1. Enhanced spatial modeling on linear networks using Gaussian Whittle-Mat\'ern fields
- Author
-
Chaudhuri, Somnath, Barceló, Maria A., Juan, Pablo, Varga, Diego, Bolin, David, Rue, Haavard, and Saez, Marc
- Subjects
Statistics - Applications - Abstract
Spatial statistics is traditionally based on stationary models on $\mathbb{R^d}$ like Mat\'ern fields. The adaptation of traditional spatial statistical methods, originally designed for stationary models in Euclidean spaces, to effectively model phenomena on linear networks such as stream systems and urban road networks is challenging. The current study aims to analyze the incidence of traffic accidents on road networks using three different methodologies and compare the model performance for each methodology. Initially, we analyzed the application of spatial triangulation precisely on road networks instead of traditional continuous regions. However, this approach posed challenges in areas with complex boundaries, leading to the emergence of artificial spatial dependencies. To address this, we applied an alternative computational method to construct nonstationary barrier models. Finally, we explored a recently proposed class of Gaussian processes on compact metric graphs, the Whittle-Mat\'ern fields, defined by a fractional SPDE on the metric graph. The latter fields are a natural extension of Gaussian fields with Mat\'ern covariance functions on Euclidean domains to non-Euclidean metric graph settings. A ten-year period (2010-2019) of daily traffic-accident records from Barcelona, Spain have been used to evaluate the three models referred above. While comparing model performance we observed that the Whittle-Mat\'ern fields defined directly on the network outperformed the network triangulation and barrier models. Due to their flexibility, the Whittle-Mat\'ern fields can be applied to a wide range of environmental problems on linear networks such as spatio-temporal modeling of water contamination in stream networks or modeling air quality or accidents on urban road networks., Comment: 24 pages, 9 figures
- Published
- 2023