10 results on '"Rodrigo Miguel Ojeda Mota"'
Search Results
2. Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys
- Author
-
Naijia Liu, Tianxing Ma, Chaoqun Liao, Guannan Liu, Rodrigo Miguel Ojeda Mota, Jingbei Liu, Sungwoo Sohn, Sebastian Kube, Shaofan Zhao, Jonathan P. Singer, and Jan Schroers
- Subjects
Medicine ,Science - Abstract
Abstract Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al–Ni–Ge system where we identified Al51Ge35Ni14 as the best glass forming composition with a critical cooling rate of 104 K/s.
- Published
- 2021
- Full Text
- View/download PDF
3. Combinatorial measurement of critical cooling rates in aluminum-base metallic glass forming alloys
- Author
-
Jingbei Liu, Jonathan P. Singer, Sebastian A. Kube, Guannan Liu, Shaofan Zhao, Jan Schroers, Sungwoo Sohn, Tianxing Ma, Naijia Liu, Liao Chaoqun, and Rodrigo Miguel Ojeda Mota
- Subjects
Materials science ,Base (chemistry) ,Science ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,Characterization and analytical techniques ,Article ,Aluminium ,0103 physical sciences ,Thin film ,Composite material ,010302 applied physics ,chemistry.chemical_classification ,Multidisciplinary ,Amorphous metal ,Glasses ,Cooling rates ,Metals and alloys ,021001 nanoscience & nanotechnology ,Microstructure ,Cooling rate ,Design, synthesis and processing ,chemistry ,Medicine ,Laser heating ,0210 nano-technology - Abstract
Direct measurement of critical cooling rates has been challenging and only determined for a minute fraction of the reported metallic glass forming alloys. Here, we report a method that directly measures critical cooling rate of thin film metallic glass forming alloys in a combinatorial fashion. Based on a universal heating architecture using indirect laser heating and a microstructure analysis this method offers itself as a rapid screening technique to quantify glass forming ability. We use this method to identify glass forming alloys and study the composition effect on the critical cooling rate in the Al–Ni–Ge system where we identified Al51Ge35Ni14 as the best glass forming composition with a critical cooling rate of 104 K/s.
- Published
- 2021
4. Criticality in Bulk Metallic Glass Constituent Elements
- Author
-
Rodrigo Miguel Ojeda Mota, Thomas E. Graedel, Evgenia Pekarskaya, and Jan Schroers
- Subjects
Amorphous metal ,Materials science ,Supply disruption ,Metallurgy ,Alloy ,General Engineering ,02 engineering and technology ,010501 environmental sciences ,engineering.material ,021001 nanoscience & nanotechnology ,01 natural sciences ,Amorphous solid ,Criticality ,engineering ,General Materials Science ,0210 nano-technology ,0105 earth and related environmental sciences - Abstract
Bulk metallic glasses (BMGs), which readily form amorphous phases during solidification, are increasingly being used in first applications of watch components, electronic casings, and sporting goods. The compositions of BMGs typically include four to six elements. Various political and geological factors have recently led to supply disruptions for several metals, including some present in BMG compositions. In this work, we assess the “criticality” of 22 technologically interesting BMG compositions, compare the results with those for three common engineering alloy groups, and derive recommendations for BMG composition choices from a criticality perspective. The criticality of BMGs is found to be generally much higher compared with those for the established engineering alloys. Therefore, criticality concerns should also be considered in the choice between existing and developing novel BMGs.
- Published
- 2017
- Full Text
- View/download PDF
5. Flaw tolerance of metallic glasses
- Author
-
Rodrigo Miguel Ojeda Mota, Ze Liu, William Samela, Jan Schroers, Michael Power, Jittisa Ketkaew, Sung-Hyun Kim, and Wen Chen
- Subjects
010302 applied physics ,Toughness ,Amorphous metal ,Materials science ,Polymers and Plastics ,Metals and Alloys ,02 engineering and technology ,Radius ,021001 nanoscience & nanotechnology ,Critical value ,01 natural sciences ,Instability ,humanities ,Electronic, Optical and Magnetic Materials ,Shear (sheet metal) ,Fracture toughness ,0103 physical sciences ,Ceramics and Composites ,Fracture (geology) ,Composite material ,0210 nano-technology ,health care economics and organizations - Abstract
The flaw tolerance of bulk metallic glasses (BMGs) is evaluated using a thermoplastic synthesis approach. We found that flaw tolerance quantified by the notch toughness decreases apparently with decreasing radius until a critical value. Below this critical value, measured notch toughness is independent of its radius, revealing a flaw tolerance behavior of BMGs. We explain such flaw tolerance by a critical plastic zone originating from the BMGs' inherent crack tip blunting capability. This zone defines a characteristic distance over which stable shear banding plastic process develops prior to fracture instability. The specific characteristic distance and crack blunting capability vary widely among BMGs, which rationalizes the vast variety in their fracture behavior and suggest specific flaw tolerance. Our finding is encouraging for BMGs' structural applications since flaws smaller than the critical value are increasingly difficult to avoid but are “indistinguishable” in their influence to fracture toughness.
- Published
- 2016
- Full Text
- View/download PDF
6. Effect of chemical composition on the fracture toughness of bulk metallic glasses
- Author
-
Jan Schroers, Amit Datye, Jittisa Ketkaew, Yanhui Liu, Sebastian A. Kube, Kefu Yao, Rodrigo Miguel Ojeda Mota, Punnathat Bordeenithikasem, Pan Gong, Ling Shao, Shaofan Zhao, Sujun Wu, Wen Chen, Sungwoo Sohn, and Naijia Liu
- Subjects
010302 applied physics ,chemistry.chemical_classification ,Bulk modulus ,Thermoplastic ,Materials science ,Amorphous metal ,Alloy ,02 engineering and technology ,engineering.material ,021001 nanoscience & nanotechnology ,01 natural sciences ,Shear modulus ,Fracture toughness ,chemistry ,Cavitation ,0103 physical sciences ,engineering ,General Materials Science ,Composite material ,0210 nano-technology ,Chemical composition - Abstract
We consider a broad range of 13 BMGs from different alloy systems to represent the material class of bulk metallic glasses (BMGs) and characterize their fracture toughness. To determine the effect of composition on the fracture toughness within one alloy system, we consider alloys in Zr-Al-Ni-Cu and Pd-Ni-Cu-P BMG forming alloy systems, specifically Zrx(Al0.25Ni0.25Cu0.5)100-x (at.%) and Pdx(NiCu2)(80-x)/3P20. Sample preparation follows a thermoplastic forming based method ensuring constant fictive temperature, which allows us to eliminate extrinsic effects and detangle the effect of fictive temperature and alloy chemistry on the fracture toughness. We found that fracture toughness varies significantly with composition, even in a non-monotonic way. Within one alloy system, fracture toughness correlates closely with the ratio of shear modulus over bulk modulus. Such correlation however is not present when comparing BMGs across alloy systems. Observed behavior suggests that shear modulus and bulk modulus serves as an incomplete proxy describing the BMGs ability to resist shear and cavitation. Further, our results reveal a general inverse correlation between fracture toughness and glass forming ability suggesting a trade-off of both desired properties. Such trade-off is not necassary present in metal-metalloid containing BMGs, where our results reveal a possibility to optimize alloys for both GFA and fracture toughness simultaneously.
- Published
- 2020
- Full Text
- View/download PDF
7. Overcoming geometric limitations in metallic glasses through stretch blow molding
- Author
-
Sebastian A. Kube, Hayley D. McClintock, Naijia Liu, Jan Schroers, Rodrigo Miguel Ojeda Mota, and John Chay
- Subjects
Blow molding ,Amorphous metal ,Materials science ,business.industry ,02 engineering and technology ,Elasticity (physics) ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Fracture toughness ,Metal fabrication ,General Materials Science ,Composite material ,0210 nano-technology ,business ,Supercooling - Abstract
Bulk metallic glasses (BMGs) exhibit remarkable mechanical properties, such as high strength and elasticity, which is often paired with fracture toughness. Their supercooled liquid region gives rise to plastic-like processing and suggests parts and shapes that can otherwise not be obtained for crystalline metals. However, current processing techniques only allow for limited options in terms of geometry, thicknesses uniformity, and shape complexity. Here we introduce a new processing technique, “stretch blow molding,” to expand the range of possible parts and increase the available geometries that can be fabricated with BMGs. Additionally, a model is derived that allows for the quantification and prediction of stretch blow molding and provides insight into its potential use and limitations. We demonstrate that with stretch blow molding overall strains exceeding 2000% are achievable, compared to the previously reported ∼150% of blow molding. With the ability to stretch blow mold shapes that were previously unachievable with any other metal fabrication technique in a fast and economical manner, and the superb properties of BMGs, we look forward to a broad commercial adaptation of this technique.
- Published
- 2020
- Full Text
- View/download PDF
8. 3D metallic glass cellular structures
- Author
-
Rodrigo Miguel Ojeda Mota, Josephine V. Carstensen, Ze Liu, James K. Guest, Jan Schroers, Jittisa Ketkaew, and Wen Chen
- Subjects
chemistry.chemical_classification ,Range (particle radiation) ,Materials science ,Amorphous metal ,Fabrication ,Thermoplastic ,Polymers and Plastics ,Metals and Alloys ,Elastic energy ,02 engineering and technology ,010402 general chemistry ,021001 nanoscience & nanotechnology ,01 natural sciences ,0104 chemical sciences ,Electronic, Optical and Magnetic Materials ,chemistry ,visual_art ,Ceramics and Composites ,visual_art.visual_art_medium ,Ceramic ,Elasticity (economics) ,Composite material ,0210 nano-technology ,Absorption (electromagnetic radiation) - Abstract
3D Metallic glass structures (3DMGs) are fabricated through thermoplastic forming (TPF)-based patterning of MG sheets combined with a parallel joining technique. To demonstrate this capability and benchmark 3DMGs, we have fabricated honeycomb-like MG architectures covering a wide range of relative densities. 3DMGs exhibit high elasticity of up to 40% loading strain, high elastic energy storability, and high energy absorption which is superior compared to those made from other materials such as conventional metals and ceramics, based on our theoretical analysis. The combination of MG properties and introduced versatile fabrication method suggest the possibility of developing a wide range of 3DMGs with excellent performance for specific applications.
- Published
- 2016
- Full Text
- View/download PDF
9. Does the fracture toughness of bulk metallic glasses scatter?
- Author
-
Jittisa Ketkaew, Wen Chen, Kevin O’Brien, Caio Sene da Silva, Ze Liu, Jan Schroers, and Rodrigo Miguel Ojeda Mota
- Subjects
chemistry.chemical_classification ,Toughness ,Thermoplastic ,Amorphous metal ,Materials science ,Mechanical Engineering ,Metals and Alloys ,Replication (microscopy) ,Condensed Matter Physics ,Fracture toughness ,chemistry ,Materials Science(all) ,Mechanics of Materials ,Residual stress ,Thermal ,General Materials Science ,Composite material ,Shear band - Abstract
A method is introduced to determine notch toughness of bulk metallic glasses (BMGs). Through thermoplastic replication of Si molds, unprecedented control in fabricating BMG toughness samples can be achieved and influences such as cooling rate, thermal history, residual stress, sample geometry, and notch precision are drastically reduced. For the 20 Zr44Ti11Cu10Ni10Be25 BMG samples, we measured a notch toughness of 109 ± 3 MPa m . Such a much smaller scatter than the previously reported suggests reliable properties of BMGs when thermoplastically formed.
- Published
- 2015
- Full Text
- View/download PDF
10. Preparación de membranas conductoras y diseño de contactos eléctricos para la fabricación de un sensor de presión
- Author
-
RODRIGO MIGUEL OJEDA MOTA
- Subjects
Maestría en tecnología de polímeros [Maestría en tecnología de polímeros] ,2 [cti] ,23 [cti] - Abstract
En el presente trabajo se prepararon membranas de polidimetilsiloxano con partículas de plata en tamaños nanométrico y micrométrico, así como fibras de carbono. Se evaluó el efecto de la incorporación de los diferentes materiales en las propiedades finales de las membranas. Primero se llevó a cabo la caracterización de los refuerzos de manera individual para las micro y nanopartículas de plata se caracterizaron por medio difracción de rayos X y microscopía electrónica de barrido, las fibras de carbono fueron caracterizadas por difracción de rayos X, microscopía electrónica de barrido, espectroscopia de infrarrojo y espectroscopia de Raman así como por energía dispersiva de rayos X; esto con el objetivo de corroborar las propiedades de los refuerzos antes de incorporarlos al polidimetilsiloxano. Posteriormente se prepararon membranas de polidimetilsiloxano con nanopartículas de plata y micropartículas de plata en concentraciones de 5%, 12%, 20%, 30%, 50%, 60%, 65% y 70% en peso. Para el sistema de polidimetilsiloxano con fibras de carbono las concentraciones utilizadas fueron 1 %, 3%, 5%, y 7% en peso. Las membranas fueron preparadas mediante las técnicas de spin coating para el sistema de polidimetilsiloxano con plata y moldeado estático para el sistema de polidimetilsiloxano con fibras de carbono. Mediante la microscopía de barrido se estudió la dispersión y distribución de los refuerzos en el polidimetilsiloxano. Además ésta técnica se utilizó para determinar los espesores de las membranas obtenidas. Para las membranas de polidimetilsiloxano con fibras de carbono se llevó a cabo la caracterización por medio de espectroscopia de Raman así como análisis por espectroscopia infrarroja por transformada de Fourier y se comprobó que no existen interacciones químicas entre el polidimetilsiloxano y las fibras. Las membranas obtenidas fueron caracterizadas eléctricamente, para esta evaluación se fabricaron diferentes contactos eléctricos en obleas de silicio. Finalmente se diseñó un arreglo matricial de contactos eléctricos para determinar la posibilidad de utilizar las membranas como sensores de presión. En las membranas de polidimetilsiloxano con partículas de plata no se observaron cambios en la resistencia eléctrica, sin embargo, el sistema de polidimetilsiloxano con fibras de carbono si presentó una disminución en su resistencia eléctrica. Ésta propiedad fue evaluada en función de la fuerza aplicada para determinar la viabilidad del uso de las membranas en sensores de presión, de éstas mediciones se determinó que es una opción viable al ser comparada con una membrana comercialmente disponible debido a la disminución de la resistencia eléctrica inicial y a presentar una alta linealidad en el cambio de la resistencia eléctrica conforme se aumenta la fuerza aplicada en la membrana para el rango de valores estudiado.
- Published
- 2010
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.