16 results on '"Ruhfel BR"'
Search Results
2. Phylotranscriptomics of Swertiinae (Gentianaceae) reveals that key floral traits are not phylogenetically correlated.
- Author
-
Chen C, Ruhfel BR, Li J, Wang Z, Zhang L, Zhang L, Mao X, Wang J, He D, Luo Y, Hu Q, Duan Y, Xu X, Xi Z, and Liu J
- Subjects
- Phylogeny, Biological Evolution, Biodiversity, Plastids genetics, Gentianaceae
- Abstract
Establishing how lineages with similar traits are phylogenetically related remains critical for understanding the origin of biodiversity on Earth. Floral traits in plants are widely used to explore phylogenetic relationships and to delineate taxonomic groups. The subtribe Swertiinae (Gentianaceae) comprises more than 350 species with high floral diversity ranging from rotate to tubular corollas and possessing diverse nectaries. Here we performed phylogenetic analysis of 60 species from all 15 genera of the subtribe Swertiinae sensu Ho and Liu, representing the range of floral diversity, using data from the nuclear and plastid genomes. Extensive topological conflicts were present between the nuclear and plastome trees. Three of the 15 genera represented by multiple species are polyphyletic in both trees. Key floral traits including corolla type, absence or presence of lobe scales, nectary type, nectary position, and stigma type are randomly distributed in the nuclear and plastome trees without phylogenetic correlation. We also revealed the likely ancient hybrid origin of one large clade comprising 10 genera with diverse floral traits. These results highlight the complex evolutionary history of this subtribe. The phylogenies constructed here provide a basic framework for further exploring the ecological and genetic mechanisms underlying both species diversification and floral diversity., (© 2023 Institute of Botany, Chinese Academy of Sciences.)
- Published
- 2023
- Full Text
- View/download PDF
3. Collections Education: The Extended Specimen and Data Acumen.
- Author
-
Monfils AK, Krimmel ER, Linton DL, Marsico TD, Morris AB, and Ruhfel BR
- Abstract
Biodiversity scientists must be fluent across disciplines; they must possess the quantitative, computational, and data skills necessary for working with large, complex data sets, and they must have foundational skills and content knowledge from ecology, evolution, taxonomy, and systematics. To effectively train the emerging workforce, we must teach science as we conduct science and embrace emerging concepts of data acumen alongside the knowledge, tools, and techniques foundational to organismal biology. We present an open education resource that updates the traditional plant collection exercise to incorporate best practices in twenty-first century collecting and to contextualize the activities that build data acumen. Students exposed to this resource gained skills and content knowledge in plant taxonomy and systematics, as well as a nuanced understanding of collections-based data resources. We discuss the importance of the extended specimen in fostering scientific discovery and reinforcing foundational concepts in biodiversity science, taxonomy, and systematics., (© The Author(s) 2021. Published by Oxford University Press on behalf of the American Institute of Biological Sciences.)
- Published
- 2021
- Full Text
- View/download PDF
4. Corrigendum: Plastid Genomes of Five Species of Riverweeds (Podostemaceae): Structural Organization and Comparative Analysis in Malpighiales.
- Author
-
Bedoya AM, Ruhfel BR, Philbrick CT, Madriñán S, Bove CP, Mesterházy A, and Olmstead RG
- Abstract
[This corrects the article DOI: 10.3389/fpls.2019.01035.]., (Copyright © 2020 Bedoya, Ruhfel, Philbrick, Madriñán, Bove, Mesterházy and Olmstead.)
- Published
- 2020
- Full Text
- View/download PDF
5. Plastid Genomes of Five Species of Riverweeds (Podostemaceae): Structural Organization and Comparative Analysis in Malpighiales.
- Author
-
Bedoya AM, Ruhfel BR, Philbrick CT, Madriñán S, Bove CP, Mesterházy A, and Olmstead RG
- Abstract
With the advent of next-generation sequencing technologies, whole-plastome data can be obtained as a byproduct of low-coverage sequencing of the plant genomic DNA. This provides an opportunity to study plastid evolution across groups, as well as testing phylogenetic relationships among taxa. Within the order Malpighiales (∼16,000 spp.), the Podostemaceae (∼300 spp.) stand out for their unique habit, living attached to rocks in fast-flowing aquatic habitats, and displaying highly modified morphologies that confound our understanding of their classification, biology, and evolution. In this study, we used genome skimming data to assemble the full plastid genome of 5 species within Podostemaceae. We analyzed our data in a comparative framework within Malpighiales to determine the structure, gene content, and rearrangements in the plastomes of the family. The Podostemaceae have one of the smallest plastid genomes reported so far for the Malpighiales, possibly due to variation in length of inverted repeat (IR) regions, gene loss, and intergenic region variation. We also detected a major inversion in the large single-copy region unique to the family. The uncommon loss or pseudogenization of ycf1 and ycf2 in angiosperms and in land plants in general is also found to be characteristic of Podostemaceae, but the compensatory mechanisms and implications of this and of the pseudogenization of accD , rpl22 , and clpP and loss of rps16 remain to be explained in this group. In addition, we estimated a phylogenetic tree among selected species in Malpighiales. Our findings indicate that the Podostemaceae are a distinct lineage with long branches that suggest faster rates of evolution in the plastome of the group, compared with other taxa in the order. This study lays the foundations for future phylogenomic studies in the family.
- Published
- 2019
- Full Text
- View/download PDF
6. Plastomes resolve generic limits within tribe Clusieae (Clusiaceae) and reveal the new genus Arawakia.
- Author
-
Marinho LC, Cai L, Duan X, Ruhfel BR, Fiaschi P, Amorim AM, van den Berg C, and Davis CC
- Subjects
- Bayes Theorem, Clusiaceae anatomy & histology, Flowers anatomy & histology, Fruit anatomy & histology, Likelihood Functions, Phylogeny, Clusiaceae genetics, Genome, Plastid
- Abstract
Clusieae is an exclusively Neotropical tribe in the family Clusiaceae sensu stricto. Although tribes within Clusiaceae are morphologically and phylogenetically well-delimited, resolution among genera within these tribes remains elusive. The tribe Clusieae includes an estimated ∼500 species distributed among five genera: Chrysochlamys, Clusia, Dystovomita, Tovomita, and Tovomitopsis. In this study, we used nearly complete plastid genomes from 30 exemplar Clusieae species representing all genera recognized, plus two outgroups to infer the phylogeny of the tribe using Maximum Likelihood and Bayesian Inference. For comparison, we also inferred a phylogeny from the nuclear Internal Transcribed Spacer (ITS) region using the same methods. Our study corroborates earlier findings that Clusia is monophyletic while Tovomita is not. It also provides additional support to the hypothesis that Chrysochlamys and Tovomitopsis are not closely related despite gross morphological similarity. Tovomita is divided into three distantly related clades: (i) core Tovomita (including the type T. guianensis), (ii) T. croatii, and (iii) the T. weddelliana species complex. Members of the T. weddelliana complex are isolated from the core Tovomita, and placed in a well-supported clade that is sister to a clade composed of Chrysochlamys plus Clusia. Tovomita croatii is nested within Chrysochlamys. We propose taxonomic revisions to accommodate our phylogenetic findings, including the description of the new genus Arawakia, which includes the 18 species formerly recognized in the T. weddelliana species complex. Lectotypes are also designated for nine species (i.e., Arawakia angustata, A. lanceolata, A. lingulata, A. longicuneata, A. macrocarpa, A. oblanceolata, A. pithecobia, A. rhizophoroides, and A. weddelliana), and a taxonomic key for the identification of the six genera of Clusieae recognized is presented., (Copyright © 2019 Elsevier Inc. All rights reserved.)
- Published
- 2019
- Full Text
- View/download PDF
7. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history.
- Author
-
Gitzendanner MA, Soltis PS, Wong GK, Ruhfel BR, and Soltis DE
- Subjects
- Amino Acids, Bryophyta genetics, Classification, Cycadopsida genetics, DNA, Plant analysis, Datasets as Topic, Evolution, Molecular, Ferns genetics, Genome, Plant, Genomics methods, Ginkgo biloba genetics, Gnetophyta genetics, Magnoliopsida genetics, Plant Proteins genetics, Plastids genetics, Amino Acid Sequence, Biological Evolution, Genes, Plant, Genome, Plastid, Phylogeny, Viridiplantae genetics
- Abstract
Premise of the Study: For the past one billion years, green plants (Viridiplantae) have dominated global ecosystems, yet many key branches in their evolutionary history remain poorly resolved. Using the largest analysis of Viridiplantae based on plastid genome sequences to date, we examined the phylogeny and implications for morphological evolution at key nodes., Methods: We analyzed amino acid sequences from protein-coding genes from complete (or nearly complete) plastomes for 1879 taxa, including representatives across all major clades of Viridiplantae. Much of the data used was derived from transcriptomes from the One Thousand Plants Project (1KP); other data were taken from GenBank., Key Results: Our results largely agree with previous plastid-based analyses. Noteworthy results include (1) the position of Zygnematophyceae as sister to land plants (Embryophyta), (2) a bryophyte clade (hornworts, mosses + liverworts), (3) Equisetum + Psilotaceae as sister to Marattiales + leptosporangiate ferns, (4) cycads + Ginkgo as sister to the remaining extant gymnosperms, within which Gnetophyta are placed within conifers as sister to non-Pinaceae (Gne-Cup hypothesis), and (5) Amborella, followed by water lilies (Nymphaeales), as successive sisters to all other extant angiosperms. Within angiosperms, there is support for Mesangiospermae, a clade that comprises magnoliids, Chloranthales, monocots, Ceratophyllum, and eudicots. The placements of Ceratophyllum and Dilleniaceae remain problematic. Within Pentapetalae, two major clades (superasterids and superrosids) are recovered., Conclusions: This plastid data set provides an important resource for elucidating morphological evolution, dating divergence times in Viridiplantae, comparisons with emerging nuclear phylogenies, and analyses of molecular evolutionary patterns and dynamics of the plastid genome., (© 2018 Botanical Society of America.)
- Published
- 2018
- Full Text
- View/download PDF
8. Dispersal largely explains the Gondwanan distribution of the ancient tropical clusioid plant clade.
- Author
-
Ruhfel BR, Bove CP, Philbrick CT, and Davis CC
- Subjects
- Fossils, India, Phylogeography, Time Factors, Magnoliopsida physiology, Phylogeny, Seed Dispersal physiology, Tropical Climate
- Abstract
Premise of the Study: The clusioid clade (Malpighiales) has an ancient fossil record (∼90 Ma) and extant representatives exhibit a pantropical distribution represented on all former Gondwanan landmasses (Africa, Australia, India, Madagascar, and South America) except Antarctica. Several biogeographers have hypothesized that the clusioid distribution is an example of Gondwanan vicariance. Our aim is to test the hypothesis that the modern distribution of the clusioid clade is largely explained by Gondwanan fragmentation., Methods: Using a four gene, 207-taxon data set we simultaneously estimated the phylogeny and divergence times of the clusioid clade using a Bayesian Markov chain Monte Carlo approach. Ancestral Area Reconstructions (AARs) were then conducted on a distribution of 1000 trees and summarized on a reduced phylogeny., Key Results: Divergence time estimates and AARs revealed only two or four cladogenic events that are potentially consistent with Gondwanan vicariance, depending on the placement of the ancient fossil Paleoclusia. In contrast, dispersal occurred on > 25% of the branches, indicating the current distribution of the clade likely reflects extensive recent dispersal during the Cenozoic (< 65 Ma), most of which occurred after the beginning of the Eocene (∼56 Ma)., Conclusions: These results support growing evidence that suggests many traditionally recognized angiosperm clades (families and genera) are too young for their distributions to have been influenced strictly by Gondwanan fragmentation. Instead, it appears that corridors of dispersal may be the best explanation for numerous angiosperm clades with Gondwanan distributions., (© 2016 Botanical Society of America.)
- Published
- 2016
- Full Text
- View/download PDF
9. Digitization workflows for flat sheets and packets of plants, algae, and fungi.
- Author
-
Nelson G, Sweeney P, Wallace LE, Rabeler RK, Allard D, Brown H, Carter JR, Denslow MW, Ellwood ER, Germain-Aubrey CC, Gilbert E, Gillespie E, Goertzen LR, Legler B, Marchant DB, Marsico TD, Morris AB, Murrell Z, Nazaire M, Neefus C, Oberreiter S, Paul D, Ruhfel BR, Sasek T, Shaw J, Soltis PS, Watson K, Weeks A, and Mast AR
- Abstract
Effective workflows are essential components in the digitization of biodiversity specimen collections. To date, no comprehensive, community-vetted workflows have been published for digitizing flat sheets and packets of plants, algae, and fungi, even though latest estimates suggest that only 33% of herbarium specimens have been digitally transcribed, 54% of herbaria use a specimen database, and 24% are imaging specimens. In 2012, iDigBio, the U.S. National Science Foundation's (NSF) coordinating center and national resource for the digitization of public, nonfederal U.S. collections, launched several working groups to address this deficiency. Here, we report the development of 14 workflow modules with 7-36 tasks each. These workflows represent the combined work of approximately 35 curators, directors, and collections managers representing more than 30 herbaria, including 15 NSF-supported plant-related Thematic Collections Networks and collaboratives. The workflows are provided for download as Portable Document Format (PDF) and Microsoft Word files. Customization of these workflows for specific institutional implementation is encouraged.
- Published
- 2015
- Full Text
- View/download PDF
10. Phylotranscriptomic analysis of the origin and early diversification of land plants.
- Author
-
Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, Ruhfel BR, Wafula E, Der JP, Graham SW, Mathews S, Melkonian M, Soltis DE, Soltis PS, Miles NW, Rothfels CJ, Pokorny L, Shaw AJ, DeGironimo L, Stevenson DW, Surek B, Villarreal JC, Roure B, Philippe H, dePamphilis CW, Chen T, Deyholos MK, Baucom RS, Kutchan TM, Augustin MM, Wang J, Zhang Y, Tian Z, Yan Z, Wu X, Sun X, Wong GK, and Leebens-Mack J
- Subjects
- DNA, Plant genetics, DNA, Plant metabolism, Gene Expression Profiling, Sequence Alignment, Streptophyta classification, Evolution, Molecular, Genome, Plant physiology, Phylogeny, Quantitative Trait, Heritable, Streptophyta physiology, Transcriptome physiology
- Abstract
Reconstructing the origin and evolution of land plants and their algal relatives is a fundamental problem in plant phylogenetics, and is essential for understanding how critical adaptations arose, including the embryo, vascular tissue, seeds, and flowers. Despite advances in molecular systematics, some hypotheses of relationships remain weakly resolved. Inferring deep phylogenies with bouts of rapid diversification can be problematic; however, genome-scale data should significantly increase the number of informative characters for analyses. Recent phylogenomic reconstructions focused on the major divergences of plants have resulted in promising but inconsistent results. One limitation is sparse taxon sampling, likely resulting from the difficulty and cost of data generation. To address this limitation, transcriptome data for 92 streptophyte taxa were generated and analyzed along with 11 published plant genome sequences. Phylogenetic reconstructions were conducted using up to 852 nuclear genes and 1,701,170 aligned sites. Sixty-nine analyses were performed to test the robustness of phylogenetic inferences to permutations of the data matrix or to phylogenetic method, including supermatrix, supertree, and coalescent-based approaches, maximum-likelihood and Bayesian methods, partitioned and unpartitioned analyses, and amino acid versus DNA alignments. Among other results, we find robust support for a sister-group relationship between land plants and one group of streptophyte green algae, the Zygnematophyceae. Strong and robust support for a clade comprising liverworts and mosses is inconsistent with a widely accepted view of early land plant evolution, and suggests that phylogenetic hypotheses used to understand the evolution of fundamental plant traits should be reevaluated.
- Published
- 2014
- Full Text
- View/download PDF
11. Data access for the 1,000 Plants (1KP) project.
- Author
-
Matasci N, Hung LH, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T, Ayyampalayam S, Barker M, Burleigh JG, Gitzendanner MA, Wafula E, Der JP, dePamphilis CW, Roure B, Philippe H, Ruhfel BR, Miles NW, Graham SW, Mathews S, Surek B, Melkonian M, Soltis DE, Soltis PS, Rothfels C, Pokorny L, Shaw JA, DeGironimo L, Stevenson DW, Villarreal JC, Chen T, Kutchan TM, Rolf M, Baucom RS, Deyholos MK, Samudrala R, Tian Z, Wu X, Sun X, Zhang Y, Wang J, Leebens-Mack J, and Wong GK
- Abstract
The 1,000 plants (1KP) project is an international multi-disciplinary consortium that has generated transcriptome data from over 1,000 plant species, with exemplars for all of the major lineages across the Viridiplantae (green plants) clade. Here, we describe how to access the data used in a phylogenomics analysis of the first 85 species, and how to visualize our gene and species trees. Users can develop computational pipelines to analyse these data, in conjunction with data of their own that they can upload. Computationally estimated protein-protein interactions and biochemical pathways can be visualized at another site. Finally, we comment on our future plans and how they fit within this scalable system for the dissemination, visualization, and analysis of large multi-species data sets.
- Published
- 2014
- Full Text
- View/download PDF
12. Another look at the root of the angiosperms reveals a familiar tale.
- Author
-
Drew BT, Ruhfel BR, Smith SA, Moore MJ, Briggs BG, Gitzendanner MA, Soltis PS, and Soltis DE
- Subjects
- Magnoliopsida classification, Magnoliopsida genetics, Phylogeny
- Abstract
Since the advent of molecular phylogenetics more than 25 years ago, a major goal of plant systematists has been to discern the root of the angiosperms. Although most studies indicate that Amborella trichopoda is sister to all remaining extant flowering plants, support for this position has varied with respect to both the sequence data sets and analyses employed. Recently, Goremykin et al. (2013) questioned the "Amborella-sister hypothesis" using a "noise-reduction" approach and reported a topology with Amborella + Nymphaeales (water lilies) sister to all remaining angiosperms. Through a series of analyses of both plastid genomes and mitochondrial genes, we continue to find mostly strong support for the Amborella-sister hypothesis and offer a rebuttal of Goremykin et al. (2013). The major tenet of Goremykin et al. is that the Amborella-sister position is determined by noisy data--that is, characters with high rates of change and lacking true phylogenetic signal. To investigate the signal in these noisy data further, we analyzed the discarded characters from their noise-reduced alignments. We recovered a tree identical to that of the currently accepted angiosperm framework, including the position of Amborella as sister to all other angiosperms, as well as all other major clades. Thus, the signal in the "noisy" data is consistent with that of our complete data sets--arguing against the use of their noise-reduction approach. We also determined that one of the alignments presented by Goremykin et al. yields results at odds with their central claim--their data set actually supports Amborella as sister to all other angiosperms, as do larger plastid data sets we present here that possess more complete taxon sampling both within the monocots and for angiosperms in general. Previous unpartitioned, multilocus analyses of mitochondrial DNA (mtDNA) data have provided the strongest support for Amborella + Nymphaeales as sister to other angiosperms. However, our analysis of third codon positions from mtDNA sequence data also supports the Amborella-sister hypothesis. Finally, we challenge the conclusion of Goremykin et al. that the first flowering plants were aquatic and herbaceous, reasserting that even if Amborella + water lilies, or water lilies alone, are sister to the rest of the angiosperms, the earliest angiosperms were not necessarily aquatic and/or herbaceous.
- Published
- 2014
- Full Text
- View/download PDF
13. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes.
- Author
-
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, and Burleigh JG
- Subjects
- Chlorophyta classification, Equisetum classification, Equisetum genetics, Magnoliopsida classification, Molecular Sequence Data, Phylogeny, Viridiplantae classification, Chlorophyta genetics, Genome, Plastid, Magnoliopsida genetics, Plastids genetics, Viridiplantae genetics
- Abstract
Background: Next-generation sequencing has provided a wealth of plastid genome sequence data from an increasingly diverse set of green plants (Viridiplantae). Although these data have helped resolve the phylogeny of numerous clades (e.g., green algae, angiosperms, and gymnosperms), their utility for inferring relationships across all green plants is uncertain. Viridiplantae originated 700-1500 million years ago and may comprise as many as 500,000 species. This clade represents a major source of photosynthetic carbon and contains an immense diversity of life forms, including some of the smallest and largest eukaryotes. Here we explore the limits and challenges of inferring a comprehensive green plant phylogeny from available complete or nearly complete plastid genome sequence data., Results: We assembled protein-coding sequence data for 78 genes from 360 diverse green plant taxa with complete or nearly complete plastid genome sequences available from GenBank. Phylogenetic analyses of the plastid data recovered well-supported backbone relationships and strong support for relationships that were not observed in previous analyses of major subclades within Viridiplantae. However, there also is evidence of systematic error in some analyses. In several instances we obtained strongly supported but conflicting topologies from analyses of nucleotides versus amino acid characters, and the considerable variation in GC content among lineages and within single genomes affected the phylogenetic placement of several taxa., Conclusions: Analyses of the plastid sequence data recovered a strongly supported framework of relationships for green plants. This framework includes: i) the placement of Zygnematophyceace as sister to land plants (Embryophyta), ii) a clade of extant gymnosperms (Acrogymnospermae) with cycads + Ginkgo sister to remaining extant gymnosperms and with gnetophytes (Gnetophyta) sister to non-Pinaceae conifers (Gnecup trees), and iii) within the monilophyte clade (Monilophyta), Equisetales + Psilotales are sister to Marattiales + leptosporangiate ferns. Our analyses also highlight the challenges of using plastid genome sequences in deep-level phylogenomic analyses, and we provide suggestions for future analyses that will likely incorporate plastid genome sequence data for thousands of species. We particularly emphasize the importance of exploring the effects of different partitioning and character coding strategies.
- Published
- 2014
- Full Text
- View/download PDF
14. Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales.
- Author
-
Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK, Matthews ML, Stevens PF, Mathews S, and Davis CC
- Subjects
- Likelihood Functions, Malpighiaceae classification, Molecular Sequence Data, Species Specificity, Genome, Plant, Malpighiaceae genetics, Phylogeny
- Abstract
The angiosperm order Malpighiales includes ~16,000 species and constitutes up to 40% of the understory tree diversity in tropical rain forests. Despite remarkable progress in angiosperm systematics during the last 20 y, relationships within Malpighiales remain poorly resolved, possibly owing to its rapid rise during the mid-Cretaceous. Using phylogenomic approaches, including analyses of 82 plastid genes from 58 species, we identified 12 additional clades in Malpighiales and substantially increased resolution along the backbone. This greatly improved phylogeny revealed a dynamic history of shifts in net diversification rates across Malpighiales, with bursts of diversification noted in the Barbados cherries (Malpighiaceae), cocas (Erythroxylaceae), and passion flowers (Passifloraceae). We found that commonly used a priori approaches for partitioning concatenated data in maximum likelihood analyses, by gene or by codon position, performed poorly relative to the use of partitions identified a posteriori using a Bayesian mixture model. We also found better branch support in trees inferred from a taxon-rich, data-sparse matrix, which deeply sampled only the phylogenetically critical placeholders, than in trees inferred from a taxon-sparse matrix with little missing data. Although this matrix has more missing data, our a posteriori partitioning strategy reduced the possibility of producing multiple distinct but equally optimal topologies and increased phylogenetic decisiveness, compared with the strategy of partitioning by gene. These approaches are likely to help improve phylogenetic resolution in other poorly resolved major clades of angiosperms and to be more broadly useful in studies across the Tree of Life.
- Published
- 2012
- Full Text
- View/download PDF
15. Phylogeny of the clusioid clade (Malpighiales): evidence from the plastid and mitochondrial genomes.
- Author
-
Ruhfel BR, Bittrich V, Bove CP, Gustafsson MH, Philbrick CT, Rutishauser R, Xi Z, and Davis CC
- Subjects
- Base Sequence, Climate, Ecosystem, Sequence Analysis, DNA, Trees, DNA, Chloroplast, DNA, Plant, Evolution, Molecular, Genome, Mitochondrial, Genome, Plant, Magnoliopsida genetics, Phylogeny
- Abstract
Premise of the Study: The clusioid clade includes five families (i.e., Bonnetiaceae, Calophyllaceae, Clusiaceae s.s., Hypericaceae, and Podostemaceae) represented by 94 genera and ≈1900 species. Species in this clade form a conspicuous element of tropical forests worldwide and are important in horticulture, timber production, and pharmacology. We conducted a taxon-rich multigene phylogenetic analysis of the clusioids to clarify phylogenetic relationships in this clade., Methods: We analyzed plastid (matK, ndhF, and rbcL) and mitochondrial (matR) nucleotide sequence data using parsimony, maximum likelihood, and Bayesian inference. Our combined data set included 194 species representing all major clusioid subclades, plus numerous species spanning the taxonomic, morphological, and biogeographic breadth of the clusioid clade., Key Results: Our results indicate that Tovomita (Clusiaceae s.s.), Harungana and Hypericum (Hypericaceae), and Ledermanniella s.s. and Zeylanidium (Podostemaceae) are not monophyletic. In addition, we place four genera that have not been included in any previous molecular study: Ceratolacis, Diamantina, and Griffithella (Podostemaceae), and Santomasia (Hypericaceae). Finally, our results indicate that Lianthus, Santomasia, Thornea, and Triadenum can be safely merged into Hypericum (Hypericaceae)., Conclusions: We present the first well-resolved, taxon-rich phylogeny of the clusioid clade. Taxon sampling and resolution within the clade are greatly improved compared to previous studies and provide a strong basis for improving the classification of the group. In addition, our phylogeny will form the foundation for our future work investigating the biogeography of tropical angiosperms that exhibit Gondwanan distributions.
- Published
- 2011
- Full Text
- View/download PDF
16. Favorable climate change response explains non-native species' success in Thoreau's woods.
- Author
-
Willis CG, Ruhfel BR, Primack RB, Miller-Rushing AJ, Losos JB, and Davis CC
- Subjects
- Conservation of Natural Resources, Massachusetts, Biodiversity, Climate, Plants classification
- Abstract
Invasive species have tremendous detrimental ecological and economic impacts. Climate change may exacerbate species invasions across communities if non-native species are better able to respond to climate changes than native species. Recent evidence indicates that species that respond to climate change by adjusting their phenology (i.e., the timing of seasonal activities, such as flowering) have historically increased in abundance. The extent to which non-native species success is similarly linked to a favorable climate change response, however, remains untested. We analyzed a dataset initiated by the conservationist Henry David Thoreau that documents the long-term phenological response of native and non-native plant species over the last 150 years from Concord, Massachusetts (USA). Our results demonstrate that non-native species, and invasive species in particular, have been far better able to respond to recent climate change by adjusting their flowering time. This demonstrates that climate change has likely played, and may continue to play, an important role in facilitating non-native species naturalization and invasion at the community level.
- Published
- 2010
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.