1. Closed-form merging of parameter-efficient modules for Federated Continual Learning
- Author
-
Salami, Riccardo, Buzzega, Pietro, Mosconi, Matteo, Bonato, Jacopo, Sabetta, Luigi, and Calderara, Simone
- Subjects
Computer Science - Machine Learning ,Computer Science - Artificial Intelligence - Abstract
Model merging has emerged as a crucial technique in Deep Learning, enabling the integration of multiple models into a unified system while preserving performance and scalability. In this respect, the compositional properties of low-rank adaptation techniques (e.g., LoRA) have proven beneficial, as simple averaging LoRA modules yields a single model that mostly integrates the capabilities of all individual modules. Building on LoRA, we take a step further by imposing that the merged model matches the responses of all learned modules. Solving this objective in closed form yields an indeterminate system with A and B as unknown variables, indicating the existence of infinitely many closed-form solutions. To address this challenge, we introduce LoRM, an alternating optimization strategy that trains one LoRA matrix at a time. This allows solving for each unknown variable individually, thus finding a unique solution. We apply our proposed methodology to Federated Class-Incremental Learning (FCIL), ensuring alignment of model responses both between clients and across tasks. Our method demonstrates state-of-the-art performance across a range of FCIL scenarios.
- Published
- 2024