145 results on '"Saint-Martin, D."'
Search Results
2. The atmospheric response to positive IPV, positive AMV, and their combination in boreal winter
- Author
-
Elsbury, D, Peings, Y, Saint-Martin, D, Douville, H, and Magnusdottir, G
- Subjects
Annular mode ,Teleconnections ,Extreme events ,Pacific-North American pattern ,oscillation ,Stratosphere-troposphere coupling ,Climate variability ,Mental Health ,Atmospheric Sciences ,Oceanography ,Geomatic Engineering ,Meteorology & Atmospheric Sciences - Abstract
The interdecadal Pacific oscillation (hereafter termed IPV, using "variability" in lieu of "oscillation") and the Atlantic multidecadal oscillation (hereafter AMV, similar to IPV) are regulators of global mean temperature, large-scale atmospheric circulation, regional temperature and precipitation, and related extreme events. Despite a growing recognition of their importance, the combined influence of these modes of lowfrequency sea surface temperature (SST) variability remains elusive given the short instrumental record and the difficulty of coupled climate models to simulate them satisfactorily. In this study, idealized simulations with two atmospheric global climate models (AGCMs) are used to show a partial cancellation of the North Pacific atmospheric response to positive IPV (i.e., deeper Aleutian low) by the concurrent positive phase of the AMV. This effect arises from a modulation of the interbasin Walker circulation that weakens deep convection in the western Pacific and the associated Rossby wave train into the northern extratropics. The weaker Aleutian low response is associated with less upward wave activity flux in the North Pacific; however, the associated stratospheric jet weakening is similar to when the +IPV alone forces the vortex, as additional upward wave activity flux over Siberia makes up the difference. While comparable warming of the polar stratosphere is found when the positiveAMVis included with the positive IPV, the downward propagation of the stratospheric response is significantly reduced, which has implications for the associated surface temperature extremes. The robust anticorrelation between the positive IPV and positive AMV signals over the North Pacific and their lack of additivity highlight the need to consider the IPV-AMV interplay for anticipating decadal changes in mean climate and extreme events in the Northern Hemisphere. more...
- Published
- 2019
Catalog
3. Uncertainty in the response of sudden stratospheric warmings and stratosphere‐troposphere coupling to quadrupled CO_2 concentrations in CMIP6 models
- Author
-
Ayarzagüena Porras, Blanca, Charlton‐Perez, A. J., Butler, A. H., Hitchcock, P., Simpson, I. R., Polvani, L. M., Butchart, L. M., Gerber, E. P., Gray, L., Hassler, B., Lin, P., Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey, S., Saint‐Martin, D., Sigmond, M., Taguchi, M., Volodin, E. M., Watanabe, S., Ayarzagüena Porras, Blanca, Charlton‐Perez, A. J., Butler, A. H., Hitchcock, P., Simpson, I. R., Polvani, L. M., Butchart, L. M., Gerber, E. P., Gray, L., Hassler, B., Lin, P., Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey, S., Saint‐Martin, D., Sigmond, M., Taguchi, M., Volodin, E. M., and Watanabe, S. more...
- Abstract
Major sudden stratospheric warmings (SSWs), vortex formation, and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2 forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2 (4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above. In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2 forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near‐surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: There is no indication of a change under 4xCO2 forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex and thus a longer season of stratosphere‐troposphere coupling., Ministerio de Ciencia, Innovación y Universidades, European Council, National Science Foundation (United States), NASA High-End Computing (HEC) Program, NASA Modeling, Analysis and Prediction program, Met Office Hadley Centre Climate Programme, MEXT| Integrated Research Program for Advancing Climate Models, Depto. de Física de la Tierra y Astrofísica, Fac. de Ciencias Físicas, TRUE, pub more...
- Published
- 2024
4. Transient Climate Response in a Two-Layer Energy-Balance Model. Part II : Representation of the Efficacy of Deep-Ocean Heat Uptake and Validation for CMIP5 AOGCMs
- Author
-
Geoffroy, O., Saint-Martin, D., Bellon, G., Voldoire, A., Olivié, D. J. L., and Tytéca, S.
- Published
- 2013
5. Transient Climate Response in a Two-Layer Energy-Balance Model. Part I : Analytical Solution and Parameter Calibration Using CMIP5 AOGCM Experiments
- Author
-
Geoffroy, O., Saint-Martin, D., Olivié, D. J. L., Voldoire, A., Bellon, G., and Tytéca, S.
- Published
- 2013
6. Atmosphere Response Time Scales Estimated from AOGCM Experiments
- Author
-
Olivié, D. J. L., Peters, G. P., and Saint-Martin, D.
- Published
- 2012
7. A Numerical Sensitivity Study of the Influence of Siberian Snow on the Northern Annular Mode
- Author
-
Peings, Y., Saint-Martin, D., and Douville, H.
- Published
- 2012
8. How to Calibrate a Dynamical System With Neural Network Based Physics?
- Author
-
Balogh, B., primary, Saint‐Martin, D., additional, and Ribes, A., additional
- Published
- 2022
- Full Text
- View/download PDF
9. Uncertainty of SW Cloud Radiative Effect in Atmospheric Models Due to the Parameterization of Liquid Cloud Optical Properties
- Author
-
Jahangir, E., primary, Libois, Q., additional, Couvreux, F., additional, Vié, B., additional, and Saint‐Martin, D., additional
- Published
- 2021
- Full Text
- View/download PDF
10. The CNRM-CM5.1 global climate model: description and basic evaluation
- Author
-
Voldoire, A., Sanchez-Gomez, E., Salas y Mélia, D., Decharme, B., Cassou, C., Sénési, S., Valcke, S., Beau, I., Alias, A., Chevallier, M., Déqué, M., Deshayes, J., Douville, H., Fernandez, E., Madec, G., Maisonnave, E., Moine, M.-P., Planton, S., Saint-Martin, D., Szopa, S., Tyteca, S., Alkama, R., Belamari, S., Braun, A., Coquart, L., and Chauvin, F. more...
- Published
- 2013
- Full Text
- View/download PDF
11. Uncertainty of shortwave cloud radiative impact due to the parameterization of liquid cloud optical properties
- Author
-
Jahangir, E., Libois, Q., Couvreux, F., Vié, B., & Saint-Martin, D
- Published
- 2021
- Full Text
- View/download PDF
12. Tracking Changes in Climate Sensitivity in CNRM Climate Models
- Author
-
Saint‐Martin, D., primary, Geoffroy, O., additional, Voldoire, A., additional, Cattiaux, J., additional, Brient, F., additional, Chauvin, F., additional, Chevallier, M., additional, Colin, J., additional, Decharme, B., additional, Delire, C., additional, Douville, H., additional, Guérémy, J.‐F., additional, Joetzjer, E., additional, Ribes, A., additional, Roehrig, R., additional, Terray, L., additional, and Valcke, S., additional more...
- Published
- 2021
- Full Text
- View/download PDF
13. A Toy Model to Investigate Stability of AI‐Based Dynamical Systems
- Author
-
Balogh, B., primary, Saint‐Martin, D., additional, and Ribes, A., additional
- Published
- 2021
- Full Text
- View/download PDF
14. Long-term Ozone Changes and Associated Climate Impacts in CMIP5 Simulations
- Author
-
Eyring, V, Arblaster, J. M, Cionni, I, Sedlacek, J, Perlwitz, J, Young, P. J, Bekki, S, Bergmann, D, Cameron-Smith, P, Collins, W. J, Faluvegi, G, Gottschaldt, K.-D, Horowitz, L. W, Kinnison, D. E, Lamarque, J.-F, Marsh, D. R, Saint-Martin, D, Shindell, D. T, Sudo, K, Szopa, S, and Watanabe, S more...
- Subjects
Meteorology And Climatology - Abstract
Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960-2005) and future (2006-2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (approximately 20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to approximately 10DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections. more...
- Published
- 2013
- Full Text
- View/download PDF
15. Drivers of the enhanced decline of land near-surface relative humidity to abrupt 4xCO2 in CNRM-CM6-1
- Author
-
Douville, Hervé, primary, Decharme, B., additional, Delire, C., additional, Colin, J., additional, Joetzjer, E., additional, Roehrig, R., additional, Saint-Martin, D., additional, Oudar, T., additional, Stchepounoff, R., additional, and Voldoire, A., additional more...
- Published
- 2020
- Full Text
- View/download PDF
16. Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphere‐Troposphere Coupling to Quadrupled CO2 Concentrations in CMIP6 Models
- Author
-
Ayarzagüena, B., primary, Charlton‐Perez, A. J., additional, Butler, A. H., additional, Hitchcock, P., additional, Simpson, I. R., additional, Polvani, L. M., additional, Butchart, N., additional, Gerber, E. P., additional, Gray, L., additional, Hassler, B., additional, Lin, P., additional, Lott, F., additional, Manzini, E., additional, Mizuta, R., additional, Orbe, C., additional, Osprey, S., additional, Saint‐Martin, D., additional, Sigmond, M., additional, Taguchi, M., additional, Volodin, E. M., additional, and Watanabe, S., additional more...
- Published
- 2020
- Full Text
- View/download PDF
17. Uncertainty in the response of sudden stratospheric warmings and stratosphere‐troposphere coupling to quadrupled CO_2 concentrations in CMIP6 models
- Author
-
Ayarzagüena Porras, Blanca, Charlton‐Perez, A. J., Butler, A. H., Hitchcock, P., Simpson, I. R., Polvani, L. M., Butchart, L. M., Gerber, E. P., Gray, L., Hassler, B., Lin, P., Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey, S., Saint‐Martin, D., Sigmond, M., Taguchi, M., Volodin, E. M., Watanabe, S., Ayarzagüena Porras, Blanca, Charlton‐Perez, A. J., Butler, A. H., Hitchcock, P., Simpson, I. R., Polvani, L. M., Butchart, L. M., Gerber, E. P., Gray, L., Hassler, B., Lin, P., Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey, S., Saint‐Martin, D., Sigmond, M., Taguchi, M., Volodin, E. M., and Watanabe, S. more...
- Abstract
Major sudden stratospheric warmings (SSWs), vortex formation, and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2 forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2 (4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above. In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2 forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near‐surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: There is no indication of a change under 4xCO2 forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex and thus a longer season of stratosphere‐troposphere coupling., Ministerio de Ciencia, Innovación y Universidades, European Council, National Science Foundation (United States), NASA High-End Computing (HEC) Program, NASA Modeling, Analysis and Prediction program, Met Office Hadley Centre Climate Programme, MEXT| Integrated Research Program for Advancing Climate Models, Depto. de Física de la Tierra y Astrofísica, Fac. de Ciencias Físicas, TRUE, pub more...
- Published
- 2020
18. Projecting ozone hole recovery using an ensemble of chemistry-climate models weighted by model performance and independence
- Author
-
Amos, Matt, Young, Paul, Hosking, J. S., Lamarque, Jean-François, Abraham, N. L., Akiyoshi, Hideharu, Archibald, Alex, Bekki, Slimane, Deushi, Makoto, Jöckel, Patrick, Kinnison, Douglas E., Kirner, Ole, Kunze, Markus, Marchand, Marion, Plummer, David A, Saint-Martin, D., Sudo, Kengo, Tilmes, Simone, Yamashita, Yousuke, Amos, Matt, Young, Paul, Hosking, J. S., Lamarque, Jean-François, Abraham, N. L., Akiyoshi, Hideharu, Archibald, Alex, Bekki, Slimane, Deushi, Makoto, Jöckel, Patrick, Kinnison, Douglas E., Kirner, Ole, Kunze, Markus, Marchand, Marion, Plummer, David A, Saint-Martin, D., Sudo, Kengo, Tilmes, Simone, and Yamashita, Yousuke more...
- Abstract
Calculating a multi-model mean, a commonly used method for ensemble averaging, assumes model independence and equal model skill. Sharing of model components amongst families of models and research centres, conflated by growing ensemble size, means model independence cannot be assumed and is hard to quantify. We present a methodology to produce a weighted-model ensemble projection, accounting for model performance and model independence. Model weights are calculated by comparing model hindcasts to a selection of metrics chosen for their physical relevance to the process or phenomena of interest. This weighting methodology is applied to the Chemistry–Climate Model Initiative (CCMI) ensemble to investigate Antarctic ozone depletion and subsequent recovery. The weighted mean projects an ozone recovery to 1980 levels, by 2056 with a 95 % confidence interval (2052–2060), 4 years earlier than the most recent study. Perfect-model testing and out-of-sample testing validate the results and show a greater projective skill than a standard multi-model mean. Interestingly, the construction of a weighted mean also provides insight into model performance and dependence between the models. This weighting methodology is robust to both model and metric choices and therefore has potential applications throughout the climate and chemistry–climate modelling communities. more...
- Published
- 2020
19. Clear-sky ultraviolet radiation modelling using output from the Chemistry Climate Model Initiative
- Author
-
Lamy, K., Portafaix, T., Josse, B., Brogniez, C., Godin-Beekmann, S., Bencherif, H., Revell, L., Akiyoshi, H., Bekki, S., Hegglin, M. I., Jöckel, Patrick, Kirner, O., Liley, B., Marecal, V., Morgenstern, O., Stenke, A., Zeng, G., Abraham, N. L., Archibald, A. T., Butchart, N., Chipperfield, M. P., Di Genova, G., Deushi, M., Dhomse, S. S., Hu, R.-M., Kinnison, D., Kotkamp, M., McKenzie, R., Michou, M., O'Connor, F. M., Oman, L. D., Pitari, G., Plummer, D. A., Pyle, J. A., Rozanov, E., Saint-Martin, D., Sudo, K., Tanaka, T. Y., Visioni, D., Yoshida, K., Laboratoire de l'Atmosphère et des Cyclones (LACy), Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), School of Chemistry and Physics [Durban], University of KwaZulu-Natal (UKZN), Institute for Atmospheric and Climate Science [Zürich] (IAC), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), School of Physical Chemical Sciences [Christchurch], University of Canterbury [Christchurch], Bodeker Scientific, National Institute for Environmental Studies (NIES), Department of Meteorology [Reading], University of Reading (UOR), DLR Institut für Physik der Atmosphäre (IPA), Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR), Steinbuch Centre for Computing [Karlsruhe] (SCC), Karlsruher Institut für Technologie (KIT), National Institute of Water and Atmospheric Research [Wellington] (NIWA), National Centre for Atmospheric Science [Leeds] (NCAS), Natural Environment Research Council (NERC), Department of Chemistry [Cambridge, UK], University of Cambridge [UK] (CAM), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], School of Earth and Environment [Leeds] (SEE), University of Leeds, Department of Physical and Chemical Sciences [L'Aquila] (DSFC), Università degli Studi dell'Aquila (UNIVAQ), Meteorological Research Institute [Tsukuba] (MRI), Japan Meteorological Agency (JMA), National Center for Atmospheric Research [Boulder] (NCAR), NASA Goddard Space Flight Center (GSFC), Environment and Climate Change Canada, Centre for Atmospheric Science [Cambridge, UK], Physikalisch-Meteorologisches Observatorium Davos/World Radiation Center (PMOD/WRC), Graduate School of Environmental Studies [Nagoya], Nagoya University, Sibley School of Mechanical and Aerospace Engineering (MAE), Cornell University [New York], Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France, Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), University of KwaZulu-Natal [Durban, Afrique du Sud] (UKZN), Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ), and Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS) more...
- Subjects
[PHYS.PHYS.PHYS-AO-PH]Physics [physics]/Physics [physics]/Atmospheric and Oceanic Physics [physics.ao-ph] ,EMAC ,ozone ,Atmospheric physics and chemistry ,MESSy ,CCMI ,Erdsystem-Modellierung ,clear-sky ,ultraviolot radiation ,chemistry-climate modelling - Abstract
We have derived values of the ultraviolet index (UVI) at solar noon using the Tropospheric Ultraviolet Model (TUV) driven by ozone, temperature and aerosol fields from climate simulations of the first phase of the Chemistry-Climate Model Initiative (CCMI-1). Since clouds remain one of the largest uncertainties in climate projections, we simulated only the clear-sky UVI. We compared the modelled UVI climatologies against present-day climatological values of UVI derived from both satellite data (the OMI-Aura OMUVBd product) and ground-based measurements (from the NDACC network). Depending on the region, relative differences between the UVI obtained from CCMI/TUV calculations and the ground-based measurements ranged between −5.9 % and 10.6 %. We then calculated the UVI evolution throughout the 21st century for the four Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5). Compared to 1960s values, we found an average increase in the UVI in 2100 (of 2 %–4 %) in the tropical belt (30∘ N–30∘ S). For the mid-latitudes, we observed a 1.8 % to 3.4 % increase in the Southern Hemisphere for RCPs 2.6, 4.5 and 6.0 and found a 2.3 % decrease in RCP 8.5. Higher increases in UVI are projected in the Northern Hemisphere except for RCP 8.5. At high latitudes, ozone recovery is well identified and induces a complete return of mean UVI levels to 1960 values for RCP 8.5 in the Southern Hemisphere. In the Northern Hemisphere, UVI levels in 2100 are higher by 0.5 % to 5.5 % for RCPs 2.6, 4.5 and 6.0 and they are lower by 7.9 % for RCP 8.5. We analysed the impacts of greenhouse gases (GHGs) and ozone-depleting substances (ODSs) on UVI from 1960 by comparing CCMI sensitivity simulations (1960–2100) with fixed GHGs or ODSs at their respective 1960 levels. As expected with ODS fixed at their 1960 levels, there is no large decrease in ozone levels and consequently no sudden increase in UVI levels. With fixed GHG, we observed a delayed return of ozone to 1960 values, with a corresponding pattern of change observed on UVI, and looking at the UVI difference between 2090s values and 1960s values, we found an 8 % increase in the tropical belt during the summer of each hemisphere. Finally we show that, while in the Southern Hemisphere the UVI is mainly driven by total ozone column, in the Northern Hemisphere both total ozone column and aerosol optical depth drive UVI levels, with aerosol optical depth having twice as much influence on the UVI as total ozone column does. ISSN:1680-7375 ISSN:1680-7367 more...
- Published
- 2019
- Full Text
- View/download PDF
20. Present‐Day and Historical Aerosol and Ozone Characteristics in CNRM CMIP6 Simulations
- Author
-
Michou, M., primary, Nabat, P., additional, Saint‐Martin, D., additional, Bock, J., additional, Decharme, B., additional, Mallet, M., additional, Roehrig, R., additional, Séférian, R., additional, Sénési, S., additional, and Voldoire, A., additional more...
- Published
- 2020
- Full Text
- View/download PDF
21. Fast‐Forward to Perturbed Equilibrium Climate
- Author
-
Saint‐Martin, D., primary, Geoffroy, O., additional, Watson, L., additional, Douville, H., additional, Bellon, G., additional, Voldoire, A., additional, Cattiaux, J., additional, Decharme, B., additional, and Ribes, A., additional more...
- Published
- 2019
- Full Text
- View/download PDF
22. Evaluation of CMIP6 DECK Experiments With CNRM‐CM6‐1
- Author
-
Voldoire, A., primary, Saint‐Martin, D., additional, Sénési, S., additional, Decharme, B., additional, Alias, A., additional, Chevallier, M., additional, Colin, J., additional, Guérémy, J.‐F., additional, Michou, M., additional, Moine, M.‐P., additional, Nabat, P., additional, Roehrig, R., additional, Salas y Mélia, D., additional, Séférian, R., additional, Valcke, S., additional, Beau, I., additional, Belamari, S., additional, Berthet, S., additional, Cassou, C., additional, Cattiaux, J., additional, Deshayes, J., additional, Douville, H., additional, Ethé, C., additional, Franchistéguy, L., additional, Geoffroy, O., additional, Lévy, C., additional, Madec, G., additional, Meurdesoif, Y., additional, Msadek, R., additional, Ribes, A., additional, Sanchez‐Gomez, E., additional, Terray, L., additional, and Waldman, R., additional more...
- Published
- 2019
- Full Text
- View/download PDF
23. Ultraviolet Radiation evolution during the 21st century
- Author
-
Lamy, Kévin, Josse, Béatrice, Portafaix, Thierry, Bencherif, Hassan, Godin-Beekmann, Sophie, Brogniez, Colette, Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, Slimane, Butchart, N., Chipperfield, Martyn P., Currie, R., Di Genova, Glauco, Garcia, R. R., Deushi, Makoto, Dhomse, Sandip, Duncan, B. N., Hegglin, M. I., Horowitz, L. W., Jöckel, P., Kinnison, D., Lamarque, J. F., Lin, M. Y., Mancini, E., Marchand, Marion, Marécal, Virginie, Michou, M., Morgenstern, Olaf, O'Connor, F. M., Nagashima, T., Oman, L. D., Pitari, G., Plummer, D., Pyle, J. A., Revell, Laura E., Rozanov, E., Saint-Martin, D., Scinocca, J. F., Stenke, A., Strahan, S. E., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., Zeng, G., Laboratoire de l'Atmosphère et des Cyclones (LACy), Centre National de la Recherche Scientifique (CNRS)-Université de La Réunion (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Météo France, Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), STRATO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d’Optique Atmosphérique - UMR 8518 (LOA), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Department of Chemistry [Cambridge, UK], University of Cambridge [UK] (CAM), National Institute for Environmental Studies (NIES), Met Office Hadley Centre for Climate Change (MOHC), United Kingdom Met Office [Exeter], School of Earth and Environment [Leeds] (SEE), University of Leeds, University of L'Aquila [Italy] (UNIVAQ), National Center for Atmospheric Research [Boulder] (NCAR), Meteorological Research Institute [Tsukuba] (MRI), Japan Meteorological Agency (JMA), NASA Goddard Space Flight Center (GSFC), Department of Meteorology [Reading], University of Reading (UOR), NOAA Geophysical Fluid Dynamics Laboratory (GFDL), National Oceanic and Atmospheric Administration (NOAA), DLR Institut für Physik der Atmosphäre (IPA), Deutsches Zentrum für Luft- und Raumfahrt [Oberpfaffenhofen-Wessling] (DLR), Dipartimento di Scienze Fisiche e Chimiche [L'Aquila], Università degli Studi dell'Aquila (UNIVAQ), National Institute of Water and Atmospheric Research [Lauder] (NIWA), Environment and Climate Change Canada, Institute for Atmospheric and Climate Science [Zürich] (IAC), Eidgenössische Technische Hochschule - Swiss Federal Institute of Technology [Zürich] (ETH Zürich), Bodeker Scientific, School of Earth Sciences [Melbourne], Faculty of Science [Melbourne], University of Melbourne-University of Melbourne, Graduate School of Environmental Studies [Nagoya], Nagoya University, National Institute of Water and Atmospheric Research [Auckland] (NIWA), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Università degli Studi dell'Aquila = University of L'Aquila (UNIVAQ) more...
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere - Abstract
International audience; In the context of a changing climate, the acceleration of the Brewer-Dobson circulation [Butchart 2014] leadsto a decrease of the ozone total column in the tropics. This decrease affects directly surface ultraviolet radiation,which are already very high in this area. Following the work of (Bais et al., 2011), (Butchart, 2014)and (Hegglin & Shepherd, 2009) on the future evolution of surface irradiance derived from Chemistry ClimateModels (CCM) projections, we projected here surface irradiance from 2010 to 2100 with focus on the tropics.We used the latest chemistry climate projection exercise ; Chemistry Climate Model Initiative (CCMI) coupledwith a radiative transfer model (TUV (Madronich, 1993)) to calculate the evolution of surface Ultravioletradiation throughout the 21st century. Ultraviolet Index (UVi) has been specifically considered (McKenzie,Matthews, & Johnston, 1991).At first, simulation from RefC2 Chemistry Climate Model Initiative have been coupled with a radiativetransfer model, in order to obtained modeled UV index (UVi-M). UVi-M is then compared against availablesatellite ultraviolet radiation observations (OMI OMUVbd product) between 2005 and 2016. Statistical differenceand variance have been analysed versus different parameters: geographical location, model or ensembleof model outputs used in the radiative transfer calculation. more...
- Published
- 2017
24. Uncertainty in the Response of Sudden Stratospheric Warmings and Stratosphere‐Troposphere Coupling to Quadrupled CO2 Concentrations in CMIP6 Models.
- Author
-
Ayarzagüena, B., Charlton‐Perez, A. J., Butler, A. H., Hitchcock, P., Simpson, I. R., Polvani, L. M., Butchart, N., Gerber, E. P., Gray, L., Hassler, B., Lin, P., Lott, F., Manzini, E., Mizuta, R., Orbe, C., Osprey, S., Saint‐Martin, D., Sigmond, M., Taguchi, M., and Volodin, E. M. more...
- Subjects
STRATOSPHERE ,TROPOSPHERE ,POLAR vortex ,CARBON dioxide ,CHEMOSPHERE - Abstract
Major sudden stratospheric warmings (SSWs), vortex formation, and final breakdown dates are key highlight points of the stratospheric polar vortex. These phenomena are relevant for stratosphere‐troposphere coupling, which explains the interest in understanding their future changes. However, up to now, there is not a clear consensus on which projected changes to the polar vortex are robust, particularly in the Northern Hemisphere, possibly due to short data record or relatively moderate CO2 forcing. The new simulations performed under the Coupled Model Intercomparison Project, Phase 6, together with the long daily data requirements of the DynVarMIP project in preindustrial and quadrupled CO2 (4xCO2) forcing simulations provide a new opportunity to revisit this topic by overcoming the limitations mentioned above. In this study, we analyze this new model output to document the change, if any, in the frequency of SSWs under 4xCO2 forcing. Our analysis reveals a large disagreement across the models as to the sign of this change, even though most models show a statistically significant change. As for the near‐surface response to SSWs, the models, however, are in good agreement as to this signal over the North Atlantic: There is no indication of a change under 4xCO2 forcing. Over the Pacific, however, the change is more uncertain, with some indication that there will be a larger mean response. Finally, the models show robust changes to the seasonal cycle in the stratosphere. Specifically, we find a longer duration of the stratospheric polar vortex and thus a longer season of stratosphere‐troposphere coupling. Key Points: The tropospheric signal of sudden stratospheric warming (SSWs) in the North Atlantic does not change under 4xCO2 forcingThere is high uncertainty in changes of SSW frequency under 4xCO2 forcing; single models show the rate to be significantly halved or doubledThe boreal polar vortex will form earlier and disappear later under increased CO2, extending the season of stratosphere‐troposphere coupling [ABSTRACT FROM AUTHOR] more...
- Published
- 2020
- Full Text
- View/download PDF
25. Stratospheric Injection of Brominated Very Short-Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models
- Author
-
Wales, PA, Salawitch, RJ, Nicely, JM, Anderson, DC, Canty, TP, Baidar, S, Dix, B, Koenig, TK, Volkamer, R, Chen, D, Huey, LG, Tanner, DJ, Cuevas, CA, Fernandez, RP, Kinnison, DE, Lamarque, J-F, Saiz-Lopez, A, Atlas, EL, Hall, SR, Navarro, MA, Pan, LL, Schauffler, SM, Stell, M, Tilmes, S, Ullmann, K, Weinheimer, AJ, Akiyoshi, H, Chipperfield, MP, Deushi, M, Dhomse, SS, Feng, W, Graf, P, Hossaini, R, Joeckel, P, Mancini, E, Michou, M, Morgenstern, O, Oman, LD, Pitari, G, Plummer, DA, Revell, LE, Rozanov, E, Saint-Martin, D, Schofield, R, Stenke, A, Stone, KA, Visioni, D, Yamashita, Y, Zeng, G, Wales, PA, Salawitch, RJ, Nicely, JM, Anderson, DC, Canty, TP, Baidar, S, Dix, B, Koenig, TK, Volkamer, R, Chen, D, Huey, LG, Tanner, DJ, Cuevas, CA, Fernandez, RP, Kinnison, DE, Lamarque, J-F, Saiz-Lopez, A, Atlas, EL, Hall, SR, Navarro, MA, Pan, LL, Schauffler, SM, Stell, M, Tilmes, S, Ullmann, K, Weinheimer, AJ, Akiyoshi, H, Chipperfield, MP, Deushi, M, Dhomse, SS, Feng, W, Graf, P, Hossaini, R, Joeckel, P, Mancini, E, Michou, M, Morgenstern, O, Oman, LD, Pitari, G, Plummer, DA, Revell, LE, Rozanov, E, Saint-Martin, D, Schofield, R, Stenke, A, Stone, KA, Visioni, D, Yamashita, Y, and Zeng, G more...
- Abstract
We quantify the stratospheric injection of brominated very short‐lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC‐11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry‐Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer‐lived chemicals as a surrogate for VSLS. more...
- Published
- 2018
26. Stratospheric Injection of Brominated Very Short-Lived Substances: Aircraft Observations in the Western Pacific and Representation in Global Models
- Author
-
National Science Foundation (US), National Aeronautics and Space Administration (US), National Center for Atmospheric Research (US), British Atmospheric Data Centre, Australian Research Council, Australian Antarctic Division, German Climate Computing Center, Federal Ministry of Education and Research (Germany), Wales, P. A., Salawitch, R. J., Nicely, J. M., Anderson, D. C., Canty, T. P., Baidar, S., Dix, B., Koenig, T.K., Volkamer, R., Chen, D., Huey, L.G., Tanner, D. J., Cuevas, Carlos A., Fernández, Rafael P., Kinnison, Douglas E., Lamarque, Jean-François, Saiz-Lopez, A., Atlas, Elliot L., Hall, S.R., Navarro, M. A., Pan, L.L., Schauffler, S. M., Stell, M., Tilmes, S., Ullmann, K., Weinheimer, A. J., Akiyoshi, Hideharu, Chipperfield, M.P., Deushi, Makoto, Dhomse, S. S., Feng, W., Graf, P., Hossaini, R., Jöckel, P., Mancini, E., Michou, M., Morgenstern, O., Oman, L. D., Pitari, G., Plummer, David A., Revell, L. E., Rozanov, E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K. A., Visioni, D., Yamashita, Y., Zeng, G., National Science Foundation (US), National Aeronautics and Space Administration (US), National Center for Atmospheric Research (US), British Atmospheric Data Centre, Australian Research Council, Australian Antarctic Division, German Climate Computing Center, Federal Ministry of Education and Research (Germany), Wales, P. A., Salawitch, R. J., Nicely, J. M., Anderson, D. C., Canty, T. P., Baidar, S., Dix, B., Koenig, T.K., Volkamer, R., Chen, D., Huey, L.G., Tanner, D. J., Cuevas, Carlos A., Fernández, Rafael P., Kinnison, Douglas E., Lamarque, Jean-François, Saiz-Lopez, A., Atlas, Elliot L., Hall, S.R., Navarro, M. A., Pan, L.L., Schauffler, S. M., Stell, M., Tilmes, S., Ullmann, K., Weinheimer, A. J., Akiyoshi, Hideharu, Chipperfield, M.P., Deushi, Makoto, Dhomse, S. S., Feng, W., Graf, P., Hossaini, R., Jöckel, P., Mancini, E., Michou, M., Morgenstern, O., Oman, L. D., Pitari, G., Plummer, David A., Revell, L. E., Rozanov, E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K. A., Visioni, D., Yamashita, Y., and Zeng, G. more...
- Abstract
We quantify the stratospheric injection of brominated very short-lived substances (VSLS) based on aircraft observations acquired in winter 2014 above the Tropical Western Pacific during the CONvective TRansport of Active Species in the Tropics (CONTRAST) and the Airborne Tropical TRopopause EXperiment (ATTREX) campaigns. The overall contribution of VSLS to stratospheric bromine was determined to be 5.0 ± 2.1 ppt, in agreement with the 5 ± 3 ppt estimate provided in the 2014 World Meteorological Organization (WMO) Ozone Assessment report (WMO 2014), but with lower uncertainty. Measurements of organic bromine compounds, including VSLS, were analyzed using CFC-11 as a reference stratospheric tracer. From this analysis, 2.9 ± 0.6 ppt of bromine enters the stratosphere via organic source gas injection of VSLS. This value is two times the mean bromine content of VSLS measured at the tropical tropopause, for regions outside of the Tropical Western Pacific, summarized in WMO 2014. A photochemical box model, constrained to CONTRAST observations, was used to estimate inorganic bromine from measurements of BrO collected by two instruments. The analysis indicates that 2.1 ± 2.1 ppt of bromine enters the stratosphere via inorganic product gas injection. We also examine the representation of brominated VSLS within 14 global models that participated in the Chemistry-Climate Model Initiative. The representation of stratospheric bromine in these models generally lies within the range of our empirical estimate. Models that include explicit representations of VSLS compare better with bromine observations in the lower stratosphere than models that utilize longer-lived chemicals as a surrogate for VSLS. more...
- Published
- 2018
27. Review of the global models used within the Chemistry-Climate Model Initiative (CCMI)
- Author
-
Morgenstern, O, Hegglin, MI, Rozanov, E, O'Connor, FM, Abraham, NL, Akiyoshi, H, Archibald, AT, Bekki, S, Butchart, N, Chipperfield, MP, Deushi, M, Dhomse, SS, Garcia, RR, Hardiman, SC, Horowitz, LW, Jöckel, P, Josse, B, Kinnison, D, Lin, M, Mancini, E, Manyin, ME, Marchand, M, Marécal, V, Michou, M, Oman, LD, Pitari, G, Plummer, DA, Revell, LE, Saint-Martin, D, Schofield, R, Stenke, A, Stone, K, Sudo, K, Tanaka, TY, Tilmes, S, Yamashita, Y, Yoshida, K, and Zeng, G more...
- Abstract
We present an overview of state-of-the-artchemistry–climate and chemistry transport models that areused within phase 1 of the Chemistry–Climate Model Initia-tive (CCMI-1). The CCMI aims to conduct a detailed evalua-tion of participating models using process-oriented diagnos-tics derived from observations in order to gain confidence inthe models’ projections of the stratospheric ozone layer, tro-pospheric composition, air quality, where applicable globalclimate change, and the interactions between them. Interpre-tation of these diagnostics requires detailed knowledge of theradiative, chemical, dynamical, and physical processes incor-porated in the models. Also an understanding of the degree towhich CCMI-1 recommendations for simulations have beenfollowed is necessary to understand model responses to an-thropogenic and natural forcing and also to explain inter-model differences. This becomes even more important giventhe ongoing development and the ever-growing complexityof these models. This paper also provides an overview ofthe available CCMI-1 simulations with the aim of informingCCMI data users., Geoscientific Model Development, 10 (2), ISSN:1991-9603, ISSN:1991-959X more...
- Published
- 2017
28. Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI)
- Author
-
Morgenstern, O, Hegglin, MI, Rozanov, E, O'Connor, FM, Abraham, NL, Akiyoshi, H, Archibald, AT, Bekki, S, Butchart, N, Chipperfield, MP, Deushi, M, Dhomse, SS, Garcia, RR, Hardiman, SC, Horowitz, LW, Joeckel, P, Josse, B, Kinnison, D, Lin, M, Mancini, E, Manyin, ME, Marchand, M, Marecal, V, Michou, M, Oman, LD, Pitari, G, Plummer, DA, Revell, LE, Saint-Martin, D, Schofield, R, Stenke, A, Stone, K, Sudo, K, Tanaka, TY, Tilmes, S, Yamashita, Y, Yoshida, K, Zeng, G, Morgenstern, O, Hegglin, MI, Rozanov, E, O'Connor, FM, Abraham, NL, Akiyoshi, H, Archibald, AT, Bekki, S, Butchart, N, Chipperfield, MP, Deushi, M, Dhomse, SS, Garcia, RR, Hardiman, SC, Horowitz, LW, Joeckel, P, Josse, B, Kinnison, D, Lin, M, Mancini, E, Manyin, ME, Marchand, M, Marecal, V, Michou, M, Oman, LD, Pitari, G, Plummer, DA, Revell, LE, Saint-Martin, D, Schofield, R, Stenke, A, Stone, K, Sudo, K, Tanaka, TY, Tilmes, S, Yamashita, Y, Yoshida, K, and Zeng, G more...
- Abstract
We present an overview of state-of-the-art chemistry–climate and chemistry transport models that are used within phase 1 of the Chemistry–Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain inter-model differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users. more...
- Published
- 2017
29. Snow-(N)AO relationship revisited over the whole twentieth century
- Author
-
Douville, H., primary, Peings, Y., additional, and Saint-Martin, D., additional
- Published
- 2017
- Full Text
- View/download PDF
30. European cold winter 2009-2010: How unusual in the instrumental record and how reproducible in the ARPEGE-Climat model?
- Author
-
Ouzeau, G., Cattiaux, Julien, Douville, H., Ribes, A., Saint-Martin, D., Centre national de recherches météorologiques (CNRM), Météo France-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS) more...
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,ComputingMilieux_MISCELLANEOUS - Abstract
International audience
- Published
- 2011
- Full Text
- View/download PDF
31. Supplementary material to "Development and evaluation of CNRM Earth-System model – CNRM-ESM1"
- Author
-
Séférian, R., primary, Delire, C., additional, Decharme, B., additional, Voldoire, A., additional, Salas y Melia, D., additional, Chevallier, M., additional, Saint-Martin, D., additional, Aumont, O., additional, Calvet, J.-C., additional, Carrer, D., additional, Douville, H., additional, Franchistéguy, L., additional, Joetzjer, E., additional, and Sénési, S., additional more...
- Published
- 2015
- Full Text
- View/download PDF
32. Development and evaluation of CNRM Earth-System model – CNRM-ESM1
- Author
-
Séférian, R., primary, Delire, C., additional, Decharme, B., additional, Voldoire, A., additional, Salas y Melia, D., additional, Chevallier, M., additional, Saint-Martin, D., additional, Aumont, O., additional, Calvet, J.-C., additional, Carrer, D., additional, Douville, H., additional, Franchistéguy, L., additional, Joetzjer, E., additional, and Sénési, S., additional more...
- Published
- 2015
- Full Text
- View/download PDF
33. Development and basic evaluation of a prognostic aerosol scheme (v1) in the CNRM Climate Model CNRM-CM6
- Author
-
Michou, M., primary, Nabat, P., additional, and Saint-Martin, D., additional
- Published
- 2015
- Full Text
- View/download PDF
34. A new chemistry-climate tropospheric and stratospheric model MOCAGE-Climat: evaluation of the present-day climatology and sensitivity to surface processes
- Author
-
Teyssèdre, H., Michou, M., Clark, H. L., Josse, B., Karcher, F., Olivié, D., Peuch, V.-H., Saint-Martin, D., Cariolle, D., Attié, Jean-Luc, Ricaud, P., Van Der A, R. J., Chéroux, F., Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS), Laboratoire d'aérologie (LAERO), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Royal Netherlands Meteorological Institute (KNMI), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), CERFACS, Centre National de la Recherche Scientifique (CNRS)-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université Fédérale Toulouse Midi-Pyrénées more...
- Subjects
[SDU.OCEAN]Sciences of the Universe [physics]/Ocean, Atmosphere ,010504 meteorology & atmospheric sciences ,13. Climate action ,0103 physical sciences ,010303 astronomy & astrophysics ,01 natural sciences ,0105 earth and related environmental sciences - Abstract
International audience; We present the chemistry-climate configuration of the Météo-France Chemistry and Transport Model, MOCAGE-Climat. MOCAGE-Climat is a state-of-the-art model that simulates the global distribution of ozone and its precursors (82 chemical species) both in the troposphere and the stratosphere, up to the mid-mesosphere (~70 km). Surface processes (emissions, dry deposition), convection, and scavenging are explicitly described in the model that has been driven by the ECMWF operational analyses of the period 2000–2005, on T21 and T42 horizontal grids and 60 hybrid vertical levels, with and without a procedure that reduces calculations in the boundary layer, and with on-line or climatological deposition velocities. Model outputs have been compared to available observations, both from satellites (TOMS, HALOE, SMR, SCIAMACHY, MOPITT) and in-situ instrument measurements (ozone sondes, MOZAIC and aircraft campaigns) at climatological timescales. The distribution of long-lived species is in fair agreement with observations in the stratosphere putting apart shortcomings linked to the large-scale circulation. The variability of the ozone column, both spatially and temporarily, is satisfactory. However, the too fast Brewer-Dobson circulation accumulates too much ozone in the lower to mid-stratosphere at the end of winter. Ozone in the UTLS region does not show any systematic bias. In the troposphere better agreement with ozone sonde measurements is obtained at mid and high latitudes than in the tropics and differences with observations are the lowest in summer. Simulations using a simplified boundary layer lead to ozone differences between the model and the observations up to the mid-troposphere. NOx in the lowest troposphere is in general overestimated, especially in the winter months over the northern hemisphere, which might result from a positive bias in OH. Dry deposition fluxes of O3 and nitrogen species are within the range of values reported by recent inter-comparison model exercises. The use of climatological deposition velocities versus deposition velocities calculated on-line had greatest impact on HNO3 and NO2 in the troposphere. more...
- Published
- 2007
35. Development and basic evaluation of a prognostic aerosol scheme in the CNRM Climate Model
- Author
-
Michou, M., primary, Nabat, P., additional, and Saint-Martin, D., additional
- Published
- 2014
- Full Text
- View/download PDF
36. European air quality in the 2030s and 2050s: Impacts of global and regional emission trends and of climate change
- Author
-
Lacressonnière, G., primary, Peuch, V.-H., additional, Vautard, R., additional, Arteta, J., additional, Déqué, M., additional, Joly, M., additional, Josse, B., additional, Marécal, V., additional, and Saint-Martin, D., additional more...
- Published
- 2014
- Full Text
- View/download PDF
37. Long-term changes in tropospheric and stratospheric ozone and associated climate impacts in CMIP5 simulations
- Author
-
Eyring, V., Cionni, I, Arblaster, J, Sedlacek, J, Perlwitz, Judith, Young, Paul, Bekki, Slimane, Bergmann, D., Cameron-Smith, Philip, Collins, William J., Faluvegi, G., Gottschaldt, K. -D., Horowitz, L. W., Kinnison, Doug, Lamarque, Jean-Francois, Marsh, D.R., Saint-Martin, D., Shindell, Drew T., Sudo, K., Szopa, Sophie, Watanabe, S, Eyring, V., Cionni, I, Arblaster, J, Sedlacek, J, Perlwitz, Judith, Young, Paul, Bekki, Slimane, Bergmann, D., Cameron-Smith, Philip, Collins, William J., Faluvegi, G., Gottschaldt, K. -D., Horowitz, L. W., Kinnison, Doug, Lamarque, Jean-Francois, Marsh, D.R., Saint-Martin, D., Shindell, Drew T., Sudo, K., Szopa, Sophie, and Watanabe, S more...
- Abstract
[1] Ozone changes and associated climate impacts in the Coupled Model Intercomparison Project Phase 5 (CMIP5) simulations are analyzed over the historical (1960–2005) and future (2006–2100) period under four Representative Concentration Pathways (RCP). In contrast to CMIP3, where half of the models prescribed constant stratospheric ozone, CMIP5 models all consider past ozone depletion and future ozone recovery. Multimodel mean climatologies and long-term changes in total and tropospheric column ozone calculated from CMIP5 models with either interactive or prescribed ozone are in reasonable agreement with observations. However, some large deviations from observations exist for individual models with interactive chemistry, and these models are excluded in the projections. Stratospheric ozone projections forced with a single halogen, but four greenhouse gas (GHG) scenarios show largest differences in the northern midlatitudes and in the Arctic in spring (~20 and 40 Dobson units (DU) by 2100, respectively). By 2050, these differences are much smaller and negligible over Antarctica in austral spring. Differences in future tropospheric column ozone are mainly caused by differences in methane concentrations and stratospheric input, leading to ~10 DU increases compared to 2000 in RCP 8.5. Large variations in stratospheric ozone particularly in CMIP5 models with interactive chemistry drive correspondingly large variations in lower stratospheric temperature trends. The results also illustrate that future Southern Hemisphere summertime circulation changes are controlled by both the ozone recovery rate and the rate of GHG increases, emphasizing the importance of simulating and taking into account ozone forcings when examining future climate projections. more...
- Published
- 2013
38. Modeling the present and future impact of aviation on climate: an AOGCM approach with online coupled chemistry
- Author
-
Huszar, P., primary, Teyssèdre, H., additional, Michou, M., additional, Voldoire, A., additional, Olivié, D. J. L., additional, Saint-Martin, D., additional, Cariolle, D., additional, Senesi, S., additional, Salas Y Melia, D., additional, Alias, A., additional, Karcher, F., additional, Ricaud, P., additional, and Halenka, T., additional more...
- Published
- 2013
- Full Text
- View/download PDF
39. Quantifying the sources of spread in climate change experiments
- Author
-
Geoffroy, O., primary, Saint‐Martin, D., additional, and Ribes, A., additional
- Published
- 2012
- Full Text
- View/download PDF
40. How realistic are air quality hindcasts driven by forcings from climate model simulations?
- Author
-
Lacressonnière, G., primary, Peuch, V.-H., additional, Arteta, J., additional, Josse, B., additional, Joly, M., additional, Marécal, V., additional, Saint Martin, D., additional, Déqué, M., additional, and Watson, L., additional more...
- Published
- 2012
- Full Text
- View/download PDF
41. Modeling the climate impact of road transport, maritime shipping and aviation over the period 1860–2100 with an AOGCM
- Author
-
Olivié, D. J. L., primary, Cariolle, D., additional, Teyssèdre, H., additional, Salas, D., additional, Voldoire, A., additional, Clark, H., additional, Saint-Martin, D., additional, Michou, M., additional, Karcher, F., additional, Balkanski, Y., additional, Gauss, M., additional, Dessens, O., additional, Koffi, B., additional, and Sausen, R., additional more...
- Published
- 2012
- Full Text
- View/download PDF
42. The CNRM-CM5.1 global climate model: description and basic evaluation
- Author
-
Voldoire, A., primary, Sanchez-Gomez, E., additional, Salas y Mélia, D., additional, Decharme, B., additional, Cassou, C., additional, Sénési, S., additional, Valcke, S., additional, Beau, I., additional, Alias, A., additional, Chevallier, M., additional, Déqué, M., additional, Deshayes, J., additional, Douville, H., additional, Fernandez, E., additional, Madec, G., additional, Maisonnave, E., additional, Moine, M.-P., additional, Planton, S., additional, Saint-Martin, D., additional, Szopa, S., additional, Tyteca, S., additional, Alkama, R., additional, Belamari, S., additional, Braun, A., additional, Coquart, L., additional, and Chauvin, F., additional more...
- Published
- 2012
- Full Text
- View/download PDF
43. A new version of the CNRM Chemistry-Climate Model, CNRM-CCM: description and improvements from the CCMVal-2 simulations
- Author
-
Michou, M., primary, Saint-Martin, D., additional, Teyssèdre, H., additional, Alias, A., additional, Karcher, F., additional, Olivié, D., additional, Voldoire, A., additional, Josse, B., additional, Peuch, V.-H., additional, Clark, H., additional, Lee, J. N., additional, and Chéroux, F., additional more...
- Published
- 2011
- Full Text
- View/download PDF
44. Modeling the climate impact of road transport, maritime shipping and aviation over the period 1860–2100 with an AOGCM
- Author
-
Olivié, D. J. L., primary, Cariolle, D., additional, Teyssèdre, H., additional, Salas, D., additional, Voldoire, A., additional, Clark, H., additional, Saint-Martin, D., additional, Michou, M., additional, Karcher, F., additional, Balkanski, Y., additional, Gauss, M., additional, Dessens, O., additional, Koffi, B., additional, and Sausen, R., additional more...
- Published
- 2011
- Full Text
- View/download PDF
45. Anthropogenic forcing of the Northern Annular Mode in CCMVal‐2 models
- Author
-
Morgenstern, O., primary, Akiyoshi, H., additional, Bekki, S., additional, Braesicke, P., additional, Butchart, N., additional, Chipperfield, M. P., additional, Cugnet, D., additional, Deushi, M., additional, Dhomse, S. S., additional, Garcia, R. R., additional, Gettelman, A., additional, Gillett, N. P., additional, Hardiman, S. C., additional, Jumelet, J., additional, Kinnison, D. E., additional, Lamarque, J.‐F., additional, Lott, F., additional, Marchand, M., additional, Michou, M., additional, Nakamura, T., additional, Olivié, D., additional, Peter, T., additional, Plummer, D., additional, Pyle, J. A., additional, Rozanov, E., additional, Saint‐Martin, D., additional, Scinocca, J. F., additional, Shibata, K., additional, Sigmond, M., additional, Smale, D., additional, Teyssèdre, H., additional, Tian, W., additional, Voldoire, A., additional, and Yamashita, Y., additional more...
- Published
- 2010
- Full Text
- View/download PDF
46. A new tropospheric and stratospheric Chemistry and Transport Model MOCAGE-Climat for multi-year studies: evaluation of the present-day climatology and sensitivity to surface processes
- Author
-
Teyssèdre, H., primary, Michou, M., additional, Clark, H. L., additional, Josse, B., additional, Karcher, F., additional, Olivié, D., additional, Peuch, V.-H., additional, Saint-Martin, D., additional, Cariolle, D., additional, Attié, J.-L., additional, Nédélec, P., additional, Ricaud, P., additional, Thouret, V., additional, van der A, R. J., additional, Volz-Thomas, A., additional, and Chéroux, F., additional more...
- Published
- 2007
- Full Text
- View/download PDF
47. A new chemistry-climate tropospheric and stratospheric model MOCAGE-Climat: evaluation of the present-day climatology and sensitivity to surface processes
- Author
-
Teyssèdre, H., primary, Michou, M., additional, Clark, H. L., additional, Josse, B., additional, Karcher, F., additional, Olivié, D., additional, Peuch, V.-H., additional, Saint-Martin, D., additional, Cariolle, D., additional, Attié, J.-L., additional, Ricaud, P., additional, van der A, R. J., additional, and Chéroux, F., additional more...
- Published
- 2007
- Full Text
- View/download PDF
48. Development and evaluation of CNRM Earth-System model - CNRM-ESM1.
- Author
-
Séférian, R., Delire, C., Decharme, B., Voldoire, A., Salas y Melia, D., Chevallier, M., Saint-Martin, D., Aumont, O., Calvet, J.-C., Carrer, D., Douville, H., Franchistéguy, L., Joetzjer, E., and Sénési, S. more...
- Subjects
ATMOSPHERIC models ,CARBON cycle ,CLIMATE change models ,EARTH system science ,MODELS & modelmaking ,CLIMATOLOGY - Abstract
We introduce and document the first version of the Centre National de Recherches Météorologiques Earth system model (CNRM-ESM1). This model is based on the physical core of the CNRM-CM5 model and employs the Interactions between Soil, Bio-sphere and Atmosphere (ISBA) module and the Pelagic Interaction Scheme for Carbon and Ecosystem Studies (PISCES) as terrestrial and oceanic components of the global carbon cycle. We describe a preindustrial and 20th century climate simulation following the CMIP5 protocol. We detail how the various carbon reservoirs were initialized and analyze the behavior of the carbon cycle and its prominent physical drivers. CNRM-ESM1 reproduces satisfactorily several aspects of the modern carbon cycle. On land, the model reasonably captures the carbon cycling through vegetation and soil, resulting in a net terrestrial carbon sink of 2.2 PgCy
-1 . In the ocean, the large-scale distribution of hydrodynamical and biogeochemical tracers agrees well with a modern climatology from the World Ocean Atlas. The combination of biological and physical processes induces a net CO2 uptake of 1.7 PgCy-1 that falls within the range of recent estimates. Our analysis shows that the atmospheric climate of CNRM-ESM1 compares well with that of CNRM-CM5. Biases in precipitation and shortwave radiation over the Tropics generate errors in gross primary productivity and ecosystem respiration. Compared to CNRM-CM5, the revised ocean-sea ice coupling has modified the sea-ice cover and ocean ventilation, unrealistically strengthening the flow of North Atlantic deep water (26.1±2 Sv). It results in an accumulation of anthropogenic carbon in the deep ocean. [ABSTRACT FROM AUTHOR] more...- Published
- 2015
- Full Text
- View/download PDF
49. Les frontières du social : nationales, transnationales, mondiales ?
- Author
-
Jenson, Jane, Boychuk, G., Deacon, B., Giraud, Isabelle, Hassenteufel, Patrick, Heinen, J., Palier, Bruno, Pierru, Frédéric, Portet, Stéphane, Saint-Martin, D., Schweyer, François-Xavier, Serre, Marina, Therien, J.P., Turcotte, S., Université Henri Poincaré - Nancy 1 (UHP), Centre de Recherches sur l'Action Politique en Europe (ARENES), Université de Rennes (UR)-Institut d'Études Politiques [IEP] - Rennes-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Centre National de la Recherche Scientifique (CNRS), Centre d'études européennes et de politique comparée (Sciences Po, CNRS) (CEE), Sciences Po (Sciences Po)-Centre National de la Recherche Scientifique (CNRS), Centre universitaire de recherches sur l'action publique et le politique. Epistémologie et Sciences sociales (CURAPP-ESS), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), ENSP Rennes, Laboratoire d'analyse des politiques sociales et sanitaires (LAPSS), École des Hautes Études en Santé Publique [EHESP] (EHESP), Physics Department, Bishop's University, Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut d'Études Politiques [IEP] - Rennes-École des Hautes Études en Santé Publique [EHESP] (EHESP)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université de Picardie Jules Verne (UPJV), Groupe d'étude de l'atmosphère météorologique (CNRM-GAME), Institut national des sciences de l'Univers (INSU - CNRS)-Météo France-Centre National de la Recherche Scientifique (CNRS), and Centre d'études européennes et de politique comparée (CEE) more...
- Subjects
Protection sociale ,Sécurité sociale ,Aide sociale ,Canada ,Banque mondiale ,Pauvreté ,Pologne ,ONU ,Prestation familiale ,Union Européenne ,Santé publique ,Système santé ,Amérique du Sud ,Education ,[SHS]Humanities and Social Sciences ,Politique emploi ,Dépense sociale ,Aide au développement ,Chili ,Etude comparée ,Financement ,Monde ,FMI ,Amérique du Nord ,Projet ,Parité ,Egalité chance ,[SHS.SOCIO]Humanities and Social Sciences/Sociology ,Coopération internationale ,Marché travail ,Recherche sociale ,Droit social communautaire ,OCDE ,Concurrence ,16. Peace & justice ,Etats Unis ,Organisation internationale travail ,Brésil ,Europe ,Politique sociale ,Droits femme ,Historique ,Lituanie ,Réforme ,ONG ,Argentine ,Partenariat ,Mondialisation - Abstract
International audience; Une vision de «la» mondialisation s’exprime dans la rue. À Seattle, à Prague, à Porto Allègre, à Québec, des foules manifestent leur opposition, leur rejet, leur haine à l’égard de la mondialisation économique, culturelle et sociale. Venues de partout, elles s’en prennent à une conception trop optimiste d’un monde dépourvu de frontières économiques et – très souvent – de frontières nationales et culturelles. Néanmoins, aux yeux des enthousiastes de la mondialisation ou de ses opposants, tout a changé depuis quelques années, ou quelques décennies. Les uns et les autres proposent donc des actions et des analyses allant « au-delà » des anciennes pratiques, au-delà des approches «dépassées» et des visions «rétrogrades». Pour eux, les frontières du social se sont déplacées.Loin d’affirmer que tout a changé et que tout doit être repensé, les auteurs des articles présentés dans ce numéro de Lien social et Politiques-RIAC posent sur la mondialisation un diagnostic plus nuancé. Dans une série d’études empiriques minutieuses consacrées aux politiques et aux acteurs du domaine social en Europe, en Amérique du Nord et en Amérique latine, nos collaborateurs et collaboratrices expriment des réserves relativement à l’impact des changements attribués à la «mondialisation» sur les processus sous-jacents à l’élaboration des politiques sociales, sur les acteurs qui y participent et sur les résultats qui en découlent. À leurs yeux, seule une analyse fouillée peut permettre de délimiter les vraies frontières du social et de déterminer si elles débordent, désormais, les espaces nationaux. (Intro.) more...
- Published
- 2001
- Full Text
- View/download PDF
50. Identification of metalloporphyrins by third-derivative UV/VIS diode array spectroscopy
- Author
-
Freeman, D. H., primary, Saint Martin, D. Castres, additional, and Boreham, C. J., additional
- Published
- 1993
- Full Text
- View/download PDF
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.