteoritics ,0103 physical sciences ,Refraction (sound) ,Mixing zone ,010303 astronomy & astrophysics ,Geology ,Mixing (physics) ,0105 earth and related environmental sciences - Abstract
Impact-induced mixing between bolide and target is fundamental to the geochemical evolution of a growing planet, yet aside from local mixing due to jetting – associated with large angles of incidence between impacting surfaces – mixing during planetary impacts is poorly understood. Here we describe a dynamic instability of the surface between impacting materials, showing that a region of mixing grows between two media having even minimal initial topography. This additional cause of impact-induced mixing is related to Richtmyer-Meshkov instability (RMI), and results from pressure perturbations amplified by shock-wave refraction through the corrugated interface between impactor and target. However, unlike RMI, this new impact-induced instability appears even if the bodies are made of the same material. Hydrocode simulations illustrate the growth of this mixing zone for planetary impacts, and predict results suitable for experimental validation in the laboratory. This form of impact mixing may be relevant to the formation of stony-iron and other meteorites., The authors describe a dynamic surface instability between impacting materials, showing that a region of mixing grows between two media. The study implies that this can explain mixed compositions and textures in certain meteorites.
- Published
- 2021
7. Reduced atmospheres of post-impact worlds: The early Earth
- Author
-
Jonathan P. Itcovitz, Auriol S. P. Rae, Robert I. Citron, Sarah T. Stewart, Catriona A. Sinclair, Paul B. Rimmer, Oliver Shorttle, Itcovitz, Jonathan [0000-0003-2079-8171], Rimmer, Paul [0000-0002-7180-081X], Shorttle, Oliver [0000-0002-8713-1446], and Apollo - University of Cambridge Repository
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Geophysics ,Space and Planetary Science ,astro-ph.EP ,Earth and Planetary Sciences (miscellaneous) ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Impacts may have had a significant effect on the atmospheric chemistry of the early Earth. Reduced phases in the impactor (e.g., metallic iron) can reduce the planet's H$_2$O inventory to produce massive atmospheres rich in H$_2$. Whilst previous studies have focused on the interactions between the impactor and atmosphere in such scenarios, we investigate two further effects, 1) the distribution of the impactor's iron inventory during impact between the target interior, target atmosphere, and escaping the target, and 2) interactions between the post-impact atmosphere and the impact-generated melt phase. We find that these two effects can potentially counterbalance each other, with the melt-atmosphere interactions acting to restore reducing power to the atmosphere that was initially accreted by the melt phase. For a $\sim10^{22}\,\mathrm{kg}$ impactor, when the iron accreted by the melt phase is fully available to reduce this melt, we find an equilibrium atmosphere with H$_2$ column density $\sim10^4\,\mathrm{moles\,cm^{-2}}$ ($p\mathrm{H2}\sim120\,\mathrm{bars}\mathrm{,}~X_\mathrm{H2}\sim0.77$), consistent with previous estimates. However, when the iron is not available to reduce the melt (e.g., sinking out in large diameter blobs), we find significantly less H$_2$ ($7\times10^2-5\times10^3\,\mathrm{moles\,cm^{-2}}$, $p\mathrm{H2}\lesssim60\,\mathrm{bars}\mathrm{,}~X_\mathrm{H2}\lesssim0.41$). These lower H$_2$ abundances are sufficiently high that species important to prebiotic chemistry can form (e.g., NH3, HCN), but sufficiently low that the greenhouse heating effects associated with highly reducing atmospheres, which are problematic to such chemistry, are suppressed. The manner in which iron is accreted by the impact-generated melt phase is critical in determining the reducing power of the atmosphere and re-solidified melt pool in the aftermath of impact., Comment: 34 Pages, 11 Figures, 3 Appendices, Accepted for publication in PSJ
- Published
- 2022
- Full Text
- View/download PDF
8. Fractional polarization of extragalactic sources in the 500 deg2 SPTpol survey
- Author
-
C. Sievers, J. T. Sayre, A. E. Lowitz, Jeff McMahon, Christian L. Reichardt, C. Corbett Moran, John E. Carlstrom, K. K. Schaffer, T. de Haan, V. G. Yefremenko, D. Luong-Van, Eric R. Switzer, Robert I. Citron, Dale Li, V. Novosad, Chihway Chang, A. T. Crites, Jessica Avva, C. Pryke, Kent D. Irwin, W. L. K. Wu, Johannes Hubmayr, R. Williamson, M. Archipley, Elizabeth George, N. Huang, John P. Nibarger, K. Vanderlinde, W. L. Holzapfel, A. A. Stark, J. D. Hrubes, Andrew Nadolski, H. C. Chiang, T. Natoli, T. Veach, Gene C. Hilton, Nikhel Gupta, W. B. Everett, G. I. Noble, Federico Bianchini, Adrian T. Lee, Lloyd Knox, Peter A. R. Ade, S. S. Meyer, Lindsey Bleem, J. E. Ruhl, K. T. Story, Joseph J. Mohr, S. Patil, Chang Feng, M. A. Dobbs, G. P. Holder, Jason Gallicchio, Nathan Whitehorn, Jason W. Henning, Zhen Hou, L. Zhang, N. W. Halverson, N. L. Harrington, Joshua Montgomery, Erik Shirokoff, J. A. Beall, Benjamin Saliwanchik, Bradford Benson, Z. K. Staniszewski, Carole Tucker, Jason E. Austermann, Graeme Smecher, A. J. Gilbert, Adam Anderson, L. M. Mocanu, Daniel P. Marrone, S. Padin, Gensheng Wang, Andreas Bender, Joaquin Vieira, and T. M. Crawford
- Subjects
Physics ,010308 nuclear & particles physics ,Space and Planetary Science ,Linear polarization ,0103 physical sciences ,Astronomy and Astrophysics ,Astrophysics ,010303 astronomy & astrophysics ,01 natural sciences ,Full sample ,Fractional polarization - Abstract
Author(s): Gupta, N; Reichardt, CL; Ade, PAR; Anderson, AJ; Archipley, M; Austermann, JE; Avva, JS; Beall, JA; Bender, AN; Benson, BA; Bianchini, F; Bleem, LE; Carlstrom, JE; Chang, CL; Chiang, HC; Citron, R; Corbett Moran, C; Crawford, TM; Crites, AT; de Haan, T; Dobbs, MA; Everett, W; Feng, C; Gallicchio, J; George, EM; Gilbert, A; Halverson, NW; Harrington, N; Henning, JW; Hilton, GC; Holder, GP; Holzapfel, WL; Hou, Z; Hrubes, JD; Huang, N; Hubmayr, J; Irwin, KD; Knox, L; Lee, AT; Li, D; Lowitz, A; Luong-Van, D; Marrone, DP; McMahon, JJ; Meyer, SS; Mocanu, LM; Mohr, JJ; Montgomery, J; Nadolski, A; Natoli, T; Nibarger, JP; Noble, GI; Novosad, V; Padin, S; Patil, S; Pryke, C; Ruhl, JE; Saliwanchik, BR; Sayre, JT; Schaffer, KK; Shirokoff, E; Sievers, C; Smecher, G; Staniszewski, Z; Stark, AA; Story, KT; Switzer, ER; Tucker, C; Vanderlinde, K; Veach, T; Vieira, JD; Wang, G; Whitehorn, N; Williamson, R; Wu, WLK; Yefremenko, V; Zhang, L | Abstract: We study the polarization properties of extragalactic sources at 95 and 150 GHz in the SPTpol 500 deg2 survey. We estimate the polarized power by stacking maps at known source positions, and correct for noise bias by subtracting the mean polarized power at random positions in the maps. We show that the method is unbiased using a set of simulated maps with similar noise properties to the real SPTpol maps. We find a flux-weighted mean-squared polarization fraction 〈p2〉= [8.9 ± 1.1] × 10−4 at 95 GHz and [6.9 ± 1.1] × 10−4 at 150 GHz for the full sample. This is consistent with the values obtained for a subsample of active galactic nuclei. For dusty sources, we find 95 per cent upper limits of 〈p2〉95 l 16.9 × 10−3 and 〈p2〉150 l 2.6 × 10−3. We find no evidence that the polarization fraction depends on the source flux or observing frequency. The 1σ upper limit on measured mean-squared polarization fraction at 150 GHz implies that extragalactic foregrounds will be subdominant to the CMB E and B mode polarization power spectra out to at least l ≲ 5700 (l ≲ 4700) and l ≲ 5300 (l ≲ 3600), respectively, at 95 (150) GHz.
- Published
- 2019
- Full Text
- View/download PDF
9. Contributors
- Author
-
Rickbir Bahia, Raphael Baumgartner, Bruce G. Bills, Tomaso R.R. Bontognali, Robert I. Citron, Susan J. Conway, Ingrid Daubar, Alfonso F. Davila, Jocelyne DiRuggiero, Tara Djokic, Colin M. Dundas, Kenneth S. Edgett, M. Ramy El-Maarry, Giuseppe Etiope, Abigail A. Fraeman, Marc Fries, Colman J. Gallagher, James B. Garvin, Shoichi Kiyokawa, David W. Leverington, Joseph S. Levy, Dorothy Z. Oehler, David A. Paige, Timothy J. Parker, Tyler M. Powell, James H. Roberts, Lior Rubanenko, Mark R. Salvatore, Richard J. Soare, David E. Stillman, Kenichiro Sugitani, Martin J. Van Kranendonk, Donna Viola, Malcolm R. Walter, Kimberly Warren-Rhodes, and Jean-Pierre Williams
- Published
- 2021
- Full Text
- View/download PDF
10. Forging the Mars crustal dichotomy: the giant impact hypothesis
- Author
-
Robert I. Citron
- Subjects
Martian ,Meteorite ,Impact crater ,Giant impact hypothesis ,Earth science ,Mars Exploration Program ,Structural basin ,Ejecta ,Geology ,Accretion (astrophysics) - Abstract
Mars’ most prominent and ancient feature is the hemispheric dichotomy in crustal thickness and topography between the northern lowlands and southern highlands. Understanding the origin of the dichotomy is crucial to interpreting Mars’ early history and geodynamic evolution. While several robust endogenic mechanisms have been proposed, an early giant impact has also emerged as a compelling hypothesis for the dichotomy’s formation. Recent studies suggest that a giant impact of ∼4.5 Ga could explain the general shape and structure of the dichotomy and is consistent with the Martian meteorite record and models of planetary accretion. However, simulations of giant impacts predict annular thickening of the basin rim and large variations in ejecta thickness that are inconsistent with current observations. Our limited knowledge of impact basin formation at planetary scales motivates a further investigation of the giant impact process and the origin of Mars’ most fundamental feature.
- Published
- 2021
- Full Text
- View/download PDF
11. Searching for anisotropic cosmic birefringence with polarization data from SPTpol
- Author
-
Kent D. Irwin, W. L. Holzapfel, Jason W. Henning, A. A. Stark, J. D. Hrubes, Jeff McMahon, N. W. Halverson, Andreas Bender, T. M. Crawford, T.-L. Chou, L. Balkenhol, C. Sievers, Gensheng Wang, W. L. K. Wu, John E. Carlstrom, E. J. Baxter, W. B. Everett, Joshua Montgomery, Christian L. Reichardt, Marius Millea, A. E. Lowitz, V. G. Yefremenko, C. Pryke, Adrian T. Lee, Lloyd Knox, Dale Li, Joaquin Vieira, K. Vanderlinde, Gene C. Hilton, L. M. Mocanu, Jason Gallicchio, Y. Omori, K. K. Schaffer, Peter A. R. Ade, S. Patil, A. T. Crites, Jason E. Austermann, K. T. Story, S. S. Meyer, C. Corbett Moran, Valentine Novosad, T. de Haan, Jessica Avva, Graeme Smecher, P. Chaubal, J. E. Ruhl, A. J. Gilbert, Benjamin Saliwanchik, Gilbert Holder, Adam Anderson, M. A. Dobbs, A. Manzotti, S. Padin, Nathan Whitehorn, N. Huang, H. C. Chiang, Nikhel Gupta, Carole Tucker, G. I. Noble, Federico Bianchini, G. Simard, John P. Nibarger, Andrew Nadolski, J. A. Beall, Robert I. Citron, T. Natoli, Lindsey Bleem, Elizabeth George, T. Veach, Johannes Hubmayr, C. L. Chang, Bradford Benson, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and SPT
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Cosmic microwave background ,FOS: Physical sciences ,anisotropy ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,temperature: fluctuation ,polarization: rotation ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,inflation ,Anisotropy ,010303 astronomy & astrophysics ,media_common ,Physics ,COSMIC cancer database ,birefringence ,Chern-Simons term ,010308 nuclear & particles physics ,coupling constant ,magnetic field: primordial ,Astrophysics::Instrumentation and Methods for Astrophysics ,correlation: higher-order ,Spectral density ,Polarization (waves) ,Cosmology ,cosmic background radiation: temperature ,High Energy Physics - Phenomenology ,Amplitude ,South Pole Telescope ,13. Climate action ,Sky ,power spectrum: angular dependence ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a search for anisotropic cosmic birefringence in 500 deg$^2$ of southern sky observed at 150 GHz with the SPTpol camera on the South Pole Telescope. We reconstruct a map of cosmic polarization rotation anisotropies using higher-order correlations between the observed cosmic microwave background (CMB) $E$ and $B$ fields. We then measure the angular power spectrum of this map, which is found to be consistent with zero. The non-detection is translated into an upper limit on the amplitude of the scale-invariant cosmic rotation power spectrum, $L(L+1)C_L^{\alpha\alpha}/2\pi < 0.10 \times 10^{-4}$ rad$^2$ (0.033 deg$^2$, 95% C.L.). This upper limit can be used to place constraints on the strength of primordial magnetic fields, $B_{1 \rm Mpc} < 17 {\rm nG} $ (95% C.L.), and on the coupling constant of the Chern-Simons electromagnetic term $g_{a\gamma} < 4.0 \times 10^{-2}/H_I $ (95% C.L.), where $H_I$ is the inflationary Hubble scale. For the first time, we also cross-correlate the CMB temperature fluctuations with the reconstructed rotation angle map, a signal expected to be non-vanishing in certain theoretical scenarios, and find no detectable signal. We perform a suite of systematics and consistency checks and find no evidence for contamination., Comment: 17 pages, 7 figures - new subsection on non-Gaussian foregrounds, conclusions unchanged - updated to match published version on PRD
- Published
- 2020
- Full Text
- View/download PDF
12. Measurements of B -mode polarization of the cosmic microwave background from 500 square degrees of SPTpol data
- Author
-
W. B. Everett, Jason Gallicchio, S. Patil, Lindsey Bleem, G. P. Holder, K. Vanderlinde, P. Chaubal, Jeff McMahon, S. S. Meyer, Gensheng Wang, C. L. Chang, C. Sievers, J. D. Hrubes, T. de Haan, Elizabeth George, Kent D. Irwin, Jason W. Henning, L. M. Mocanu, W. L. Holzapfel, Robert I. Citron, A. T. Crites, N. W. Halverson, Christian L. Reichardt, Jason E. Austermann, John P. Nibarger, Andrew Nadolski, Joaquin Vieira, T. Natoli, Bradford Benson, Graeme Smecher, W. L. K. Wu, C. Corbett Moran, Matt Dobbs, Jessica Avva, N. L. Harrington, T. M. Crawford, Gene C. Hilton, Stephen Padin, A. J. Gilbert, Adam Anderson, Dale Li, H. C. Chiang, John E. Carlstrom, J. E. Ruhl, Amy N. Bender, C. Tucker, K. K. Schaffer, N. Huang, A. E. Lowitz, Valentine Novosad, Antony A. Stark, J. T. Sayre, Johannes Hubmayr, T. Veach, J. A. Beall, G. I. Noble, Adrian T. Lee, Federico Bianchini, Lloyd Knox, Nikhel Gupta, Benjamin Saliwanchik, V. G. Yefremenko, C. Pryke, Joshua Montgomery, Peter A. R. Ade, and Nathan Whitehorn
- Subjects
Physics ,Quantum Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Molecular ,Spectral density ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Polarization (waves) ,Atomic ,Nuclear & Particles Physics ,7. Clean energy ,01 natural sciences ,Particle and Plasma Physics ,South Pole Telescope ,0103 physical sciences ,astro-ph.CO ,Nuclear ,Anisotropy ,010303 astronomy & astrophysics ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report a B-mode power spectrum measurement from the cosmic microwave background (CMB) polarization anisotropy observations made using the SPTpol instrument on the South Pole Telescope. This work uses 500 deg$^2$ of SPTpol data, a five-fold increase over the last SPTpol B-mode release. As a result, the bandpower uncertainties have been reduced by more than a factor of two, and the measurement extends to lower multipoles: $52 < \ell < 2301$. Data from both 95 and 150 GHz are used, allowing for three cross-spectra: 95 GHz x 95 GHz, 95 GHz x 150 GHz, and 150 GHz x 150 GHz. B-mode power is detected at very high significance; we find $P(BB < 0) = 5.8 \times 10^{-71}$, corresponding to a $18.1 ��$ detection of power. An upper limit is set on the tensor-to-scalar ratio, $r < 0.44$ at 95% confidence (the expected $1 ��$ constraint on $r$ given the measurement uncertainties is 0.22). We find the measured B-mode power is consistent with the Planck best-fit $��$CDM model predictions. Scaling the predicted lensing B-mode power in this model by a factor Alens, the data prefer Alens = $1.17 \pm 0.13$. These data are currently the most precise measurements of B-mode power at $\ell > 320$., 16 pages, 4 figures, Submitted to PRD
- Published
- 2020
- Full Text
- View/download PDF
13. Timing of oceans on Mars from shoreline deformation
- Author
-
Robert I. Citron, Douglas J. Hemingway, and Michael Manga
- Subjects
Martian ,Multidisciplinary ,010504 meteorology & atmospheric sciences ,General Science & Technology ,Equator ,Elevation ,Polar wander ,Mars Exploration Program ,Volcanism ,01 natural sciences ,Paleontology ,0103 physical sciences ,True polar wander ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences ,Tharsis - Abstract
© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Widespread evidence points to the existence of an ancient Martian ocean. Most compelling are the putative ancient shorelines in the northern plains. However, these shorelines fail to follow an equipotential surface, and this has been used to challenge the notion that they formed via an early ocean and hence to question the existence of such an ocean. The shorelines' deviation from a constant elevation can be explained by true polar wander occurring after the formation of Tharsis, a volcanic province that dominates the gravity and topography of Mars. However, surface loading from the oceans can drive polar wander only if Tharsis formed far from the equator, and most evidence indicates that Tharsis formed near the equator, meaning that there is no current explanation for the shorelines' deviation from an equipotential that is consistent with our geophysical understanding of Mars. Here we show that variations in shoreline topography can be explained by deformation caused by the emplacement of Tharsis. We find that the shorelines must have formed before and during the emplacement of Tharsis, instead of afterwards, as previously assumed. Our results imply that oceans on Mars formed early, concurrent with the valley networks, and point to a close relationship between the evolution of oceans on Mars and the initiation and decline of Tharsis volcanism, with broad implications for the geology, hydrological cycle and climate of early Mars.
- Published
- 2018
- Full Text
- View/download PDF
14. The SPTpol Extended Cluster Survey
- Author
-
Shahab Joudaki, M. Costanzi, Matt Dobbs, C. L. Chang, Carole Tucker, E. Bertin, Dale Li, Michael McDonald, A. E. Lowitz, T. M. Crawford, Mark Brodwin, W. B. Everett, A. Roodman, N. W. Halverson, J. Carretero, Santiago Serrano, G. Khullar, Elizabeth George, Adam Anderson, M. Smith, James A. Beall, C. Sievers, Nathan Whitehorn, Valentine Novosad, Marcelle Soares-Santos, Devon L. Hollowood, Volodymyr Yefremenko, C. Pryke, D. Gruen, Nesar Ramachandra, Gensheng Wang, Antonella Palmese, Steven W. Allen, John P. Nibarger, T. Veach, J. D. Hrubes, A. K. Romer, Ramon Miquel, H. T. Diehl, G. I. Noble, W. L. K. Wu, Niall MacCrann, Juan Garcia-Bellido, L. N. da Costa, Christian L. Reichardt, Federico Bianchini, B. Flaugher, Jason E. Austermann, A. A. Plazas, Jason Gallicchio, K. Honscheid, Santiago Avila, Joshua Montgomery, Amy N. Bender, N. L. Harrington, Robert A. Gruendl, Matthias Klein, A. T. Crites, Sebastian Bocquet, S. Patil, L. M. Mocanu, John E. Carlstrom, A. Carnero Rosell, Peter A. R. Ade, B. Stalder, Tesla E. Jeltema, T. de Haan, E. Buckley-Geer, K. K. Schaffer, K. T. Story, Jeff McMahon, J. Gschwend, Shantanu Desai, Benjamin Floyd, Keith Bechtol, Bradford Benson, Catherine Heymans, Jason W. Henning, Antony A. Stark, Joaquin Vieira, Graeme Smecher, Robert I. Citron, M. L. N. Ashby, Lloyd Knox, M. A. G. Maia, A. Saro, J. P. Dietrich, Chris Blake, T. Natoli, N. P. Kuropatkin, James Annis, J. T. Sayre, Michael D. Gladders, J. L. Marshall, C. Corbett Moran, Keith Vanderlinde, Joseph J. Mohr, Kent D. Irwin, W. L. Holzapfel, Jochen Weller, Jessica Avva, David Parkinson, Johannes Hubmayr, Stephen Padin, Joshua A. Frieman, Felipe Menanteau, Gregory Tarle, Tim Schrabback, Matthew B. Bayliss, Eli S. Rykoff, D. L. Burke, E. J. Sanchez, G. Gutierrez, Lindsey Bleem, N. Huang, A. Gilbert, H. C. Chiang, Yanxi Zhang, Tim Eifler, J. D. Remolina González, Benjamin Saliwanchik, F. Paz-Chinchón, Adrian T. Lee, D. W. Gerdes, D. H. Brooks, S. S. Meyer, G. P. Holder, Guillaume Mahler, M. Carrasco Kind, J. E. Ruhl, J. De Vicente, E. Suchyta, Nikhel Gupta, David James, C. Lidman, Keren Sharon, A. Nadolski, Peter Melchior, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), SPT, DES, Bleem, L. E., Bocquet, S., Stalder, B., Gladders, M. D., Ade, P. A. R., Allen, S. W., Anderson, A. J., Annis, J., Ashby, M. L. N., Austermann, J. E., Avila, S., Avva, J. S., Bayliss, M., Beall, J. A., Bechtol, K., Bender, A. N., Benson, B. A., Bertin, E., Bianchini, F., Blake, C., Brodwin, Brooks, D., Buckley-Geer, E., Burke, D. L., Carlstrom, J. E., Rosell, A. Carnero, Carrasco Kind, M., Carretero, J., Chang, C. L., Chiang, H. C., Citron, R., Moran, C. Corbett, Costanzi, M., Crawford, T. M., Crites, A. T., da Costa, L. N., de Haan, T., De Vicente, J., Desai, S., Diehl, H. T., Dietrich, J. P., Dobbs, M. A., Eifler, T. F., Everett, W., Flaugher, B., Floyd, B., Frieman, J., Gallicchio, J., García-Bellido, J., George, E. M., Gerdes, D. W., Gilbert, A., Gruen, D., Gruendl, R. A., Gschwend, J., Gupta, N., Gutierrez, G., Halverson, N. W., Harrington, N., Henning, J. W., Heymans, C., Holder, G. P., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., James, D. J., Jeltema, T., Joudaki, S., Khullar, G., Klein, M., Knox, L., Kuropatkin, N., Lee, A. T., Li, D., Lidman, C., Lowitz, A., Maccrann, N., Mahler, G., Maia, M. A. G., Marshall, J. L., Mcdonald, M., Mcmahon, J. J., Melchior, P., Menanteau, F., Meyer, S. S., Miquel, R., Mocanu, L. M., Mohr, J. J., Montgomery, J., Nadolski, A., Natoli, T., Nibarger, J. P., Noble, G., Novosad, V., Padin, S., Palmese, A., Parkinson, D., Patil, S., Paz-Chinchón, F., Plazas, A. A., Pryke, C., Ramachandra, N. S., Reichardt, C. L., Remolina González, J. D., Romer, A. K., Roodman, A., Ruhl, J. E., Rykoff, E. S., Saliwanchik, B. R., Sanchez, E., Saro, A., Sayre, J. T., Schaffer, K. K., Schrabback, T., Serrano, S., Sharon, K., Sievers, C., Smecher, G., Smith, M., Soares-Santos, M., Stark, A. A., Story, K. T., Suchyta, E., Tarle, G., Tucker, C., Vanderlinde, K., Veach, T., Vieira, J. D., Wang, G., Weller, J., Whitehorn, N., Wu, W. L. K., Yefremenko, V., Zhang, Y., National Science Foundation (US), National Aeronautics and Space Administration (US), Department of Energy (US), Ministerio de Ciencia e Innovación (España), Science and Technology Facilities Council (UK), University of Illinois, University of Chicago, Texas A&M University, Financiadora de Estudos e Projetos (Brasil), Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional das Fundaçôes Estaduais de Amparo à Pesquisa (Brasil), Ministério da Ciência, Tecnologia e Inovação (Brasil), German Research Foundation, Argonne National Laboratory (US), Canadian Institute for Advanced Research, Fonds de Recherche du Québec, Max Planck Society, Alexander von Humboldt Foundation, European Commission, Federal Ministry of Economics and Technology (Germany), Australian Research Council, Australian Astronomical Observatory, California Institute of Technology, and Generalitat de Catalunya
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Strong gravitational lensing ,Cosmic microwave background ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,7. Clean energy ,Galaxy ,Cosmology ,Gravitational lens ,Space and Planetary Science ,Large-scale structure of the universe ,0103 physical sciences ,astro-ph.CO ,Cluster (physics) ,Unified Astronomy Thesaurus concepts: Galaxy clusters ,Cluster sampling ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,010303 astronomy & astrophysics ,Galaxy cluster ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
Full author list: L. E. Bleem, S. Bocquet, B. Stalder, M. D. Gladders, P. A. R. Ade, S. W. Allen, A. J. Anderson, J. Annis, M. L. N. Ashby, J. E. Austermann, S. Avila, J. S. Avva, M. Bayliss, J. A. Beall, K. Bechtol, A. N. Bender, B. A. Benson, E. Bertin, F. Bianchini, C. Blake, M. Brodwin, D. Brooks, E. Buckley-Geer, D. L. Burke, J. E. Carlstrom, A. Carnero Rosell, M. Carrasco Kind, J. Carretero, C. L. Chang, H. C. Chiang, R. Citron, C. Corbett Moran, M. Costanzi, T. M. Crawford, A. T. Crites, L. N. da Costa, T. de Haan, J. De Vicente, S. Desai, H. T. Diehl, J. P. Dietrich, M. A. Dobbs, T. F. Eifler, W. Everett, B. Flaugher, B. Floyd, J. Frieman, J. Gallicchio, J. García-Bellido, E. M. George, D. W. Gerdes, A. Gilbert, D. Gruen, R. A. Gruendl, J. Gschwend, N. Gupta, G. Gutierrez, N. W. Halverson, N. Harrington, J. W. Henning, C. Heymans, G. P. Holder, D. L. Hollowood, W. L. Holzapfel, K. Honscheid, J. D. Hrubes, N. Huang, J. Hubmayr, K. D. Irwin, D. J. James, T. Jeltema, S. Joudaki, G. Khullar, M. Klein, L. Knox, N. Kuropatkin, A. T. Lee, D. Li, C. Lidman, A. Lowitz, N. MacCrann, G. Mahler, M. A. G. Maia, J. L. Marshall, M. McDonald, J. J. McMahon, P. Melchior, F. Menanteau, S. S. Meyer, R. Miquel, L. M. Mocanu, J. J. Mohr, J. Montgomery, A. Nadolski, T. Natoli, J. P. Nibarger, G. Noble, V. Novosad, S. Padin, A. Palmese, D. Parkinson, S. Patil, F. Paz-Chinchón, A. A. Plazas, C. Pryke, N. S. Ramachandra, C. L. Reichardt, J. D. Remolina González, A. K. Romer, A. Roodman, J. E. Ruhl, E. S. Rykoff, B. R. Saliwanchik, E. Sanchez, A. Saro, J. T. Sayre, K. K. Schaffer, T. Schrabback, S. Serrano, K. Sharon, C. Sievers, G. Smecher, M. Smith, M. Soares-Santos, A. A. Stark, K. T. Story, E. Suchyta, G. Tarle, C. Tucker, K. Vanderlinde, T. Veach, J. D. Vieira, G. Wang, J. Weller, N. Whitehorn, W. L. K. Wu, V. Yefremenko, and Y. Zhang, We describe the observations and resultant galaxy cluster catalog from the 2770 deg2 SPTpol Extended Cluster Survey (SPT-ECS). Clusters are identified via the Sunyaev-Zel'dovich (SZ) effect and confirmed with a combination of archival and targeted follow-up data, making particular use of data from the Dark Energy Survey (DES). With incomplete follow-up we have confirmed as clusters 244 of 266 candidates at a detection significance ξ ≥ 5 and an additional 204 systems at 4 < ξ < 5. The confirmed sample has a median mass of M500c ~ 4.4 ¿ 1014 M☉ h70 -1 and a median redshift of z = 0.49, and we have identified 44 strong gravitational lenses in the sample thus far. Radio data are used to characterize contamination to the SZ signal; the median contamination for confirmed clusters is predicted to be ∼1% of the SZ signal at the ξ > 4 threshold, and 10% of their measured SZ flux. We associate SZ-selected clusters, from both SPT-ECS and the SPT-SZ survey, with clusters from the DES redMaPPer sample, and we find an offset distribution between the SZ center and central galaxy in general agreement with previous work, though with a larger fraction of clusters with significant offsets. Adopting a fixed Planck-like cosmology, we measure the optical richness-SZ mass (l - M) relation and find it to be 28% shallower than that from a weak-lensing analysis of the DES data-a difference significant at the 4σ level-with the relations intersecting at λ = 60. The SPT-ECS cluster sample will be particularly useful for studying the evolution of massive clusters and, in combination with DES lensing observations and the SPT-SZ cluster sample, will be an important component of future cosmological analyses., This work was performed in the context of the South Pole Telescope scientific program. SPT is supported by the National Science Foundation through grant PLR-1248097. Partial support is also provided by the NSF Physics Frontier Center grant PHY-0114422 to the Kavli Institute of Cosmological Physics at the University of Chicago, the Kavli Foundation, and the Gordon and Betty Moore Foundation grant GBMF 947 to the University of Chicago. This work is also supported by the U.S. Department of Energy. PISCO observations are supported by NSF AST-1814719. Work at Argonne National Lab is supported by UChicago Argonne LLC, operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science Laboratory, is operated under contract No. DE-AC02- 06CH11357. We also acknowledge support from the Argonne Center for Nanoscale Materials. M.G. and L.B. acknowledge partial support from HST-GO-15307.001. B.B. is supported by the Fermi Research Alliance LLC under contract No. De-AC02- 07CH11359 with the U.S. Department of Energy. The CU Boulder group acknowledges support from NSF AST-0956135. The McGill authors acknowledge funding from the Natural Sciences and Engineering Research Council of Canada, Canadian Institute for Advanced Research, and the Fonds de Recherche du Québec Nature et technologies. The UCLA authors acknowledge support from NSF AST-1716965 and CSSI-1835865. The Stanford/SLAC group acknowledges support from the U.S. Department of Energy under contract No. DE-AC02-76SF00515. A.S. is supported by the ERC-StG “ClustersXCosmo” grant agreement 716762 and by the FARE-MIUR grant “ClustersXEuclid” R165SBKTMA. C.H. acknowledges support from the Max Planck Society and the Alexander von Humboldt Foundation, in the framework of the Max Planck-Humboldt Research Award endowed by the Federal Ministry of Education and Research, in addition to support from the European Research Council under grant No. 647112. S.J. acknowledges support from the Beecroft Trust and ERC 693024. T.S. acknowledges support from the German Federal Ministry of Economics and Technology (BMWi) provided through DLR under projects 50 OR 1610 and 50 OR 1803, as well as support from the Deutsche Forschungsgemeinschaft, DFG, under project SCHR 1400/3-1. The Melbourne authors acknowledge support from the Australian Research Council’s Discovery Projects scheme (DP150103208). The 2dFLenS survey is based on data acquired through the Australian Astronomical Observatory, under program A/2014B/008. This work is based in part on observations made with the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the University of Chicago, the Center for Cosmology and Astro-Particle Physics at The Ohio State University, the Mitchell Institute for Fundamental Physics and Astronomy at Texas A&M University, Financiadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemeinschaft, and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cambridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University College London, the DES-Brazil Consortium, the University of Edinburgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at UrbanaChampaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, the National Optical Astronomy Observatory, the University of Nottingham, The Ohio State University, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the University of Sussex, Texas A&M University, and the OzDES Membership Consortium. Based in part on observations at Cerro Tololo InterAmerican Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the National Science Foundation under grant Nos. AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MINECO under grants AYA2015-71825, ESP2015-66861, FPA2015-68048, SEV2016-0588, SEV-2016-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007- 2013), including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciência e Tecnologia (INCT) e-Universe (CNPq grant 465376/2014-2). This manuscript has been authored by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Pan-STARRS1 Surveys (PS1) and the PS1 public science archive have been made possible through contributions by the Institute for Astronomy, the University of Hawaii, the Pan-STARRS Project Office, the Max-Planck Society and its participating institutes, the Max Planck Institute for Astronomy, Heidelberg and the Max Planck Institute for Extraterrestrial Physics, Garching, Johns Hopkins University, Durham University, the University of Edinburgh, the Queen’s University Belfast, the Harvard-Smithsonian Center for Astrophysics, the Las Cumbres Observatory Global Telescope Network Incorporated, the National Central University of Taiwan, the Space Telescope Science Institute, the National Aeronautics and Space Administration under grant No. NNX08AR22G issued through the Planetary Science Division of the NASA Science Mission Directorate, the National Science Foundation grant No. AST1238877, the University of Maryland, Eotvos Lorand University (ELTE), the Los Alamos National Laboratory, and the Gordon and Betty Moore Foundation
- Published
- 2020
- Full Text
- View/download PDF
15. A Demonstration of Improved Constraints on Primordial Gravitational Waves with Delensing
- Author
-
Roger O'Brient, John M Kovac, Kirit Karkare, T. Natoli, Kent D. Irwin, A. E. Lowitz, N. Huang, Y. Omori, Victor Buza, Robert I. Citron, S. A. Kernasovskiy, W. L. Holzapfel, Ahmed Soliman, Jeff McMahon, C. Corbett Moran, P. A. R. Ade, Lingzhen Zeng, S. Henderson, W. B. Everett, J. D. Hrubes, Jessica Avva, C. Yu, Calvin B. Netterfield, Lorenzo Moncelsi, J. R. Cheshire, Jason W. Henning, J. A. Grayson, S. Patil, K. K. Schaffer, Elizabeth George, Abigail G. Vieregg, Denis Barkats, V. G. Yefremenko, Jason E. Austermann, N. W. Halverson, A. Cukierman, H. Boenish, B. L. Schmitt, Marion Dierickx, M. Crumrine, K. W. Yoon, Joaquin Vieira, E. Young, G. Hall, Stefan Richter, C. Sievers, Toshiya Namikawa, Graeme Smecher, C. Umilta, D. V. Wiebe, S. Fliescher, T.-L. Chou, H. C. Chiang, Johannes Hubmayr, H. Yang, C. D. Sheehy, Chao-Lin Kuo, Mark Halpern, Christian L. Reichardt, Marius Millea, Joshua Montgomery, S. Kefeli, J. Cornelison, J. J. Bock, Bryan Steinbach, Howard Hui, Gensheng Wang, Andreas Bender, Neil Goeckner-Wald, J. E. Ruhl, Dale Li, C. Tucker, K. G. Megerian, T. M. Crawford, M. A. Dobbs, Mandana Amiri, V. Novosad, R. Schwarz, S. Fatigoni, S. R. Hildebrandt, S. Padin, John E. Carlstrom, E. Bullock, Chao Zhang, T. de Haan, D. C. Goldfinger, John P. Nibarger, Andrew Nadolski, J. Willmert, Carl D. Reintsema, Gene C. Hilton, N. Whitehorn, B. Racine, H. T. Nguyen, A. A. Stark, E. M. Leitch, Alessandro Schillaci, A. D. Turner, E. Karpel, T. Veach, R. Basu Thakur, K. L. Thompson, T. Prouve, A. T. Crites, C. Pryke, C. L. Wong, C. L. Chang, J. Kang, Adam Anderson, Grant Teply, Benjamin Saliwanchik, A. Wandui, Gilbert Holder, A. Manzotti, A. C. Weber, G. I. Noble, Federico Bianchini, Nikhel Gupta, Jeffrey P. Filippini, R. V. Sudiwala, Adrian T. Lee, Bradford Benson, Lloyd Knox, W. L. K. Wu, Colin A. Bischoff, S. S. Meyer, Jason Gallicchio, T. St. Germaine, S. Palladino, L. Duband, J. E. Tolan, Zeeshan Ahmed, L. M. Mocanu, Jake Connors, Kei May Lau, Sarah M. Harrison, Lindsey Bleem, R. W. Ogburn, J. A. Beall, Département des Systèmes Basses Températures (DSBT ), Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), SPTpol, BICEP/Keck, BICEP, and Keck
- Subjects
data analysis method ,satellite: Planck ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic microwave background ,Cosmic background radiation ,cosmic background radiation: polarization ,FOS: Physical sciences ,cosmic background radiation ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,symbols.namesake ,cosmic rays ,gravitation: lens ,statistical analysis ,Cosmic infrared background ,0103 physical sciences ,Experiments in gravity ,Sample variance ,Planck ,numerical calculations ,010306 general physics ,Astrophysics::Galaxy Astrophysics ,Physics ,polarization ,background ,010308 nuclear & particles physics ,Gravitational wave ,gravitational radiation: primordial ,BICEP ,South Pole Telescope ,Gravitational lens ,B-mode ,infrared ,symbols ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,cosmology ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a constraint on the tensor-to-scalar ratio, $r$, derived from measurements of cosmic microwave background (CMB) polarization $B$-modes with "delensing," whereby the uncertainty on $r$ contributed by the sample variance of the gravitational lensing $B$-modes is reduced by cross-correlating against a lensing $B$-mode template. This template is constructed by combining an estimate of the polarized CMB with a tracer of the projected large-scale structure. The large-scale-structure tracer used is a map of the cosmic infrared background derived from Planck satellite data, while the polarized CMB map comes from a combination of South Pole Telescope, BICEP/Keck, and Planck data. We expand the BICEP/Keck likelihood analysis framework to accept a lensing template and apply it to the BICEP/Keck data set collected through 2014 using the same parametric foreground modelling as in the previous analysis. From simulations, we find that the uncertainty on $r$ is reduced by $\sim10\%$, from $��(r)$= 0.024 to 0.022, which can be compared with a $\sim26\%$ reduction obtained when using a perfect lensing template. Applying the technique to the real data, the constraint on $r$ is improved from $r_{0.05} < 0.090$ to $r_{0.05} < 0.082$ (95\% C.L.). This is the first demonstration of improvement in an $r$ constraint through delensing., 23 pages, 11 figures; match published version
- Published
- 2020
- Full Text
- View/download PDF
16. An Improved Measurement of the Secondary Cosmic Microwave Background Anisotropies from the SPT-SZ + SPTpol Surveys
- Author
-
T. Veach, Gensheng Wang, Gene C. Hilton, Valentyn Novosad, Jason Gallicchio, Jason E. Austermann, L. M. Mocanu, P. A. R. Ade, Graeme Smecher, A. E. Lowitz, S. Padin, Nikhel Gupta, Robert I. Citron, Johannes Hubmayr, Kent D. Irwin, W. L. Holzapfel, Nathan Whitehorn, C. Corbett Moran, W. L. K. Wu, J. D. Hrubes, Dale Li, John P. Nibarger, A. Nadolski, Volodymyr Yefremenko, S. S. Meyer, Elizabeth George, Jessica Avva, Adam Anderson, Benjamin Saliwanchik, Gilbert Holder, C. Pryke, N. W. Halverson, T. L. Chou, S. Patil, N. Huang, J. T. Sayre, A. Gilbert, A. T. Crites, Carole Tucker, James A. Beall, Adrian T. Lee, R. Williamson, Erik Shirokoff, Joaquin Vieira, Joshua Montgomery, Jason W. Henning, Amy N. Bender, J. E. Ruhl, Keith Vanderlinde, Y. Omori, T. M. Crawford, H. C. Chiang, K. K. Schaffer, Helmuth Spieler, Eric J. Baxter, Lindsey Bleem, Jeff McMahon, Antony A. Stark, John E. Carlstrom, M. A. Dobbs, P. Chaubal, G. I. Noble, Federico Bianchini, T. de Haan, Z. K. Staniszewski, C. Sievers, Christian L. Reichardt, Lloyd Knox, Joseph J. Mohr, T. Natoli, Daniel M. Luong-Van, Bradford Benson, N. L. Harrington, C. L. Chang, Marius Millea, J. Mehl, and W. B. Everett
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,Radio galaxy ,Cosmic microwave background ,Spectral density ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,01 natural sciences ,Spectral line ,South Pole Telescope ,Space and Planetary Science ,Cosmic infrared background ,0103 physical sciences ,Multipole expansion ,010303 astronomy & astrophysics ,Reionization ,Astrophysics - Cosmology and Nongalactic Astrophysics ,0105 earth and related environmental sciences - Abstract
We report new measurements of millimeter-wave power spectra in the angular multipole range $2000 \le \ell \le 11,000$ (angular scales $5^\prime \gtrsim \theta \gtrsim 1^\prime$). By adding 95 and 150\,GHz data from the low-noise 500 deg$^2$ SPTpol survey to the SPT-SZ three-frequency 2540 deg$^2$ survey, we substantially reduce the uncertainties in these bands. These power spectra include contributions from the primary cosmic microwave background, cosmic infrared background, radio galaxies, and thermal and kinematic Sunyaev-Zel'dovich (SZ) effects. The data favor a thermal SZ (tSZ) power at 143\,GHz of $D^{\rm tSZ}_{3000} = 3.42 \pm 0.54~ \mu {\rm K}^2$ and a kinematic SZ (kSZ) power of $D^{\rm kSZ}_{3000} = 3.0 \pm 1.0~ \mu {\rm K}^2$. This is the first measurement of kSZ power at $\ge 3\,\sigma$. We study the implications of the measured kSZ power for the epoch of reionization, finding the duration of reionization to be $\Delta z_{re} = 1.0^{+1.6}_{-0.7}$ ($\Delta z_{re}< 4.1$ at 95% confidence), when combined with our previously published tSZ bispectrum measurement., Comment: Submitted to ApJ, 16 pages. (revised portions of the introduction and description of bandpower estimation)
- Published
- 2020
- Full Text
- View/download PDF
17. Galaxy Clusters Selected via the Sunyaev–Zel’dovich Effect in the SPTpol 100-square-degree Survey
- Author
-
Elizabeth George, A. T. Crites, T. Veach, Amy N. Bender, G. I. Noble, Federico Bianchini, Matt Dobbs, Mark Brodwin, W. B. Everett, N. L. Harrington, S. S. Meyer, K. K. Schaffer, A. E. Lowitz, John E. Carlstrom, Jason E. Austermann, C. L. Chang, T. de Haan, T. M. Crawford, L. M. Mocanu, Lindsey Bleem, Michael McDonald, Dale Li, Joshua Montgomery, Jeff McMahon, Gensheng Wang, Jason Gallicchio, Nathan Whitehorn, Valentine Novosad, Keren Sharon, Graeme Smecher, S. Patil, Michael D. Gladders, Johannes Hubmayr, Robert I. Citron, J. D. Hrubes, Jason W. Henning, A. Saro, Nikhel Gupta, Adrian T. Lee, Adam Anderson, G. Khullar, Benjamin Floyd, Volodymyr Yefremenko, Joaquin Vieira, S. Guns, Steven W. Allen, W. L. K. Wu, J. E. Ruhl, John P. Nibarger, Antony A. Stark, C. Sievers, N. W. Halverson, J. T. Sayre, B. Stalder, Christian L. Reichardt, Kent D. Irwin, Peter A. R. Ade, A. Nadolski, C. Corbett Moran, K. T. Story, K. Vanderlinde, W. L. Holzapfel, Bradford Benson, Sebastian Bocquet, N. Huang, Jessica Avva, A. Gilbert, Stephen Padin, Lloyd Knox, T. Natoli, Gene C. Hilton, James A. Beall, C. Pryke, H. C. Chiang, Carole Tucker, Benjamin Saliwanchik, Gilbert Holder, Huang, N., Bleem, L. E., Stalder, B., Ade, P. A. R., Allen, S. W., Anderson, A. J., Austermann, J. E., Avva, J. S., Beall, J. A., Bender, A. N., Benson, B. A., Bianchini, F., Bocquet, S., Brodwin, M., Carlstrom, J. E., Chang, C. L., Chiang, H. C., Citron, R., Moran, C. Corbett, Crawford, T. M., Crite, A., T., Haan, T. de, Dobbs, M. A., Everett, W., Floyd, B., Gallicchio, J., George, E. M., Gilbert, A., Gladders, M. D., Guns, S., Gupta, N., Halverson, N. W., Harrington, N., Henning, J. W., Hilton, G. C., Holder, G. P., Holzapfel, W. L., Hrubes, J. D., Hubmayr, J., Irwin, K. D., Khullar, G., Knox, L., Lee, A. T., Li, D., Lowitz, A., Mcdonald, M., Mcmahon, J. J., Meyer, S. S., Mocanu, L. M., Montgomery, J., Nadolski, A., Natoli, T., Nibarger, J. P., Noble, G., Novosad, V., Padin, S., Patil, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Saliwanchik, B. R., Saro, A., Sayre, J. T., Schaffer, K. K., Sharon, K., Sievers, C., Smecher, G., Stark, A. A., Story, K. T., Tucker, C., Vanderlinde, K., Veach, T., Vieira, J. D., Wang, G., Whitehorn, N., Wu, W. L. K., and Yefremenko, V.
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,Infrared ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,Sunyaev–Zel'dovich effect ,01 natural sciences ,Square (algebra) ,0103 physical sciences ,010303 astronomy & astrophysics ,Galaxy cluster ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy and Astrophysics ,Redshift ,Galaxy ,Square degree ,South Pole Telescope ,Space and Planetary Science ,astro-ph.CO ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a catalog of galaxy cluster candidates detected in 100 square degrees surveyed with the SPTpol receiver on the South Pole Telescope. The catalog contains 89 candidates detected with a signal-to-noise ratio greater than 4.6. The candidates are selected using the Sunyaev-Zel'dovich effect at 95 and 150 GHz. Using both space- and ground-based optical and infrared telescopes, we have confirmed 81 candidates as galaxy clusters. We use these follow-up images and archival images to estimate photometric redshifts for 66 galaxy clusters and spectroscopic observations to obtain redshifts for 13 systems. An additional 2 galaxy clusters are confirmed using the overdensity of near-infrared galaxies only, and are presented without redshifts. We find that 15 candidates (18% of the total sample) are at redshift of $z \geq 1.0$, with a maximum confirmed redshift of $z_{\rm{max}} = 1.38 \pm 0.10$. We expect this catalog to contain every galaxy cluster with $M_{500c} > 2.6 \times 10^{14} M_\odot h^{-1}_{70}$ and $z > 0.25$ in the survey area. The mass threshold is approximately constant above $z = 0.25$, and the complete catalog has a median mass of approximately $ M_{500c} = 2.7 \times 10^{14} M_\odot h^{-1}_{70}$. Compared to previous SPT works, the increased depth of the millimeter-wave data (11.2 and 6.5 $��$K-arcmin at 95 and 150 GHz, respectively) makes it possible to find more galaxy clusters at high redshift and lower mass., 21 pages, 7 figures, associated data available at http://pole.uchicago.edu/public/data/sptsz-clusters. V2 was accepted to the AJ, and includes minor changes requested by the reviewer
- Published
- 2020
- Full Text
- View/download PDF
18. Constraints on Cosmological Parameters from the 500 deg$^2$ SPTpol Lensing Power Spectrum
- Author
-
Elizabeth George, J. D. Hrubes, A. E. Lowitz, Y. Omori, K. Vanderlinde, G. I. Noble, N. W. Halverson, S. S. Meyer, Valentine Novosad, Federico Bianchini, Gensheng Wang, Dale Li, G. P. Holder, J. T. Sayre, C. L. Chang, Jason W. Henning, J. A. Beall, V. G. Yefremenko, T. Natoli, Adrian T. Lee, Lloyd Knox, L. M. Mocanu, C. Corbett Moran, Matt Dobbs, J. E. Ruhl, Carole Tucker, J. Hubmayr, Jessica Avva, Amy N. Bender, J. E. Austermann, K. T. Story, N. Huang, T. M. Crawford, Stephen Padin, Benjamin Saliwanchik, K. K. Schaffer, G. Simard, Graeme Smecher, A. J. Gilbert, Adam Anderson, H. C. Chiang, J. D. Vieira, Jeff McMahon, Robert I. Citron, W. L. K. Wu, W. L. Holzapfel, Nathan Whitehorn, Todd J. Veach, Bradford Benson, Nikhel Gupta, M. Millea, Joshua Montgomery, C. Pryke, C. Sievers, Christian L. Reichardt, N. L. Harrington, Kent D. Irwin, P. A. R. Ade, W. B. Everett, S. Patil, Jason Gallicchio, John E. Carlstrom, A. T. Crites, A. A. Stark, Lindsey Bleem, P. Chaubal, A. Manzotti, Gene C. Hilton, T. de Haan, John P. Nibarger, Andrew Nadolski, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and SPT
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,Cosmic microwave background ,FOS: Physical sciences ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,01 natural sciences ,Omega ,Atomic ,Physical Chemistry ,Spectral line ,symbols.namesake ,Particle and Plasma Physics ,0103 physical sciences ,Nuclear ,Planck ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,Sigma ,Spectral density ,Molecular ,Astronomy and Astrophysics ,Space and Planetary Science ,symbols ,astro-ph.CO ,Baryon acoustic oscillations ,Neutrino ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present cosmological constraints based on the cosmic microwave background (CMB) lensing potential power spectrum measurement from the recent 500 deg$^2$ SPTpol survey, the most precise CMB lensing measurement from the ground to date. We fit a flat $\Lambda$CDM model to the reconstructed lensing power spectrum alone and in addition with other data sets: baryon acoustic oscillations (BAO) as well as primary CMB spectra from Planck and SPTpol. The cosmological constraints based on SPTpol and Planck lensing band powers are in good agreement when analysed alone and in combination with Planck full-sky primary CMB data. With weak priors on the baryon density and other parameters, the CMB lensing data alone provide a 4\% constraint on $\sigma_8\Omega_m^{0.25} = 0.0593 \pm 0.025$.. Jointly fitting with BAO data, we find $\sigma_8=0.779 \pm 0.023$, $\Omega_m = 0.368^{+0.032}_{-0.037}$, and $H_0 = 72.0^{+2.1}_{-2.5}\,\text{km}\,\text{s}^{-1}\,\text{Mpc}^{-1} $, up to $2\,\sigma$ away from the central values preferred by Planck lensing + BAO. However, we recover good agreement between SPTpol and Planck when restricting the analysis to similar scales. We also consider single-parameter extensions to the flat $\Lambda$CDM model. The SPTpol lensing spectrum constrains the spatial curvature to be $\Omega_K = -0.0007 \pm 0.0025$ and the sum of the neutrino masses to be $\sum m_{\nu} < 0.23$ eV at 95\% C.L. (with Planck primary CMB and BAO data), in good agreement with the Planck lensing results. With the differences in the $S/N$ of the lensing modes and the angular scales covered in the lensing spectra, this analysis represents an important independent check on the full-sky Planck lensing measurement., Comment: 16 pages, 8 figures, 3 tables, updated to match the version published on ApJ
- Published
- 2019
- Full Text
- View/download PDF
19. A Measurement of the Cosmic Microwave Background Lensing Potential and Power Spectrum from 500 deg2 of SPTpol Temperature and Polarization Data
- Author
-
T. de Haan, John E. Carlstrom, W. L. K. Wu, Todd J. Veach, K. Vanderlinde, Benjamin Saliwanchik, John P. Nibarger, Andrew Nadolski, A. J. Gilbert, Adam Anderson, J. E. Ruhl, L. M. Mocanu, Carole Tucker, C. Sievers, S. S. Meyer, Peter A. R. Ade, Graeme Smecher, Jeff McMahon, Adrian T. Lee, Lloyd Knox, K. T. Story, Jason W. Henning, C. Pryke, Antony A. Stark, J. E. Austermann, A. E. Lowitz, A. T. Crites, Y. Omori, N. L. Harrington, Bradford Benson, T. Natoli, Zhen Hou, W. B. Everett, Nathan Whitehorn, C. Corbett Moran, Valentine Novosad, M. Millea, J. A. Beall, Elizabeth George, C. L. Chang, Nikhel Gupta, S. Patil, C. L. Reichardt, G. I. Noble, J. T. Sayre, Federico Bianchini, A. Manzotti, Matt Dobbs, Lindsey Bleem, V. G. Yefremenko, Jessica Avva, Gene C. Hilton, Kent D. Irwin, W. L. Holzapfel, G. P. Holder, T. M. Crawford, Stephen Padin, Gensheng Wang, Joshua Montgomery, N. W. Halverson, Joaquin Vieira, J. D. Hrubes, Amy N. Bender, K. K. Schaffer, Jason Gallicchio, J. Hubmayr, Robert I. Citron, Dale Li, N. Huang, G. Simard, H. C. Chiang, Institut d'Astrophysique de Paris (IAP), and Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
cosmological model ,data analysis method ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,satellite: Planck ,010504 meteorology & atmospheric sciences ,Cosmic microwave background ,cosmic background radiation [cosmology] ,multipole ,FOS: Physical sciences ,cosmic background radiation: polarization ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,power spectrum ,Atomic ,Physical Chemistry ,01 natural sciences ,symbols.namesake ,Particle and Plasma Physics ,statistical analysis ,gravitation: lens ,0103 physical sciences ,Nuclear ,Planck ,numerical calculations ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences ,Physics ,Molecular ,Estimator ,Spectral density ,Astronomy and Astrophysics ,Polarization (waves) ,3. Good health ,cosmic background radiation: temperature ,South Pole Telescope ,Amplitude ,Space and Planetary Science ,astro-ph.CO ,symbols ,High Energy Physics::Experiment ,large-scale structure of the universe ,Multipole expansion ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astronomical and Space Sciences ,Astrophysics - Cosmology and Nongalactic Astrophysics ,Physical Chemistry (incl. Structural) - Abstract
We present a measurement of the cosmic microwave background (CMB) lensing potential using 500 deg$^2$ of 150 GHz data from the SPTpol receiver on the South Pole Telescope. The lensing potential is reconstructed with signal-to-noise per mode greater than unity at lensing multipoles $L \lesssim 250$, using a quadratic estimator on a combination of CMB temperature and polarization maps. We report measurements of the lensing potential power spectrum in the multipole range of $100< L < 2000$ from sets of temperature-only, polarization-only, and minimum-variance estimators. We measure the lensing amplitude by taking the ratio of the measured spectrum to the expected spectrum from the best-fit $\Lambda$CDM model to the $\textit{Planck}$ 2015 TT+lowP+lensing dataset. For the minimum-variance estimator, we find $A_{\rm{MV}} = 0.944 \pm 0.058{\rm (Stat.)}\pm0.025{\rm (Sys.)}$; restricting to only polarization data, we find $A_{\rm{POL}} = 0.906 \pm 0.090 {\rm (Stat.)} \pm 0.040 {\rm (Sys.)}$. Considering statistical uncertainties alone, this is the most precise polarization-only lensing amplitude constraint to date (10.1 $\sigma$), and is more precise than our temperature-only constraint. We perform null tests and consistency checks and find no evidence for significant contamination., Comment: 18 pages, 8 figures; updated to match published version
- Published
- 2019
- Full Text
- View/download PDF
20. A Detection of CMB-Cluster Lensing using Polarization Data from SPTpol
- Author
-
Benjamin Saliwanchik, C. L. Chang, V. G. Yefremenko, Sebastian Bocquet, C. Corbett Moran, Devon L. Hollowood, J. A. Beall, N. Huang, Jessica Avva, A. E. Lowitz, Adrian T. Lee, Lloyd Knox, Peter A. R. Ade, Nikhel Gupta, J. E. Ruhl, Yanxi Zhang, Pablo Fosalba, Stephen Padin, Marcelle Soares-Santos, J. D. Hrubes, G. Gutierrez, Elizabeth George, Tesla E. Jeltema, Joseph J. Mohr, K. Vanderlinde, Gene C. Hilton, A. Roodman, Tommaso Giannantonio, K. T. Story, Valentine Novosad, Srinivasan Raghunathan, David Brooks, M. E. C. Swanson, H. C. Chiang, Robert I. Citron, Bradford Benson, Gensheng Wang, Jason Gallicchio, N. W. Halverson, Antony A. Stark, Chang Feng, T. Natoli, G. P. Holder, T. Veach, A. A. Plazas, M. Costanzi, C. Sievers, Shantanu Desai, Michael Schubnell, Jason W. Henning, D. L. Burke, Dale Li, Carole Tucker, Mathew Smith, Christian L. Reichardt, B. Flaugher, Jason E. Austermann, Ramon Miquel, S. S. Meyer, M. A. G. Maia, N. L. Harrington, John E. Carlstrom, Matt Dobbs, Peter Melchior, S. Allam, Robert A. Gruendl, L. M. Mocanu, G. I. Noble, Joaquin Vieira, Federico Bianchini, Graeme Smecher, J. P. Dietrich, Nathan Whitehorn, I. Sevilla-Noarbe, Juan Garcia-Bellido, T. McClintock, N. Kuropatkin, Eduardo Rozo, J. De Vicente, T. M. Crawford, Peter Doel, J. T. Sayre, T. N. Varga, E. Suchyta, August E. Evrard, Amy N. Bender, L. N. da Costa, A. K. Romer, H. T. Diehl, Felipe Menanteau, David Bacon, W. L. K. Wu, J. Carretero, K. K. Schaffer, Jennifer L. Marshall, M. Carrasco Kind, Joshua Montgomery, Johannes Hubmayr, Gregory Tarle, J. Gschwend, Joshua A. Frieman, David Rapetti, A. J. Gilbert, S. Serrano, Adam Anderson, Enrique Gaztanaga, Jeff McMahon, K. Honscheid, Eli S. Rykoff, Eric J. Baxter, Vinu Vikram, R. L. C. Ogando, Marcos Lima, T. de Haan, V. Scarpine, S. Patil, John P. Nibarger, Andrew Nadolski, A. Carnero Rosell, Kent D. Irwin, W. L. Holzapfel, Ofer Lahav, S. Everett, C. Pryke, Lindsey Bleem, F. J. Castander, E. J. Sanchez, Santiago Avila, A. T. Crites, Raghunathan, S., Patil, S., Baxter, E., Benson, B. A., Bleem, L. E., Crawford, T. M., Holder, G. P., Mcclintock, T., Reichardt, C. L., Varga, T. N., Whitehorn, N., Ade, P. A. R., Allam, S., Anderson, A. J., Austermann, J. E., Avila, S., Avva, J. S., Bacon, D., Beall, J. A., Bender, A. N., Bianchini, F., Bocquet, S., Brooks, D., Burke, D. L., Carlstrom, J. E., Carretero, J., Castander, F. J., Chang, C. L., Chiang, H. C., Citron, R., Costanzi, M., Crites, A. T., Da Costa, L. N., Desai, S., Diehl, H. T., Dietrich, J. P., Dobbs, M. A., Doel, P., Everett, S., Evrard, A. E., Feng, C., Flaugher, B., Fosalba, P., Frieman, J., Gallicchio, J., Garcia-Bellido, J., Gaztanaga, E., George, E. M., Giannantonio, T., Gilbert, A., Gruendl, R. A., Gschwend, J., Gupta, N., Gutierrez, G., De Haan, T., Halverson, N. W., Harrington, N., Henning, J. W., Hilton, G. C., Hollowood, D. L., Holzapfel, W. L., Honscheid, K., Hrubes, J. D., Huang, N., Hubmayr, J., Irwin, K. D., Jeltema, T., Kind, M. C., Knox, L., Kuropatkin, N., Lahav, O., Lee, A. T., Li, D., Lima, M., Lowitz, A., Maia, M. A. G., Marshall, J. L., Mcmahon, J. J., Melchior, P., Menanteau, F., Meyer, S. S., Miquel, R., Mocanu, L. M., Mohr, J. J., Montgomery, J., Moran, C. C., Nadolski, A., Natoli, T., Nibarger, J. P., Noble, G., Novosad, V., Ogando, R. L. C., Padin, S., Plazas, A. A., Pryke, C., Rapetti, D., Romer, A. K., Roodman, A., Rosell, A. C., Rozo, E., Ruhl, J. E., Rykoff, E. S., Saliwanchik, B. R., Sanchez, E., Sayre, J. T., Scarpine, V., Schaffer, K. K., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Sievers, C., Smecher, G., Smith, M., Soares-Santos, M., Stark, A. A., Story, K. T., Suchyta, E., Swanson, M. E. C., Tarle, G., Tucker, C., Vanderlinde, K., Veach, T., De Vicente, J., Vieira, J. D., Vikram, V., Wang, G., W. L. K., Wu, Yefremenko, V., and Zhang, Y.
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic microwave background ,Cosmic microwave background Gravitational lenses Galaxy Clusters ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,RCUK ,General Physics and Astronomy ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,01 natural sciences ,Cosmology ,Gravitational lens ,0103 physical sciences ,astro-ph.CO ,Dark energy ,Cluster (physics) ,010306 general physics ,STFC ,Galaxy cluster ,Weak gravitational lensing ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We report the first detection of gravitational lensing due to galaxy clusters using only the polarization of the cosmic microwave background (CMB). The lensing signal is obtained using a new estimator that extracts the lensing dipole signature from stacked images formed by rotating the cluster-centered Stokes $Q/U$ map cutouts along the direction of the locally measured background CMB polarization gradient. Using data from the SPTpol 500 deg$^{2}$ survey at the locations of roughly 18,000 clusters with richness $\lambda \ge 10$ from the Dark Energy Survey (DES) Year-3 full galaxy cluster catalog, we detect lensing at $4.8\sigma$. The mean stacked mass of the selected sample is found to be $(1.43 \pm 0.4)\ \times 10^{14}\ {\rm M_{\odot}}$ which is in good agreement with optical weak lensing based estimates using DES data and CMB-lensing based estimates using SPTpol temperature data. This measurement is a key first step for cluster cosmology with future low-noise CMB surveys, like CMB-S4, for which CMB polarization will be the primary channel for cluster lensing measurements., Comment: 10 pages, 3 figures, 1 table; typos fixed; accepted for publication in PRL
- Published
- 2019
- Full Text
- View/download PDF
21. Mass calibration of optically selected DES clusters using a measurement of CMB-cluster lensing with SPTpol data
- Author
-
John E. Carlstrom, D. L. Burke, A. E. Evrard, Juan Garcia-Bellido, E. Bertin, T. L. Chou, J. Hubmayr, D. Rapetti, G. Gutierrez, Robert I. Citron, M. E.C. Swanson, Jeff McMahon, J. Gschwend, Flavia Sobreira, J. D. Hrubes, N. Huang, Jason W. Henning, S. Serrano, N. L. Harrington, S. Allam, Robert A. Gruendl, K. Honscheid, Joaquin Vieira, Adrian T. Lee, Lloyd Knox, Daniel Gruen, A. A. Plazas, I. Sevilla-Noarbe, Yanxi Zhang, Michael Schubnell, Peter Melchior, T. de Haan, Tianjun Li, J. Carretero, Peter A. R. Ade, Bradford Benson, Amy N. Bender, B. Flaugher, K. T. Story, C. L. Davis, V. Scarpine, L. E. Bleem, Srinivasan Raghunathan, H. C. Chiang, Keith Bechtol, Christian L. Reichardt, K. K. Schaffer, Felipe Menanteau, Valentine Novosad, Graeme Smecher, Ramon Miquel, P. Doel, Gregory Tarle, T. Jeltema, C. L. Chang, David J. James, J. P. Dietrich, Benjamin Saliwanchik, R. C. Smith, W. G. Hartley, Federico Bianchini, Gensheng Wang, Ben Hoyle, Gilbert Holder, Nathan Whitehorn, D. L. Hollowood, Pablo Fosalba, John P. Nibarger, Andrew Nadolski, Gene C. Hilton, K. Vanderlinde, David Brooks, Elizabeth George, M. A. G. Maia, C. J. Miller, A. K. Romer, Jason Gallicchio, T. Natoli, T. M. Crawford, E. J. Baxter, A. Carnero Rosell, J. E. Ruhl, Carole Tucker, Enrique Gaztanaga, Joshua Montgomery, H-M. Cho, N. W. Halverson, András Kovács, J. De Vicente, A. G. Kim, E. Suchyta, Antony A. Stark, M. A. Dobbs, Salcedo Romero de Ávila, C. Pryke, Stephen Padin, Marcos Lima, J. A. Beall, S. S. Meyer, M. Carrasco Kind, Nikhel Gupta, T. McClintock, N. Kuropatkin, J. T. Sayre, T. N. Varga, L. N. da Costa, E. Rozo, J. Annis, J. E. Austermann, Joshua A. Frieman, Z. Hou, Kyler Kuehn, Jennifer L. Marshall, Daniel Thomas, Marcelle Soares-Santos, W. B. Everett, S. Patil, Carlos E. Cunha, A. T. Crites, S. Desai, T. F. Eifler, T. M. C. Abbott, E. J. Sanchez, Kent D. Irwin, Lindsey Bleem, L. M. Mocanu, H. T. Diehl, W. L. K. Wu, W. L. Holzapfel, Gary Bernstein, A. J. Gilbert, Adam Anderson, Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010504 meteorology & atmospheric sciences ,Cosmic microwave background ,FOS: Physical sciences ,Flux ,Astrophysics ,cosmic background radiation ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Measure (mathematics) ,gravitational lensing: weak ,weak [gravitational lensing] ,0103 physical sciences ,Cluster (physics) ,clusters: general [galaxies] ,010303 astronomy & astrophysics ,STFC ,Galaxy cluster ,QC ,0105 earth and related environmental sciences ,Physics ,Astrophysics::Instrumentation and Methods for Astrophysics ,RCUK ,Estimator ,Astronomy and Astrophysics ,Galaxy ,Space and Planetary Science ,galaxies: clusters: general ,astro-ph.CO ,Dark energy ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We use cosmic microwave background (CMB) temperature maps from the 500 deg$^{2}$ SPTpol survey to measure the stacked lensing convergence of galaxy clusters from the Dark Energy Survey (DES) Year-3 redMaPPer (RM) cluster catalog. The lensing signal is extracted through a modified quadratic estimator designed to be unbiased by the thermal Sunyaev-Zel{'}dovich (tSZ) effect. The modified estimator uses a tSZ-free map, constructed from the SPTpol 95 and 150 GHz datasets, to estimate the background CMB gradient. For lensing reconstruction, we employ two versions of the RM catalog: a flux-limited sample containing 4003 clusters and a volume-limited sample with 1741 clusters. We detect lensing at a significance of 8.7$\sigma$(6.7$\sigma$) with the flux(volume)-limited sample. By modeling the reconstructed convergence using the Navarro-Frenk-White profile, we find the average lensing masses to be $M_{200m}$ = ($1.62^{+0.32}_{-0.25}$ [stat.] $\pm$ 0.04 [sys.]) and ($1.28^{+0.14}_{-0.18}$ [stat.] $\pm$ 0.03 [sys.]) $\times\ 10^{14}\ M_{\odot}$ for the volume- and flux-limited samples respectively. The systematic error budget is much smaller than the statistical uncertainty and is dominated by the uncertainties in the RM cluster centroids. We use the volume-limited sample to calibrate the normalization of the mass-richness scaling relation, and find a result consistent with the galaxy weak-lensing measurements from DES (Mcclintock et al. 2018)., Comment: 19 pages, 6 figures, published in ApJ
- Published
- 2019
- Full Text
- View/download PDF
22. A hybrid origin of the Martian crustal dichotomy: Degree-1 convection antipodal to a giant impact
- Author
-
Robert I. Citron, Eh Tan, and Michael Manga
- Subjects
Geochemistry & Geophysics ,Martian ,Convection ,010504 meteorology & atmospheric sciences ,Mars ,Crust ,Geophysics ,Mars Exploration Program ,planetary evolution ,Geodynamics ,010502 geochemistry & geophysics ,01 natural sciences ,Mantle (geology) ,mantle convection ,Mantle convection ,Space and Planetary Science ,Geochemistry and Petrology ,Physical Sciences ,Earth Sciences ,Earth and Planetary Sciences (miscellaneous) ,geodynamics ,Geology ,0105 earth and related environmental sciences ,Tharsis - Abstract
© 2018 Elsevier B.V. The Martian crustal dichotomy is the stark ∼5 km difference in surface elevation and ∼26 km difference in crustal thickness between the northern lowlands and southern highlands that originated within 100s of Myr of Mars’ formation. The origin of the dichotomy has broad implications for the geodynamic history of Mars, but purely exogenic or endogenic theories so far cannot explain all of the large scale geophysical observations associated with dichotomy formation. A giant impact can produce the shape and slope of the dichotomy boundary, but struggles to explain Mars’ remanent crustal magnetic signatures and the ultimate formation of Tharsis. Degree-1 mantle convection can relate the crustal dichotomy to the formation of Tharsis, but does not explain the elliptical dichotomy shape and must be initiated by a large pre-existing viscosity jump in the mantle. We propose a hybrid model of dichotomy formation in which a giant impact induces degree-1 convection with an upwelling antipodal to the impact site. In this scenario, a giant impact in the northern hemisphere excavates crust, creating an initial difference in crustal thickness and possibly composition between the two hemispheres. Over 10s to 100s of Myr, the dominant upwelling(s) would migrate to be under the thicker, insulating crust in the southern hemisphere, generating melt that further thickens the southern crust. We examine this process using 3-D mantle convection simulations, and find that a hemispherical difference in crustal thickness and composition caused by a giant impact can induce degree-1 convection with the upwelling(s) antipodal to the impact site in
- Published
- 2018
- Full Text
- View/download PDF
23. The role of multiple giant impacts in the formation of the Earth-Moon system
- Author
-
Oded Aharonson, Robert I. Citron, and Hagai B. Perets
- Subjects
Earth and Planetary Astrophysics (astro-ph.EP) ,Physics ,Debris disk ,010504 meteorology & atmospheric sciences ,FOS: Physical sciences ,Astronomy and Astrophysics ,01 natural sciences ,Debris ,Astrobiology ,Physics::Geophysics ,Space and Planetary Science ,0103 physical sciences ,Physics::Space Physics ,Astrophysics::Earth and Planetary Astrophysics ,010303 astronomy & astrophysics ,Merge (version control) ,Astrophysics::Galaxy Astrophysics ,0105 earth and related environmental sciences ,Astrophysics - Earth and Planetary Astrophysics - Abstract
The Earth-Moon system is suggested to have formed through a single giant collision, in which the Moon accreted from the impact-generated debris disk. However, such giant impacts are rare, and during its evolution the Earth experienced many more smaller impacts, producing smaller satellites that potentially coevolved. In the multiple-impact hypothesis of lunar formation, the current Moon was produced from the mergers of several smaller satellites (moonlets), each formed from debris disks produced by successive large impacts. In the Myrs between impacts, a pre-existing moonlet tidally evolves outward until a subsequent impact forms a new moonlet, at which point both moonlets will tidally evolve until a merger or system disruption. In this work, we examine the likelihood that pre-existing moonlets survive subsequent impact events, and explore the dynamics of Earth-moonlet systems that contain two moonlets generated Myrs apart. We demonstrate that pre-existing moonlets can tidally migrate outward, remain stable during subsequent impacts, and later merge with newly created moonlets (or re-collide with the Earth). Formation of the Moon from the mergers of several moonlets could therefore be a natural byproduct of the Earth's growth through multiple impacts. More generally, we examine the likelihood and consequences of Earth having prior moons, and find that the stability of moonlets against disruption by subsequent impacts implies that several large impacts could post-date Moon formation., 12 pages, 8 figures, accepted by ApJ
- Published
- 2018
24. Formation of Phobos and Deimos via a giant impact
- Author
-
Robert I. Citron, Hidenori Genda, and Shigeru Ida
- Subjects
Martian ,Earth and Planetary Astrophysics (astro-ph.EP) ,Debris disk ,Future studies ,Astronomy ,FOS: Physical sciences ,Astronomy and Astrophysics ,Mars Exploration Program ,Debris ,Astrobiology ,Moons of Mars ,Smoothed-particle hydrodynamics ,Space and Planetary Science ,Asteroid ,Geology ,Astrophysics - Earth and Planetary Astrophysics - Abstract
Although the two moons of Mars, Phobos and Deimos, have long been thought to be captured asteroids, recent observations of their compositions and orbits suggest that they may have formed from debris generated by one or more giant impacts of bodies with ~ 0.01 x target mass. Recent studies have both analytically estimated debris produced by giant impacts on Mars and numerically examined the evolution of circum-Mars debris disks. We perform a numerical study (Smoothed Particle Hydrodynamics simulation) of debris retention from giant impacts onto Mars, particularly in relation to a Borealis-scale giant impact (E ~ 3 x 10^29 J) capable of producing the Borealis basin. We find that a Borealis-scale impact is capable of producing a disk of mass ~ 5 x 10^20 kg (~ 1 - 4 % of the impactor mass), sufficient debris to form at least one of the martian moons according to recent numerical studies of martian debris disk evolution. While a Borealis-scale impact may generate sufficient debris to form both Phobos and Deimos, further studies of the debris disk evolution are necessary. Our results can serve as inputs for future studies of martian debris disk evolution., Comment: Accepted to Icarus
- Published
- 2015
25. Measurements of the Temperature and E-Mode Polarization of the CMB from 500 Square Degrees of SPTpol Data
- Author
-
Elizabeth George, C. Pryke, A. J. Gilbert, Adam Anderson, L. M. Mocanu, W. L. K. Wu, Ryan Keisler, T. Veach, Robert I. Citron, Peter A. R. Ade, K. T. Story, N. Huang, Gensheng Wang, Lindsey Bleem, Johannes Hubmayr, Jason Gallicchio, N. L. Harrington, Volodymyr Yefremenko, T. de Haan, S. S. Meyer, H. C. Chiang, Matt Dobbs, Nathan Whitehorn, Bradford Benson, Dale Li, A. E. Lowitz, Gene C. Hilton, T. M. Crawford, J. T. Sayre, John E. Carlstrom, A. Manzotti, John P. Nibarger, Andrew Nadolski, W. B. Everett, C. Corbett Moran, Jeff McMahon, C. L. Chang, J. D. Hrubes, E. M. Leitch, A. T. Crites, Joshua Montgomery, N. W. Halverson, S. Hoover, Stephen Padin, James A. Beall, J. E. Ruhl, Joaquin Vieira, K. Vanderlinde, Kent D. Irwin, W. L. Holzapfel, V. Novosad, Jason W. Henning, T. Natoli, H-M. Cho, C. Sievers, Christian L. Reichardt, Zhen Hou, Adrian T. Lee, Lloyd Knox, Carole Tucker, Jason E. Austermann, Antony A. Stark, Graeme Smecher, Benjamin Saliwanchik, Gilbert Holder, Amy N. Bender, and K. K. Schaffer
- Subjects
Expansion rate ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,cosmic background radiation ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astronomy & Astrophysics ,Atomic ,Physical Chemistry ,01 natural sciences ,Spectral line ,symbols.namesake ,Particle and Plasma Physics ,0103 physical sciences ,Nuclear ,cosmological parameters ,010303 astronomy & astrophysics ,Physics ,polarization ,010308 nuclear & particles physics ,Molecular ,Astronomy and Astrophysics ,Planck temperature ,Polarization (waves) ,observations [cosmology] ,3. Good health ,Space and Planetary Science ,astro-ph.CO ,symbols ,Multipole expansion ,Astronomical and Space Sciences ,Physical Chemistry (incl. Structural) ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present measurements of the $E$-mode polarization angular auto-power spectrum ($EE$) and temperature-$E$-mode cross-power spectrum ($TE$) of the cosmic microwave background (CMB) using 150 GHz data from three seasons of SPTpol observations. We report the power spectra over the spherical harmonic multipole range $50 < \ell \leq 8000$, and detect nine acoustic peaks in the $EE$ spectrum with high signal-to-noise ratio. These measurements are the most sensitive to date of the $EE$ and $TE$ power spectra at $\ell > 1050$ and $\ell > 1475$, respectively. The observations cover 500 deg$^2$, a fivefold increase in area compared to previous SPTpol analyses, which increases our sensitivity to the photon diffusion damping tail of the CMB power spectra enabling tighter constraints on \LCDM model extensions. After masking all sources with unpolarized flux $>50$ mJy we place a 95% confidence upper limit on residual polarized point-source power of $D_\ell = \ell(\ell+1)C_\ell/2\pi 1000$ results in a preference for a higher value of the expansion rate ($H_0 = 71.3 \pm 2.1\,\mbox{km}\,s^{-1}\mbox{Mpc}^{-1}$ ) and a lower value for present-day density fluctuations ($\sigma_8 = 0.77 \pm 0.02$)., Comment: Updated to match version accepted to ApJ. 34 pages, 17 figures, 6 tables
- Published
- 2017
- Full Text
- View/download PDF
26. Millimeter Transient Point Sources in the SPTpol 100 Square Degree Survey
- Author
-
Jason Gallicchio, Jason W. Henning, T. Natoli, Kent D. Irwin, Carole Tucker, Bradford Benson, W. L. Holzapfel, V. Novosad, Lindsey Bleem, Jason E. Austermann, Ryan Keisler, C. L. Chang, Keith Vanderlinde, Graeme Smecher, L. M. Mocanu, Johannes Hubmayr, Dale Li, H-M. Cho, Gene C. Hilton, Robert I. Citron, Nathan Whitehorn, John E. Carlstrom, T. de Haan, Volodymyr Yefremenko, Elizabeth George, C. Pryke, E. M. Leitch, J. E. Ruhl, J. T. Sayre, Christian L. Reichardt, S. S. Meyer, N. Huang, A. T. Crites, A. Gilbert, James A. Beall, Lloyd Knox, H. C. Chiang, N. L. Harrington, Peter A. R. Ade, Amy N. Bender, K. T. Story, S. Hoover, K. K. Schaffer, M. A. Dobbs, Jeff McMahon, John P. Nibarger, T. M. Crawford, J. D. Hrubes, N. W. Halverson, Aaron Lee, Benjamin Saliwanchik, Gilbert Holder, Zhen Hou, Antony A. Stark, Gensheng Wang, Joaquin Vieira, Stephen Padin, and W. B. Everett
- Subjects
Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Astrophysics::High Energy Astrophysical Phenomena ,Cosmic microwave background ,FOS: Physical sciences ,Cosmic ray ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,010305 fluids & plasmas ,law.invention ,Telescope ,law ,0103 physical sciences ,010303 astronomy & astrophysics ,QC ,Astrophysics::Galaxy Astrophysics ,media_common ,QB ,Physics ,High Energy Astrophysical Phenomena (astro-ph.HE) ,Astrophysics::Instrumentation and Methods for Astrophysics ,Astronomy ,Astronomy and Astrophysics ,Afterglow ,South Pole Telescope ,Space and Planetary Science ,Sky ,Millimeter ,Gamma-ray burst ,Astrophysics - High Energy Astrophysical Phenomena ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
The millimeter transient sky is largely unexplored, with measurements limited to follow-up of objects detected at other wavelengths. High-angular-resolution telescopes designed for measurement of the cosmic microwave background offer the possibility to discover new, unknown transient sources in this band, particularly the afterglows of unobserved gamma-ray bursts. Here we use the 10-meter millimeter-wave South Pole Telescope, designed for the primary purpose of observing the cosmic microwave background at arcminute and larger angular scales, to conduct a search for such objects. During the 2012-2013 season, the telescope was used to continuously observe a 100 square degree patch of sky centered at RA 23h30m and declination -55 degrees using the polarization-sensitive SPTpol camera in two bands centered at 95 and 150 GHz. These 6000 hours of observations provided continuous monitoring for day- to month-scale millimeter-wave transient sources at the 10 mJy level. One candidate object was observed with properties broadly consistent with a gamma-ray burst afterglow, but at a statistical significance too low (p=0.01) to confirm detection., Comment: 10 pages, 7 figures. As accepted by ApJ. Updated version expands sections 3 and 5
- Published
- 2016
27. Constraints on the formation of the Martian crustal dichotomy from remnant crustal magnetism
- Author
-
Shijie Zhong and Robert I. Citron
- Subjects
Convection ,Physics and Astronomy (miscellaneous) ,Crustal recycling ,Northern Hemisphere ,Astronomy and Astrophysics ,Crust ,Geophysics ,Lineation ,Mantle convection ,Space and Planetary Science ,Ejecta ,Southern Hemisphere ,Geology - Abstract
The Martian crustal dichotomy characterizing the topographic difference between the northern and southern hemispheres is one of the most important features on Mars. However, the formation mechanism for the dichotomy remains controversial with two competing proposals: exogenic (e.g., a giant impact) and endogenic (e.g., degree-1 mantle convection) mechanisms. Another important observation is the Martian crustal remnant magnetism, which shows a much stronger field in the southern hemisphere than in the northern hemisphere and also magnetic lineations. In this study, we examine how exogenic and endogenic mechanisms for the crustal dichotomy are constrained by the crustal remnant magnetism. Assuming that the dichotomy is caused by a giant impact in the northern hemisphere, we estimate that the average thickness of ejecta in the southern hemisphere is 20–25 km. While such a giant impact may cause crustal demagnetization in the northern hemisphere, we suggest that the impact could also demagnetize the southern hemisphere via ejecta thermal blanketing, impact demagnetization, and heat transfer from the hot layer of ejecta, thus posing a challenge for the giant impact model. We explore how the pattern of magnetic lineations relates to endogenic theories of dichotomy formation, specifically crustal production via degree-1 mantle convection. We observe that the pattern of lineations roughly corresponds to concentric circles about a single pole, and determine the pole for the concentric circles at 76.5 E and 84.5 S, which nearly overlaps with the centroid of the thickened crust in the southern hemisphere. We suggest that the crustal magnetization pattern, magnetic lineations, and crustal dichotomy (i.e., thickened crust in the highlands) can be explained by a simple endogenic process; one-plume convection causes melting and crustal production above the plume in the southern hemisphere, and strong crustal magnetization and magnetic lineations are formed in the southern hemisphere as crustal production fronts spread radially out from the plume center and as the newly created crust cools in the presence of a dynamo with polarity reversals.
- Published
- 2012
- Full Text
- View/download PDF
28. Scaling of melt production in hypervelocity impacts from high-resolution numerical simulations
- Author
-
Amy C. Barr and Robert I. Citron
- Subjects
ICARUS ,Work (thermodynamics) ,Equation of state ,chemistry.chemical_element ,High resolution ,Mineralogy ,Astronomy and Astrophysics ,Volume (thermodynamics) ,chemistry ,Space and Planetary Science ,Aluminium ,Hypervelocity ,Scaling ,Geology - Abstract
The volume of melt produced in hypervelocity planetary impacts and the size and shape of the melted region are key to understanding the impact histories of solid planetary bodies and the geological effects of impacts on their surfaces and interiors. Prior work of Pierazzo et al. (Pierazzo, E., Vickery, A.M., Melosh, H.J. [1997]. Icarus 127, 408–423) gave the first estimates of impact melt production in geological materials using a modern hydrocode and equation of state. However, computational limits at the time forced use of low resolution, which may have resulted in low melt volumes. Our simulations with 50 times higher resolution provide independent confirmation of the Pierazzo et al. (Pierazzo, E., Vickery, A.M., Melosh, H.J. [1997]. Icarus 127, 408–423) melt volumes in aluminum, iron, dunite, and granite impacts at velocities between 20 and 80 km/s. In ice/ice impacts, we find that melt volumes depend on target temperature and are lower than predicted by Pierazzo et al. (Pierazzo, E., Vickery, A.M., Melosh, H.J. [1997]. Icarus 127, 408–423). Our melt volumes are directly proportional to impact energy for all materials, over a wide range of impact velocity. We also report new data for melt volume scalings for ice/dunite and iron/dunite impacts and the size and shape of melted region, valuable for interpretation of cratering records and studies of impact-induced differentiation.
- Published
- 2011
- Full Text
- View/download PDF
29. Origin of a partially differentiated Titan
- Author
-
Amy C. Barr, Robin M. Canup, and Robert I. Citron
- Subjects
Solar System ,Astrophysics::High Energy Astrophysical Phenomena ,Astronomy and Astrophysics ,Astrobiology ,symbols.namesake ,Space and Planetary Science ,Core formation ,Physics::Space Physics ,symbols ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Titan (rocket family) ,Late Heavy Bombardment ,Astrophysics::Galaxy Astrophysics ,Geology - Abstract
Accretional temperature profiles for Saturn’s large moon Titan are used to determine the conditions needed for accretion to avoid global melting as a function of the timing, duration, and nebular conditions of Titan’s accretion. We find that Titan can accrete undifferentiated in a “gas-starved” disk even with modest quantities of ammonia mixed in with its ices. Simulations of impact-induced core formation are used to show that Titan can remain only partially differentiated after an outer Solar System late heavy bombardment capable of melting its outer layers, permitting some of its rock to consolidate into a core.
- Published
- 2010
- Full Text
- View/download PDF
30. Spitzer observations of M33 and the hot star, H ii region connection
- Author
-
Michael R. Haas, Sean W. J. Colgan, Robert I. Citron, Adalbert W. A. Pauldrach, Ian A. McNabb, Robert H. Rubin, Edwin F. Erickson, Janet P. Simpson, Reginald J. Dufour, and Gregory Brunner
- Subjects
Physics ,H II region ,Spiral galaxy ,Space and Planetary Science ,Milky Way ,Metallicity ,Stellar atmosphere ,Low-ionization nuclear emission-line region ,Astronomy and Astrophysics ,Astrophysics ,Galaxy ,O-type star - Abstract
We have observed emission lines of [S iv] 10.51, H(7–6) 12.37, [Ne ii] 12.81, [Ne iii] 15.56 and [S iii] 18.71 μm in a number of extragalactic H ii regions with the Spitzer Space Telescope. A previous paper presented our data and analysis for the substantially face-on spiral galaxy M83. Here we report our results for the Local Group spiral galaxy M33. The nebulae selected cover a wide range of galactocentric radii (RG). The observations were made with the Infrared Spectrograph with the short wavelength, high-resolution module. The above set of five lines is observed cospatially, thus permitting a reliable comparison of the fluxes. From the measured fluxes, we determine the ionic abundance ratios including Ne++/Ne+, S3+/S++, and S++/Ne+ and find that there is a correlation of increasingly higher ionization with larger RG. By sampling the dominant ionization states of Ne (Ne+, Ne++) and S (S++, S3+) for H ii regions, we can estimate the Ne/H, S/H and Ne/S ratios. We find from linear least-squares fits that there is a decrease in metallicity with increasing RG: d log (Ne/H)/dRG=−0.058 ± 0.014 and d log (S/H)/dRG=−0.052 ± 0.021 dex kpc−1. There is no apparent variation in the Ne/S ratio with RG. Unlike our previous similar study of M83, where we conjectured that this ratio was an upper limit, for M33 the derived ratios are likely a robust indication of Ne/S. This occurs because the H ii regions have lower metallicity and higher ionization than those in M83. Both Ne and S are primary elements produced in α-chain reactions, following C and O burning in stars, making their yields depend very little on the stellar metallicity. Thus, it is expected that the Ne/S ratio remains relatively constant throughout a galaxy. The median (average) Ne/S ratio derived for H ii regions in M33 is 16.3 (16.9), just slightly higher than the Orion Nebula value of 14.3. The same methodology is applied to Spitzer observations recently published for three massive H ii regions: NGC 3603 (Milky Way), 30 Dor (LMC) and N 66 (SMC) as well as for a group of blue compact dwarf galaxies. We find median Ne/S values of 14.6, 11.4, 10.1, and 14.0, respectively. All of these values are in sharp contrast with the much lower ‘canonical’, but controversial, solar value of ∼5. A recent nucleosynthesis, galactic chemical evolution model predicts an Ne/S abundance of ∼9. Our observations may also be used to test the predicted ionizing spectral energy distribution of various stellar atmosphere models. We compare the ratio of fractional ionizations 〈Ne++〉/〈S++〉, 〈Ne++〉/〈S3+〉, and 〈Ne++〉/〈Ne+〉 versus 〈S3+〉/〈S++〉 with predictions made from our photoionization models using several of the state-of-the-art stellar atmosphere model grids. The trends of the ionic ratios established from the prior M83 study are remarkably similar, but continued to higher ionization with the present M33 objects.
- Published
- 2008
- Full Text
- View/download PDF
31. A measurement of the cosmic microwave background gravitational lensing potential from 100 square degrees of SPTPOL data
- Author
-
Johannes Hubmayr, Nathan Whitehorn, Duncan Hanson, Dale Li, Amy N. Bender, K. K. Schaffer, Zhen Hou, Valentyn Novosad, L. M. Mocanu, Cameron J. Liang, Adrian T. Lee, Lloyd Knox, A. T. Crites, Antony A. Stark, Benjamin Saliwanchik, Oliver Zahn, Joaquin Vieira, Gilbert Holder, Ryan Keisler, T. E. Montroy, Kent D. Irwin, W. L. Holzapfel, C. Pryke, N. Huang, A. Gilbert, James A. Beall, J. T. Sayre, Lindsey Bleem, S. Hoover, Gene C. Hilton, H. C. Chiang, Elizabeth George, Keith Vanderlinde, W. B. Everett, Peter A. R. Ade, T. Natoli, K. T. Story, Jason Gallicchio, H-M. Cho, Robert I. Citron, Jeff McMahon, Stephen Padin, Jason W. Henning, Christian L. Reichardt, Gensheng Wang, M. A. Dobbs, Volodymyr Yefremenko, John E. Carlstrom, T. de Haan, E. M. Leitch, Jiansong Gao, S. S. Meyer, J. E. Ruhl, Jason E. Austermann, Graeme Smecher, C. L. Chang, Carole Tucker, J. Mehl, K. A. Aird, T. M. Crawford, John P. Nibarger, N. W. Halverson, Daniel M. Luong-Van, Bradford Benson, J. D. Hrubes, and N. L. Harrington
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spectral density ,Estimator ,Quadratic estimator ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,01 natural sciences ,Gravitational lens ,South Pole Telescope ,Space and Planetary Science ,Sky ,0103 physical sciences ,High Energy Physics::Experiment ,010303 astronomy & astrophysics ,media_common ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a measurement of the cosmic microwave background (CMB) gravitational lensing potential using data from the first two seasons of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100 deg$^2$ of sky with arcminute resolution at 150 GHz. Using a quadratic estimator, we make maps of the CMB lensing potential from combinations of CMB temperature and polarization maps. We combine these lensing potential maps to form a minimum-variance (MV) map. The lensing potential is measured with a signal-to-noise ratio of greater than one for angular multipoles between $100< L, Comment: 16 pages, 8 figures
- Published
- 2015
32. Measurements of sub-degree B-mode polarization in the cosmic microwave background from 100 square degrees of SPTpol data
- Author
-
J. D. Hrubes, N. W. Halverson, Amy N. Bender, Ryan Keisler, Robert I. Citron, C. L. Chang, K. K. Schaffer, Keith Vanderlinde, T. Natoli, Christian L. Reichardt, Volodymyr Yefremenko, Valentyn Novosad, James A. Beall, H-M. Cho, J. E. Ruhl, Oliver Zahn, Jason Gallicchio, Matt Dobbs, Joaquin Vieira, Kent D. Irwin, Antony A. Stark, Gene C. Hilton, W. L. Holzapfel, Jason W. Henning, Adrian T. Lee, S. S. Meyer, T. M. Crawford, C. Pryke, John E. Carlstrom, Lloyd Knox, W. B. Everett, T. de Haan, J. Mehl, E. M. Leitch, Stephen Padin, Erik Shirokoff, Duncan Hanson, Nathan Whitehorn, Johannes Hubmayr, L. M. Mocanu, Jiansong Gao, Gensheng Wang, Daniel P. Marrone, Benjamin Saliwanchik, Gilbert Holder, Jeff McMahon, Peter A. R. Ade, K. T. Story, N. Huang, A. Gilbert, A. T. Crites, J. T. Sayre, Daniel M. Luong-Van, Zhen Hou, Bradford Benson, H. C. Chiang, Lindsey Bleem, Dale Li, N. L. Harrington, Elizabeth George, S. Hoover, K. A. Aird, John P. Nibarger, Jason E. Austermann, Graeme Smecher, and Carole Tucker
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Cosmic microwave background ,Cosmic background radiation ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spectral density ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Spectral bands ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,01 natural sciences ,Spectral line ,3. Good health ,South Pole Telescope ,Gravitational lens ,Space and Planetary Science ,0103 physical sciences ,010303 astronomy & astrophysics ,Astrophysics::Galaxy Astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present a measurement of the $B$-mode polarization power spectrum (the $BB$ spectrum) from 100 $\mathrm{deg}^2$ of sky observed with SPTpol, a polarization-sensitive receiver currently installed on the South Pole Telescope. The observations used in this work were taken during 2012 and early 2013 and include data in spectral bands centered at 95 and 150 GHz. We report the $BB$ spectrum in five bins in multipole space, spanning the range $300 \le \ell \le 2300$, and for three spectral combinations: 95 GHz $\times$ 95 GHz, 95 GHz $\times$ 150 GHz, and 150 GHz $\times$ 150 GHz. We subtract small ($< 0.5 \sigma$ in units of statistical uncertainty) biases from these spectra and account for the uncertainty in those biases. The resulting power spectra are inconsistent with zero power but consistent with predictions for the $BB$ spectrum arising from the gravitational lensing of $E$-mode polarization. If we assume no other source of $BB$ power besides lensed $B$ modes, we determine a preference for lensed $B$ modes of $4.9 \sigma$. After marginalizing over tensor power and foregrounds, namely polarized emission from galactic dust and extragalactic sources, this significance is $4.3 \sigma$. Fitting for a single parameter, $A_\mathrm{lens}$, that multiplies the predicted lensed $B$-mode spectrum, and marginalizing over tensor power and foregrounds, we find $A_\mathrm{lens} = 1.08 \pm 0.26$, indicating that our measured spectra are consistent with the signal expected from gravitational lensing. The data presented here provide the best measurement to date of the $B$-mode power spectrum on these angular scales., Comment: 21 pages, 4 figures
- Published
- 2015
33. CMB PolarizationB-mode Delensing with SPTpol andHerschel
- Author
-
A. Manzotti, Jason Gallicchio, Nathan Whitehorn, Bradford Benson, Dale Li, Kent D. Irwin, Ryan Keisler, W. L. Holzapfel, C. L. Chang, W. L. K. Wu, V. Novosad, James A. Beall, Scott Dodelson, Robert I. Citron, N. Huang, A. Conley, A. T. Crites, A. Gilbert, H. C. Chiang, John E. Carlstrom, T. de Haan, J. E. Ruhl, Volodymyr Yefremenko, E. M. Leitch, Keith Vanderlinde, N. W. Halverson, J. T. Sayre, L. M. Mocanu, S. S. Meyer, T. Natoli, Jason W. Henning, N. L. Harrington, Johannes Hubmayr, Zhen Hou, H-M. Cho, C. Pryke, Elizabeth George, T. M. Crawford, Lindsey Bleem, Benjamin Saliwanchik, K. T. Story, Gilbert Holder, J. D. Hrubes, Adrian T. Lee, S. Hoover, Joaquin Vieira, Stephen Padin, Gensheng Wang, John P. Nibarger, Gene C. Hilton, W. B. Everett, M. A. Dobbs, Jeff McMahon, Michael Zemcov, Marco P. Viero, Christian L. Reichardt, James J. Bock, Jason E. Austermann, Lloyd Knox, Graeme Smecher, Antony A. Stark, Amy N. Bender, and K. K. Schaffer
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Gravitational wave ,media_common.quotation_subject ,Cosmic microwave background ,Cosmic background radiation ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,01 natural sciences ,Universe ,Cosmology ,Space and Planetary Science ,Sky ,Cosmic infrared background ,0103 physical sciences ,Multipole expansion ,010303 astronomy & astrophysics ,Astrophysics - Cosmology and Nongalactic Astrophysics ,media_common - Abstract
We present a demonstration of delensing the observed cosmic microwave background (CMB) B-mode polarization anisotropy. This process of reducing the gravitational-lensing generated B-mode component will become increasingly important for improving searches for the B modes produced by primordial gravitational waves. In this work, we delens B-mode maps constructed from multi-frequency SPTpol observations of a 90 deg$^2$ patch of sky by subtracting a B-mode template constructed from two inputs: SPTpol E-mode maps and a lensing potential map estimated from the $\textit{Herschel}$ $500\,��m$ map of the CIB. We find that our delensing procedure reduces the measured B-mode power spectrum by 28% in the multipole range $300 < \ell < 2300$; this is shown to be consistent with expectations from theory and simulations and to be robust against systematics. The null hypothesis of no delensing is rejected at $6.9 ��$. Furthermore, we build and use a suite of realistic simulations to study the general properties of the delensing process and find that the delensing efficiency achieved in this work is limited primarily by the noise in the lensing potential map. We demonstrate the importance of including realistic experimental non-idealities in the delensing forecasts used to inform instrument and survey-strategy planning of upcoming lower-noise experiments, such as CMB-S4., 17 pages, 10 figures. Comments are welcomed
- Published
- 2017
- Full Text
- View/download PDF
34. Measurements of E-Mode Polarization and Temperature-E-Mode Correlation in the Cosmic Microwave Background from 100 Square Degrees of SPTpol Data
- Author
-
Jason W. Henning, S. S. Meyer, T. de Haan, T. E. Montroy, K. A. Aird, Peter A. R. Ade, V. G. Yefremenko, K. T. Story, Jason Gallicchio, C. L. Chang, V. Novosad, Elizabeth George, Nathan Whitehorn, Kent D. Irwin, John P. Nibarger, Cameron J. Liang, D. Hanson, A. T. Crites, K. Vanderlinde, J. Hubmayr, Stephen Padin, Graeme Smecher, L. M. Mocanu, J. E. Austermann, J. Mehl, C. Pryke, Jeff McMahon, Robert I. Citron, Zhen Hou, Lindsey Bleem, Antony A. Stark, J. D. Hrubes, J. T. Sayre, Joaquin Vieira, Jiansong Gao, E. M. Leitch, J. E. Carstrom, O. Zahn, Carole Tucker, Gensheng Wang, A. J. Gilbert, Daniel M. Luong-Van, Gene C. Hilton, J. A. Beall, Christian L. Reichardt, Bradford Benson, Ryan Keisler, Adrian T. Lee, Lloyd Knox, J. E. Ruhl, M. A. Dobbs, Benjamin Saliwanchik, Gilbert Holder, N. L. Harrington, N. W. Halverson, S. Hoover, T. M. Crawford, Amy N. Bender, T. Natoli, H-M. Cho, K. K. Schaffer, N. Huang, H. C. Chiang, W. L. Holzapfel, Dale Li, and W. B. Everett
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,media_common.quotation_subject ,Cosmic microwave background ,Astrophysics::Instrumentation and Methods for Astrophysics ,FOS: Physical sciences ,Astronomy and Astrophysics ,Astrophysics ,Cosmological model ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Polarization (waves) ,7. Clean energy ,Spectral line ,symbols.namesake ,South Pole Telescope ,Space and Planetary Science ,Sky ,symbols ,Planck ,Multipole expansion ,media_common ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present measurements of $E$-mode polarization and temperature-$E$-mode correlation in the cosmic microwave background (CMB) using data from the first season of observations with SPTpol, the polarization-sensitive receiver currently installed on the South Pole Telescope (SPT). The observations used in this work cover 100~\sqdeg\ of sky with arcminute resolution at $150\,$GHz. We report the $E$-mode angular auto-power spectrum ($EE$) and the temperature-$E$-mode angular cross-power spectrum ($TE$) over the multipole range $500 < \ell \leq5000$. These power spectra improve on previous measurements in the high-$\ell$ (small-scale) regime. We fit the combination of the SPTpol power spectra, data from \planck\, and previous SPT measurements with a six-parameter \LCDM cosmological model. We find that the best-fit parameters are consistent with previous results. The improvement in high-$\ell$ sensitivity over previous measurements leads to a significant improvement in the limit on polarized point-source power: after masking sources brighter than 50\,mJy in unpolarized flux at 150\,GHz, we find a 95\% confidence upper limit on unclustered point-source power in the $EE$ spectrum of $D_\ell = \ell (\ell+1) C_\ell / 2 ��< 0.40 \ ��{\mbox{K}}^2$ at $\ell=3000$, indicating that future $EE$ measurements will not be limited by power from unclustered point sources in the multipole range $\ell < 3600$, and possibly much higher in $\ell.$
- Published
- 2014
- Full Text
- View/download PDF
35. HABEBEE: Habitability of Eyeball-Exo-Earths
- Author
-
Alexandre Bergantini, Haley M. Sapers, Luciano Lopes Queiroz, Robert I. Citron, Ana Carolina Vieira Araujo, Daniel Angerhausen, Stefanie Lutz, and Marcelo R. Alexandre
- Subjects
Extraterrestrial Environment ,Planetary habitability ,Earth, Planet ,Ice ,Kepler-69c ,Astrophysics::Instrumentation and Methods for Astrophysics ,Planets ,Astronomy ,Agricultural and Biological Sciences (miscellaneous) ,Habitability of orange dwarf systems ,Physics::Geophysics ,Astrobiology ,Earth analog ,Space and Planetary Science ,Natural satellite habitability ,Exobiology ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Photosynthesis ,Circumstellar habitable zone ,Kepler-62e ,Geology ,Discoveries of exoplanets - Abstract
Extrasolar Earth and super-Earth planets orbiting within the habitable zone of M dwarf host stars may play a significant role in the discovery of habitable environments beyond Earth. Spectroscopic characterization of these exoplanets with respect to habitability requires the determination of habitability parameters with respect to remote sensing. The habitable zone of dwarf stars is located in close proximity to the host star, such that exoplanets orbiting within this zone will likely be tidally locked. On terrestrial planets with an icy shell, this may produce a liquid water ocean at the substellar point, one particular "Eyeball Earth" state. In this research proposal, HABEBEE: exploring the HABitability of Eyeball-Exo-Earths, we define the parameters necessary to achieve a stable icy Eyeball Earth capable of supporting life. Astronomical and geochemical research will define parameters needed to simulate potentially habitable environments on an icy Eyeball Earth planet. Biological requirements will be based on detailed studies of microbial communities within Earth analog environments. Using the interdisciplinary results of both the physical and biological teams, we will set up a simulation chamber to expose a cold- and UV-tolerant microbial community to the theoretically derived Eyeball Earth climate states, simulating the composition, atmosphere, physical parameters, and stellar irradiation. Combining the results of both studies will enable us to derive observable parameters as well as target decision guidance and feasibility analysis for upcoming astronomical platforms.
- Published
- 2013
36. Spitzer Observations of M33 & M83 and the Hot Star, Hii Region Connection
- Author
-
Katherine Ray, Robert I. Citron, Michael R. Haas, Edwin F. Erickson, Robert H. Rubin, Adalbert W. A. Pauldrach, Janet P. Simpson, S. W. J. Colgan, and Reginald J. Dufour
- Subjects
Physics ,Stellar atmosphere ,Low-ionization nuclear emission-line region ,Astronomy ,Astronomy and Astrophysics ,Astrophysics::Cosmology and Extragalactic Astrophysics ,Astrophysics ,Star (graph theory) ,Connection (mathematics) ,Spitzer Space Telescope ,Space and Planetary Science ,Astrophysics::Solar and Stellar Astrophysics ,Astrophysics::Earth and Planetary Astrophysics ,Astrophysics::Galaxy Astrophysics - Abstract
Emission-line observations made with the Spitzer Space Telescope are used to test the predicted ionizing spectral energy distributions of various stellar atmosphere models.
- Published
- 2006
- Full Text
- View/download PDF
37. Effects of Heat‐Producing Elements on the Stability of Deep Mantle Thermochemical Piles
- Author
-
Diogo L. Lourenço, Robert I. Citron, Antoniette Greta Grima, Sanne Cottaar, A. Wilson, S. A. Wipperfurth, Maxwell L. Rudolph, and Laurent G. J. Montési
- Subjects
Basalt ,Heat budget ,Large Low Shear Velocity Provinces ,010504 meteorology & atmospheric sciences ,sub-02 ,010502 geochemistry & geophysics ,01 natural sciences ,Mantle (geology) ,Silicate ,chemistry.chemical_compound ,Geophysics ,Mantle convection ,chemistry ,Geochemistry and Petrology ,Dense material ,Pile ,Petrology ,Geology ,0105 earth and related environmental sciences - Abstract
Geochemical observations of ocean island and mid‐ocean ridge basalts suggest that abundances of heat‐producing elements (HPEs: U, Th, and K) vary within the mantle. Combined with bulk silicate Earth models and constraints on the Earth's heat budget, these observations suggest the presence of a more enriched (potentially deep and undepleted) reservoir in the mantle. Such a reservoir may be related to seismically observed deep mantle structures known as large low shear velocity provinces (LLSVPs). LLSVPs might represent thermochemical piles of an intrinsically denser composition, and many studies have shown such piles to remain stable over hundreds of Myr or longer. However, few studies have examined if thermochemical piles can remain stable if they are enriched in HPEs, a necessary condition for them to constitute an enriched HPE reservoir. We conduct a suite of mantle convection simulations to examine the effect of HPE enrichment up to 25× the ambient mantle on pile stability. Model results are evaluated against present‐day pile morphology and tested for resulting seismic signatures using self‐consistent potential pile compositions. We find that stable piles can form from an initial basal layer of dense material even if the layer is enriched in HPEs, depending on the density of the layer and degree of HPE enrichment, with denser basal layers requiring increased HPE enrichment to form pile‐like morphology instead of a stable layer. Thermochemical piles or LLSVPs may therefore constitute an enriched reservoir in the deep mantle.
- Full Text
- View/download PDF
38. The Role of Multiple Giant Impacts in the Formation of the Earth–Moon System.
- Author
-
Robert I. Citron, Hagai B. Perets, and Oded Aharonson
- Subjects
- *
STAR formation , *GIANT stars , *EARTH-Moon physics , *GALAXY mergers , *DISKS (Astrophysics) - Abstract
The Earth–Moon system is suggested to have formed through a single giant collision, in which the Moon accreted from the impact-generated debris disk. However, such giant impacts are rare, and during its evolution, the Earth experienced many more smaller impacts, producing smaller satellites that potentially coevolved. In the multiple-impact hypothesis of lunar formation, the current Moon was produced from the mergers of several smaller satellites (moonlets), each formed from debris disks produced by successive large impacts. In the Myr between impacts, a pre-existing moonlet tidally evolves outward until a subsequent impact forms a new moonlet, at which point both moonlets will tidally evolve until a merger or system disruption. In this work, we examine the likelihood that pre-existing moonlets survive subsequent impact events, and explore the dynamics of Earth–moonlet systems that contain two moonlets generated Myr apart. We demonstrate that pre-existing moonlets can tidally migrate outward, remain stable during subsequent impacts, and later merge with newly created moonlets (or re-collide with the Earth). Formation of the Moon from the mergers of several moonlets could therefore be a natural byproduct of the Earth’s growth through multiple impacts. More generally, we examine the likelihood and consequences of Earth having prior moons, and find that the stability of moonlets against disruption by subsequent impacts implies that several large impacts could post-date Moon formation. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.