1. Present Status of Spectroscopy of the Hyperfine Structure and Repolarization of Muonic Helium Atoms at J-PARC
- Author
-
Seiso Fukumura, Patrick Strasser, Mahiro Fushihara, Yu Goto, Takashi Ino, Ryoto Iwai, Sohtaro Kanda, Shiori Kawamura, Masaaki Kitaguchi, Shoichiro Nishimura, Takayuki Oku, Takuya Okudaira, Hirohiko M. Shimizu, Koichiro Shimomura, Hiroki Tada, and Hiroyuki A. Torii
- Subjects
muon ,muonic atom ,spectroscopy ,bound-state QED ,CPT invariance ,fundamental constants ,Physics ,QC1-999 - Abstract
The mass mμ− of the negative muon is one of the parameters of the elementary particle Standard Model and it allows us to verify the CPT (charge–parity–time) symmetry theorem by comparing mμ− value with the mass mμ+ of the positive muon. However, the experimental determination precision of mμ− is 3.1ppm, which is an order of magnitude lower than the determination precision of mμ+ at 120ppb. The authors aim to determine mμ− and the magnetic moment μμ− with a precision of O(10ppb) through spectroscopy of the hyperfine structure (HFS) of muonic helium-4 atom (4Heμ−e−) under high magnetic fields. He4μ−e− is an exotic atom where one of the two electrons of the He4 atom is replaced by a negative muon. To achieve the goal, it is necessary to determine the HFS of He4μ−e− with a precision of O(1ppb). This paper describes the determination procedure of the HFS of He4μ−e− in weak magnetic fields reported recently, and the work towards achieving the goal of higher precision measurement.
- Published
- 2024
- Full Text
- View/download PDF