43 results on '"Salles, Audrey"'
Search Results
2. High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation
- Author
-
Laine, Romain F., Heil, Hannah S., Coelho, Simao, Nixon-Abell, Jonathon, Jimenez, Angélique, Wiesner, Theresa, Martínez, Damián, Galgani, Tommaso, Régnier, Louise, Stubb, Aki, Follain, Gautier, Webster, Samantha, Goyette, Jesse, Dauphin, Aurelien, Salles, Audrey, Culley, Siân, Jacquemet, Guillaume, Hajj, Bassam, Leterrier, Christophe, and Henriques, Ricardo
- Published
- 2023
- Full Text
- View/download PDF
3. MiniBAR/GARRE1 is a dual Rac and Rab effector required for ciliogenesis
- Author
-
Serres, Murielle P., Shaughnessy, Ronan, Escot, Sophie, Hammich, Hussein, Cuvelier, Frédérique, Salles, Audrey, Rocancourt, Murielle, Verdon, Quentin, Gaffuri, Anne-Lise, Sourigues, Yannick, Malherbe, Gilles, Velikovsky, Leonid, Chardon, Florian, Sassoon, Nathalie, Tinevez, Jean-Yves, Callebaut, Isabelle, Formstecher, Etienne, Houdusse, Anne, David, Nicolas B., Pylypenko, Olena, and Echard, Arnaud
- Published
- 2023
- Full Text
- View/download PDF
4. HIV-1 budding requires cortical actin disassembly by the oxidoreductase MICAL1.
- Author
-
Serrano, Thomas, Casartelli, Nicoletta, Ghasemi, Foad, Wioland, Hugo, Cuvelier, Frédérique, Salles, Audrey, Moya-Nilges, Maryse, Welker, Lisa, Bernacchi, Serena, Ruff, Marc, Jégou, Antoine, Romet-Lemonne, Guillaume, Schwartz, Olivier, Frémont, Stéphane, and Echard, Arnaud
- Subjects
CELL membranes ,VIRAL envelopes ,CELL physiology ,F-actin ,ACTIN - Abstract
Many enveloped viruses bud from the plasma membrane that is tightly associated with a dense and thick actin cortex. This actin network represents a significant challenge for membrane deformation and scission, and how it is remodeled during the late steps of the viral cycle is largely unknown. Using superresolution microscopy, we show that HIV-1 buds in areas of the plasma membrane with low cortical F-actin levels. We find that the cellular oxidoreductase MICAL1 locally depolymerizes actin at budding sites to promote HIV-1 budding and release. Upon MICAL1 depletion, F-actin abnormally remains at viral budding sites, incompletely budded viruses accumulate at the plasma membrane and viral release is impaired. Remarkably, normal viral release can be restored in MICAL1-depleted cells by inhibiting Arp2/3-dependent branched actin networks. Mechanistically, we find that MICAL1 directly disassembles branched-actin networks and controls the timely recruitment of the Endosomal Sorting Complexes Required for Transport scission machinery during viral budding. In addition, the MICAL1 activator Rab35 is recruited at budding sites, functions in the same pathway as MICAL1, and is also required for viral release. This work reveals a role for oxidoreduction in triggering local actin depolymerization to control HIV-1 budding, a mechanism that may be widely used by other viruses. The debranching activity of MICAL1 could be involved beyond viral budding in various other cellular functions requiring local plasma membrane deformation. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Author Response: Caveolin-1 protects endothelial cells from extensive expansion of transcellular tunnel by stiffening the plasma membrane
- Author
-
Morel, Camille, primary, Lemerle, Eline, additional, Tsai, Feng-Ching, additional, Obadia, Thomas, additional, Srivastava, Nishit, additional, Marechal, Maud, additional, Salles, Audrey, additional, Albert, Marvin, additional, Stefani, Caroline, additional, Benito, Yvonne, additional, Vandenesch, François, additional, Lamaze, Christophe, additional, Vassilopoulos, Stéphane, additional, Piel, Matthieu, additional, Bassereau, Patricia, additional, Gonzalez-Rodriguez, David, additional, Leduc, Cécile, additional, and Lemichez, Emmanuel, additional
- Published
- 2024
- Full Text
- View/download PDF
6. Dynamic Growth and Shrinkage of the Salmonella-Containing Vacuole Determines the Intracellular Pathogen Niche
- Author
-
Stévenin, Virginie, Chang, Yuen-Yan, Le Toquin, Yoann, Duchateau, Magalie, Gianetto, Quentin Giai, Luk, Chak Hon, Salles, Audrey, Sohst, Victoria, Matondo, Mariette, Reiling, Norbert, and Enninga, Jost
- Published
- 2019
- Full Text
- View/download PDF
7. Staying on track – Keeping things running in a high‐end scientific imaging core facility.
- Author
-
Renaud, Oliver, Aulner, Nathalie, Salles, Audrey, Halidi, Nadia, Brunstein, Maia, Mallet, Adeline, Aumayr, Karin, Terjung, Stefan, Levy, Daniel, Lippens, Saskia, Verbavatz, Jean‐Marc, Heuser, Thomas, Santarella‐Mellwig, Rachel, Tinevez, Jean‐Yves, Woller, Tatiana, Botzki, Alexander, Cawthorne, Christopher, and Munck, Sebastian
- Subjects
LIFE sciences ,SERVICE contracts ,CONTRACTING out ,RESEARCH teams - Abstract
Modern life science research is a collaborative effort. Few research groups can single‐handedly support the necessary equipment, expertise and personnel needed for the ever‐expanding portfolio of technologies that are required across multiple disciplines in today's life science endeavours. Thus, research institutes are increasingly setting up scientific core facilities to provide access and specialised support for cutting‐edge technologies. Maintaining the momentum needed to carry out leading research while ensuring high‐quality daily operations is an ongoing challenge, regardless of the resources allocated to establish such facilities. Here, we outline and discuss the range of activities required to keep things running once a scientific imaging core facility has been established. These include managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals, or decommissioning, and continuously upskilling while balancing innovation and consolidation. LAY DESCRIPTION: Modern life science research is a team effort. Consequently, no single research group can support all the equipment, expertise and personnel required for today's life science research. Research institutes are setting up scientific core facilities to address this to provide access and specialised support for cutting‐edge technologies. Multiple resources exist to set up and evaluate a core facility. However, remaining cutting‐edge as a core facility while ensuring high‐quality daily operations is an ongoing challenge. Here, we discuss a range of activities required to keep things running once a scientific imaging core facility is set up. The main challenge is finding the balance between innovation and consolidation. In addition, we discuss the challenge of managing a wide range of equipment and users, handling repairs and service contracts, planning for equipment upgrades, renewals or decommissioning and continuously training personnel. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. Caveolin-1 protects endothelial cells from extensive expansion of transcellular tunnel by stiffening the plasma membrane
- Author
-
Morel, Camille, primary, Lemerle, Eline, additional, Tsai, Feng-Ching, additional, Obadia, Thomas, additional, Srivastava, Nishit, additional, Marechal, Maud, additional, Salles, Audrey, additional, Albert, Marvin, additional, Stefani, Caroline, additional, Benito, Yvonne, additional, Vandenesch, François, additional, Lamaze, Christophe, additional, Vassilopoulos, Stéphane, additional, Piel, Matthieu, additional, Bassereau, Patricia, additional, Gonzalez-Rodriguez, David, additional, Leduc, Cécile, additional, and Lemichez, Emmanuel, additional
- Published
- 2023
- Full Text
- View/download PDF
9. Fluorescence imaging host pathogen interactions: fifteen years benefit of hindsight…
- Author
-
Aulner, Nathalie, Danckaert, Anne, Fernandes, Julien, Nicola, Marie-Anne, Roux, Pascal, Salles, Audrey, Tinevez, Jean-Yves, and Shorte, Spencer L
- Published
- 2018
- Full Text
- View/download PDF
10. Intracellular offspring released from SFB filaments are flagellated
- Author
-
Nkamba, Iris, Mulet, Céline, Dubey, Gyanendra P., Gorgette, Olivier, Couesnon, Aurélie, Salles, Audrey, Moya-Nilges, Maryse, Jung, Vincent, Gaboriau-Routhiau, Valérie, Guerrera, Ida Chiara, Shima, Tatsuichiro, Umesaki, Yoshinori, Nigro, Giulia, Krijnse-Locker, Jacomina, Bérard, Marion, Cerf-Bensussan, Nadine, Sansonetti, Philippe J., and Schnupf, Pamela
- Published
- 2020
- Full Text
- View/download PDF
11. Author Correction: Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation
- Author
-
Chouaki Benmansour, Nassima, Ruminski, Kilian, Sartre, Anne-Marie, Phelipot, Marie-Claire, Salles, Audrey, Bergot, Elise, Wu, Ambroise, Chicanne, Gaëtan, Fallet, Mathieu, Brustlein, Sophie, Billaudeau, Cyrille, Formisano, Anthony, Mailfert, Sébastien, Payrastre, Bernard, Marguet, Didier, Brasselet, Sophie, Hamon, Yannick, and He, Hai-Tao
- Published
- 2020
- Full Text
- View/download PDF
12. The Flemmingsome reveals an ESCRT-to-membrane coupling via ALIX/syntenin/syndecan-4 required for completion of cytokinesis
- Author
-
Addi, Cyril, Presle, Adrien, Frémont, Stéphane, Cuvelier, Frédérique, Rocancourt, Murielle, Milin, Florine, Schmutz, Sandrine, Chamot-Rooke, Julia, Douché, Thibaut, Duchateau, Magalie, Giai Gianetto, Quentin, Salles, Audrey, Ménager, Hervé, Matondo, Mariette, Zimmermann, Pascale, Gupta-Rossi, Neetu, and Echard, Arnaud
- Published
- 2020
- Full Text
- View/download PDF
13. Caveolin-1 protects endothelial cells from extensive expansion of transcellular tunnel by stiffening the plasma membrane.
- Author
-
Morel, Camille, Lemerle, Eline, Feng-Ching Tsai, Obadia, Thomas, Srivastava, Nishit, Marechal, Maud, Salles, Audrey, Albert, Marvin, Stefani, Caroline, Benito, Yvonne, Vandenesch, François, Lamaze, Christophe, Vassilopoulos, Stéphane, Piel, Matthieu, Bassereau, Patricia, Gonzalez-Rodriguez, David, Leduc, Cecile, and Lemichez, Emmanuel
- Published
- 2024
- Full Text
- View/download PDF
14. MiniBAR/KIAA0355 is a dual Rac and Rab effector required for ciliogenesis
- Author
-
Shaughnessy, Ronan, primary, Serres, Murielle, additional, Escot, Sophie, additional, Hammich, Hussein, additional, Cuvelier, Frédérique, additional, Salles, Audrey, additional, Rocancourt, Murielle, additional, Verdon, Quentin, additional, Gaffuri, Anne-Lise, additional, Sourigues, Yannick, additional, Malherbe, Gilles, additional, Velikovsky, Leonid, additional, Chardon, Florian, additional, Tinevez, Jean-Yves, additional, Callebaut, Isabelle, additional, Formstecher, Etienne, additional, Houdusse, Anne, additional, David, Nicolas, additional, Pylypenko, Olena, additional, and Echard, Arnaud, additional
- Published
- 2023
- Full Text
- View/download PDF
15. CSB promoter downregulation via histone H3 hypoacetylation is an early determinant of replicative senescence
- Author
-
Crochemore, Clément, Fernández-Molina, Cristina, Montagne, Benjamin, Salles, Audrey, and Ricchetti, Miria
- Published
- 2019
- Full Text
- View/download PDF
16. α-Synuclein transfer between neurons and astrocytes indicates that astrocytes play a role in degradation rather than in spreading
- Author
-
Loria, Frida, Vargas, Jessica Y., Bousset, Luc, Syan, Sylvie, Salles, Audrey, Melki, Ronald, and Zurzolo, Chiara
- Published
- 2017
- Full Text
- View/download PDF
17. Adhesion to nanofibers drives cell membrane remodeling through one-dimensional wetting
- Author
-
Charles-Orszag, Arthur, Tsai, Feng-Ching, Bonazzi, Daria, Manriquez, Valeria, Sachse, Martin, Mallet, Adeline, Salles, Audrey, Melican, Keira, Staneva, Ralitza, Bertin, Aurélie, Millien, Corinne, Goussard, Sylvie, Lafaye, Pierre, Shorte, Spencer, Piel, Matthieu, Krijnse-Locker, Jacomine, Brochard-Wyart, Françoise, Bassereau, Patricia, and Duménil, Guillaume
- Published
- 2018
- Full Text
- View/download PDF
18. Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation
- Author
-
Chouaki Benmansour, Nassima, Ruminski, Kilian, Sartre, Anne-Marie, Phelipot, Marie-Claire, Salles, Audrey, Bergot, Elise, Wu, Ambroise, Chicanne, Gaëtan, Fallet, Mathieu, Brustlein, Sophie, Billaudeau, Cyrille, Formisano, Anthony, Mailfert, Sébastien, Payrastre, Bernard, Marguet, Didier, Brasselet, Sophie, Hamon, Yannick, and He, Hai-Tao
- Published
- 2018
- Full Text
- View/download PDF
19. A role for septin 2 in Drp1‐mediated mitochondrial fission
- Author
-
Pagliuso, Alessandro, Tham, To Nam, Stevens, Julia K, Lagache, Thibault, Persson, Roger, Salles, Audrey, Olivo‐Marin, Jean‐Christophe, Oddos, Stéphane, Spang, Anne, Cossart, Pascale, and Stavru, Fabrizia
- Published
- 2016
- Full Text
- View/download PDF
20. Caveolin-1 protects endothelial cells from extensive expansion of transcellular tunnel by stiffening the plasma membrane
- Author
-
Morel, Camille, primary, Lemerle, Eline, additional, Tsai, Feng-Ching, additional, Obadia, Thomas, additional, Srivastava, Nishit, additional, Marechal, Maud, additional, Salles, Audrey, additional, Albert, Marvin, additional, Stefani, Caroline, additional, Benito, Yvonne, additional, Vandenesch, François, additional, Lamaze, Christophe, additional, Vassilopoulos, Stéphane, additional, Piel, Matthieu, additional, Bassereau, Patricia, additional, Gonzalez-Rodriguez, David, additional, Leduc, Cécile, additional, and Lemichez, Emmanuel, additional
- Published
- 2022
- Full Text
- View/download PDF
21. The viral restriction factor tetherin/BST2 tethers cytokinetic midbody remnants to the cell surface
- Author
-
Presle, Adrien, Frémont, Stéphane, Salles, Audrey, Commere, Pierre-Henri, Sassoon, Nathalie, Berlioz-Torrent, Clarisse, Gupta-Rossi, Neetu, and Echard, Arnaud
- Published
- 2021
- Full Text
- View/download PDF
22. Redistribution of FLAgellar Member 8 during the trypanosome life cycle: Consequences for cell fate prediction
- Author
-
Calvo‐Álvarez, Estefanía, primary, Bonnefoy, Serge, additional, Salles, Audrey, additional, Benson, Fiona E., additional, McKean, Paul G., additional, Bastin, Philippe, additional, and Rotureau, Brice, additional
- Published
- 2021
- Full Text
- View/download PDF
23. Redistribution of FLAgellar Member 8 during the trypanosome life cycle:Consequences for cell fate prediction
- Author
-
Calvo-Álvarez, Estefanía, Bonnefoy, Serge, Salles, Audrey, Benson, Fiona E, McKean, Paul G, Bastin, Philippe, Rotureau, Brice, Calvo-Álvarez, Estefanía, Bonnefoy, Serge, Salles, Audrey, Benson, Fiona E, McKean, Paul G, Bastin, Philippe, and Rotureau, Brice
- Abstract
The single flagellum of African trypanosomes is essential in multiple aspects of the parasites' development. The FLAgellar Member 8 protein (FLAM8), localised to the tip of the flagellum in cultured insect forms of Trypanosoma brucei, was identified as a marker of the locking event that controls flagellum length. Here, we investigated whether FLAM8 could also reflect the flagellum maturation state in other parasite cycle stages. We observed that FLAM8 distribution extended along the entire flagellar cytoskeleton in mammalian-infective forms. Then, a rapid FLAM8 concentration to the distal tip occurs during differentiation into early insect forms, illustrating the remodelling of an existing flagellum. In the tsetse cardia, FLAM8 further localises to the entire length of the new flagellum during an asymmetric division. Strikingly, in parasites dividing in the tsetse midgut and in the salivary glands, the amount and distribution of FLAM8 in the new flagellum were seen to predict the daughter cell fate. We propose and discuss how FLAM8 could be considered a meta-marker of the flagellum stage and maturation state in trypanosomes.
- Published
- 2021
24. Redistribution of FLAgellar Member 8 during the trypanosome life cycle: consequences for cell fate prediction
- Author
-
Alvarez, Estefanía Calvo, primary, Bonnefoy, Serge, additional, Salles, Audrey, additional, Benson, Fiona E., additional, McKean, Paul G., additional, Bastin, Philippe, additional, and Rotureau, Brice, additional
- Published
- 2020
- Full Text
- View/download PDF
25. The Atlastin ER-shaping proteins facilitate Zika virus replication
- Author
-
Monel, Blandine, Rajah, Maaran Michael, Hafirassou, Mohamed-Lamine, Sid-Ahmed, Samy, Burlaud-Gaillard, Julien, Zhu, Peng-Peng, Nevers, Quentin, Buchrieser, Julian, Porrot, Françoise, Meunier, Cécile, Amraoui, Sonia, Chazal, Maxime, Salles, Audrey, Jouvenet, Nolwenn, Roingeard, Philippe, Blackstone, Craig, Amara, Ali, schwartz, olivier, Virus et Immunité - Virus and immunity, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Ecole doctorale Bio Sorbonne Paris Cité (BioSPC) (ED 157), Université Paris Diderot - Paris 7 (UPD7)-Université Paris Descartes - Paris 5 (UPD5), Génomes, biologie cellulaire et thérapeutiques (GenCellDi (UMR_S_944)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Collège de France (CdF (institution))-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Plateforme IBISA de Microscopie Electronique [CHRU de Tours] (UNIV Tours), Centre Hospitalier Régional Universitaire de Tours (CHRU Tours)-Université de Tours (UT), Cell Biology Section, Neurogenetics Branch [Bethesda], National Institute of Neurological Disorders and Stroke [Bethesda] (NINDS), National Institutes of Health [Bethesda] (NIH)-National Institutes of Health [Bethesda] (NIH), Génomique virale et vaccination, Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris], BioImagerie Photonique – Photonic BioImaging (UTechS PBI), Institut Pasteur [Paris], Centre Hospitalier Régional Universitaire de Tours (CHRU TOURS)-Université de Tours, Virus et Immunité - Virus and immunity (CNRS-UMR3569), Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Collège de France (CdF (institution))-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP), Virus et Immunité, Biologie cellulaire des infections virales, Collège de France (CdF)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Collège de France (CdF)-Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de Tours-Centre Hospitalier Régional Universitaire de Tours (CHRU TOURS), Technologie et Service BioImagerie Photonique – Photonic BioImaging (UTechS PBI), Centre de Ressources et de Recherche Technologique - Center for Technological Resources and Research (C2RT), and Institut Pasteur [Paris]-Institut Pasteur [Paris]
- Subjects
[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/Virology - Abstract
International audience; The endoplasmic reticulum (ER) is the site for Zika virus (ZIKV) replication and is central to the cytopathic effects observed in infected cells. ZIKV induces the formation of ER-derived large cytoplasmic vacuoles followed by “implosive” cell death. Little is known about the nature of the ER factors that regulate flavivirus replication. Atlastins (ATL1, -2, and -3) are dynamin-related GTPases that control the structure and the dynamics of the ER membrane. We show here that ZIKV replication is significantly decreased in the absence of ATL proteins. The appearance of infected cells is delayed, the levels of intracellular viral proteins and released virus are reduced, and the cytopathic effects are strongly impaired. We further show that ATL3 is recruited to viral replication sites and interacts with the nonstructural viral proteins NS2A and NS2B3. Thus, proteins that shape and maintain the ER tubular network ensure efficient ZIKV replication.IMPORTANCE Zika virus (ZIKV) is an emerging virus associated with Guillain-Barré syndrome, and fetal microcephaly as well as other neurological complications. There is no vaccine or specific antiviral treatment against ZIKV. We found that endoplasmic reticulum (ER)-shaping atlastin proteins (ATL1, -2, and -3), which induce ER membrane fusion, facilitate ZIKV replication. We show that ATL3 is recruited to the viral replication site and colocalize with the viral proteins NS2A and NS2B3. The results provide insights into host factors used by ZIKV to enhance its replication.
- Published
- 2019
- Full Text
- View/download PDF
26. Innate Immune Signals Induce Anterograde Endosome Transport Promoting MHC Class I Cross-Presentation
- Author
-
Beaune, Gregory, Blanch-Mercader, Carles, Douezan, Stephane, Dumond, Julien, Gonzalez-Rodriguez, David, Cuvelier, Damien, Ondarçuhu, Thierry, Sens, Pierre, Dufour, Sylvie, Murrell, Michael, Charles-Orszag, Arthur, Tsai, Feng-Ching, Bonazzi, Daria, Manriquez, Valeria, Sachse, Martin, Mallet, Adeline, Salles, Audrey, Melican, Keira, Staneva, Ralitza, Bertin, Aurélie, Millien, Corinne, Goussard, Sylvie, Lafaye, Pierre, Shorte, Spencer, Piel, Matthieu, Krijnse-Locker, Jacomine, Brochard-Wyart, Françoise, Bassereau, Patricia, Duménil, Guillaume, Weimershaus, Mirjana, Mauvais, Francois-Xavier, Saveanu, Loredana, Adiko, Cézaire, Babdor, Joel, Abramova, Anastasia, Montealegre, Sebastian, Lawand, Myriam, Evnouchidou, Irini, Huber, Katharina Julia, Chadt, Alexandra, Zwick, Markus, Vargas, Pablo, Dussiot, Michaël, Lennon-Dumenil, Ana Maria, Brocker, Thomas, Al-Hasani, Hadi, Van Endert, Peter, National Institute for Materials Science (NIMS), Physico-Chimie-Curie (PCC), Institut Curie-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut Curie-Université Pierre et Marie Curie - Paris 6 (UPMC), Centre d'élaboration de matériaux et d'études structurales (CEMES), Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut de Chimie de Toulouse (ICT-FR 2599), Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-Muséum national d'Histoire naturelle (MNHN)-Institut de Recherche pour le Développement (IRD)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université des Antilles (UA), Paris-Centre de Recherche Cardiovasculaire (PARCC - UMR-S U970), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Hôpital Européen Georges Pompidou [APHP] (HEGP), Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO)-Assistance publique - Hôpitaux de Paris (AP-HP) (APHP)-Hôpitaux Universitaires Paris Ouest - Hôpitaux Universitaires Île de France Ouest (HUPO), Institut Jacques Monod (IJM (UMR_7592)), Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Pathogénèse des Infections vasculaires, Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Microscopie ultrastructurale (plate-forme), Institut Pasteur [Paris], Imagopole (CITECH), Centre d'Immunologie de Marseille - Luminy (CIML), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Department of Neuroscience, Karolinska Institutet [Stockholm], Institut Curie, SAFT [Bordeaux], Société des accumulateurs fixes et de traction (SAFT), Ingénierie des Anticorps (plate-forme) - Antibody Engineering (Platform), Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Compartimentation et dynamique cellulaires (CDC), Microscopie ultrastructurale - Ultrapole (CITECH), Diabète de Type 1 : mécanismes et traitements immunologiques, Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de recherche sur l'Inflammation (CRI (UMR_S_1149 / ERL_8252 / U1149)), Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Centre de Recherche des Cordeliers (CRC), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Immunité et cancer, Institut Curie-Institut National de la Santé et de la Recherche Médicale (INSERM), Hémostase, bio-ingénierie et remodelage cardiovasculaires (LBPC), Université Paris 13 (UP13)-Université Paris Diderot - Paris 7 (UPD7)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7), Université Paris Diderot - Paris 7 (UPD7)-École pratique des hautes études (EPHE), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Curie [Paris], Université Paris Diderot - Paris 7 (UPD7)-Université Paris 13 (UP13)-Université Sorbonne Paris Cité (USPC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Galilée, and Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0301 basic medicine ,Male ,Endosome ,Antigen presentation ,Fc receptor ,Kinesins ,Endosomes ,Receptors, Fc ,[SDV.BC.BC]Life Sciences [q-bio]/Cellular Biology/Subcellular Processes [q-bio.SC] ,Microtubules ,General Biochemistry, Genetics and Molecular Biology ,03 medical and health sciences ,Mice ,Cross-Priming ,Phagosomes ,Animals ,lcsh:QH301-705.5 ,Cells, Cultured ,ComputingMilieux_MISCELLANEOUS ,Phagosome ,Innate immune system ,biology ,Chemistry ,Histocompatibility Antigens Class I ,Cross-presentation ,Dendritic cell ,Immunity, Innate ,Cell biology ,Toll-Like Receptor 4 ,Protein Transport ,030104 developmental biology ,lcsh:Biology (General) ,rab GTP-Binding Proteins ,biology.protein ,Kinesin ,Female - Abstract
Summary: Both cross-presentation of antigens by dendritic cells, a key pathway triggering T cell immunity and immune tolerance, and survival of several pathogens residing in intracellular vacuoles are intimately linked to delayed maturation of vesicles containing internalized antigens and microbes. However, how early endosome or phagosome identity is maintained is incompletely understood. We show that Toll-like receptor 4 (TLR4) and Fc receptor ligation induces interaction of the GTPase Rab14 with the kinesin KIF16b mediating plus-end-directed microtubule transport of endosomes. As a result, Rab14 recruitment to phagosomes delays their maturation and killing of an internalized pathogen. Enhancing anterograde transport by overexpressing Rab14, promoting the GTP-bound Rab14 state, or inhibiting retrograde transport upregulates cross-presentation. Conversely, reducing Rab14 expression, destabilizing Rab14 endosomes, and inhibiting anterograde microtubule transport by Kif16b knockdown compromise cross-presentation. Therefore, regulation of early endosome trafficking by innate immune signals is a critical parameter in cross-presentation by dendritic cells. : Weimershaus et al. identify a molecular complex that controls the intracellular trafficking along microtubules of antigens internalized by dendritic cells. They show that this trafficking is regulated by innate immune signals and regulates presentation of internalized antigens to T lymphocytes. Keywords: antigen presentation, cross-presentation, dendritic cell, MHC class I, endosome, small GTPase, kinesin, Rab14
- Published
- 2018
- Full Text
- View/download PDF
27. Intracellular offspring released from SFB filaments are flagellated
- Author
-
Nkamba, Iris, primary, Mulet, Céline, additional, Dubey, Gyanendra P., additional, Gorgette, Olivier, additional, Couesnon, Aurélie, additional, Salles, Audrey, additional, Moya-Nilges, Maryse, additional, Jung, Vincent, additional, Gaboriau-Routhiau, Valérie, additional, Guerrera, Ida Chiara, additional, Shima, Tatsuichiro, additional, Umesaki, Yoshinori, additional, Nigro, Giulia, additional, Krijnse-Locker, Jacomina, additional, Bérard, Marion, additional, Cerf-Bensussan, Nadine, additional, Sansonetti, Philippe J., additional, and Schnupf, Pamela, additional
- Published
- 2019
- Full Text
- View/download PDF
28. Atlastin Endoplasmic Reticulum-Shaping Proteins Facilitate Zika Virus Replication
- Author
-
Monel, Blandine, primary, Rajah, Maaran Michael, additional, Hafirassou, Mohamed Lamine, additional, Sid Ahmed, Samy, additional, Burlaud-Gaillard, Julien, additional, Zhu, Peng-Peng, additional, Nevers, Quentin, additional, Buchrieser, Julian, additional, Porrot, Françoise, additional, Meunier, Cécile, additional, Amraoui, Sonia, additional, Chazal, Maxime, additional, Salles, Audrey, additional, Jouvenet, Nolwenn, additional, Roingeard, Philippe, additional, Blackstone, Craig, additional, Amara, Ali, additional, and Schwartz, Olivier, additional
- Published
- 2019
- Full Text
- View/download PDF
29. Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation
- Author
-
Chouaki-Benmansour, Nassima, Ruminski, Kilian, Sartre, Anne-Marie, Phelipot, Marie-Claire, Salles, Audrey, Bergot, Elise, Wu, Ambroise, Chicanne, Gaëtan, Fallet, Mathieu, Brustlein, Sophie, Billaudeau, Cyrille, Formisano, Anthony, Mailfert, Sébastien, Payrastre, Bernard, Marguet, Didier, Brasselet, Sophie, He, Hai-Tao, and Hamon, Yannick
- Abstract
Phosphoinositides (PIs) play important roles in numerous membrane-based cellular activities. However, their involvement in the mechanism of T cell receptor (TCR) signal transduction across the plasma membrane (PM) is poorly defined. Here, we investigate their role, and in particular that of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in TCR PM dynamics and activity in a mouse T-cell hybridoma upon ectopic expression of a PM-localized inositol polyphosphate-5-phosphatase (Inp54p). We observed that dephosphorylation of PI(4,5)P2 by the phosphatase increased the TCR/CD3 complex PM lateral mobility prior stimulation. The constitutive and antigen-elicited CD3 phosphorylation as well as the antigen-stimulated early signaling pathways were all found to be significantly augmented in cells expressing the phosphatase. Using state-of-the-art biophotonic approaches, we further showed that PI(4,5)P2 dephosphorylation strongly promoted the CD3e cytoplasmic domain unbinding from the PM inner leaflet in living cells, thus resulting in an increased CD3 availability for interactions with Lck kinase. This could significantly account for the observed effects of PI(4,5)P2 dephosphorylation on the CD3 phosphorylation. Our data thus suggest that PIs play a key role in the regulation of the TCR/CD3 complex dynamics and activation at the PM.
- Published
- 2018
30. Phosphoinositides regulate the TCR/CD3 complex membrane dynamics and activation
- Author
-
Chouaki-Benmansour, Nassima, Ruminski, Kilian, Sartre, Anne-Marie, Phelipot, Marie-Claire, Salles, Audrey, Bergot, Elise, Wu, Ambroise, Chicanne, Gaëtan, Fallet, Mathieu, Brustlein, Sophie, Billaudeau, Cyrille, Formisano, Anthony, Mailfert, Sébastien, Payrastre, Bernard, Marguet, Didier, Brasselet, Sophie, Hamon, Yannick, He, Hai-Tao, Centre d'Immunologie de Marseille - Luminy (CIML), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut FRESNEL (FRESNEL), Centre National de la Recherche Scientifique (CNRS)-École Centrale de Marseille (ECM)-Aix Marseille Université (AMU), Laboratoire de photonique et de nanostructures (LPN), Centre National de la Recherche Scientifique (CNRS), Centre de Physiopathologie Toulouse Purpan (CPTP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Sol Agro et hydrosystème Spatialisation (SAS), AGROCAMPUS OUEST, Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA), This work was supported by institutional grants from INSERM and CNRS and by specific grants from the Agence Nationale de la Recherche (ANR-10-BLAN-1509, ANR-11-LABX-Investissement d’Avenir Labex-INFORM, ANR-10-INBS-04-01 France Bio Imaging, ANR-10-BLAN-1509,ReceptOrient,Observation de l'activation du récepteur des lymphocytes T (TCR) en temps réel: suivi des orientations dynamiques du domaine intracellulaire du complexe récepteur dans les cellules vivantes par imagerie en fluorescence polarisée résolue de temps(2010), ANR-10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), Aix Marseille Université (AMU)-École Centrale de Marseille (ECM)-Centre National de la Recherche Scientifique (CNRS), Centre de Physiopathologie Toulouse Purpan ex IFR 30 et IFR 150 (CPTP), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST, ANR-10-INBS-04-01/10-INBS-0004,France-BioImaging,Développment d'une infrastructure française distribuée coordonnée(2010), Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Brasselet, Sophie, BLANC - Observation de l'activation du récepteur des lymphocytes T (TCR) en temps réel: suivi des orientations dynamiques du domaine intracellulaire du complexe récepteur dans les cellules vivantes par imagerie en fluorescence polarisée résolue de temps - - ReceptOrient2010 - ANR-10-BLAN-1509 - BLANC - VALID, Développment d'une infrastructure française distribuée coordonnée - - France-BioImaging2010 - ANR-10-INBS-0004 - INBS - VALID, Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Hybridomas ,[SPI.OPTI] Engineering Sciences [physics]/Optics / Photonic ,CD3 Complex ,T-Lymphocytes ,lcsh:R ,Cell Membrane ,Receptors, Antigen, T-Cell ,lcsh:Medicine ,Phosphatidylinositols ,Article ,Phosphoric Monoester Hydrolases ,Fungal Proteins ,Jurkat Cells ,Mice ,[SPI.OPTI]Engineering Sciences [physics]/Optics / Photonic ,Animals ,Humans ,lcsh:Q ,Phosphorylation ,lcsh:Science ,Author Correction - Abstract
International audience; Phosphoinositides (PIs) play important roles in numerous membrane-based cellular activities. However, their involvement in the mechanism of T cell receptor (TCR) signal transduction across the plasma membrane (PM) is poorly defined. Here, we investigate their role, and in particular that of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] in TCR PM dynamics and activity in a mouse T-cell hybridoma upon ectopic expression of a PM-localized inositol polyphosphate-5-phosphatase (Inp54p). We observed that dephosphorylation of PI(4,5)P2 by the phosphatase increased the TCR/CD3 complex PM lateral mobility prior stimulation. The constitutive and antigen-elicited CD3 phosphorylation as well as the antigen-stimulated early signaling pathways were all found to be significantly augmented in cells expressing the phosphatase. Using state-of-the-art biophotonic approaches, we further showed that PI(4,5)P2 dephosphorylation strongly promoted the CD3ε cytoplasmic domain unbinding from the PM inner leaflet in living cells, thus resulting in an increased CD3 availability for interactions with Lck kinase. This could significantly account for the observed effects of PI(4,5)P2 dephosphorylation on the CD3 phosphorylation. Our data thus suggest that PIs play a key role in the regulation of the TCR/CD3 complex dynamics and activation at the PM.
- Published
- 2017
- Full Text
- View/download PDF
31. Adhesion to nanofibers drives cell membrane remodeling through 1D wetting
- Author
-
Charles-Orszag, Arthur, primary, Tsai, Feng-Ching, additional, Bonazzi, Daria, additional, Manriquez, Valeria, additional, Sachse, Martin, additional, Mallet, Adeline, additional, Salles, Audrey, additional, Melican, Keira, additional, Staneva, Ralitza, additional, Bertin, Aurélie, additional, Millien, Corinne, additional, Goussard, Sylvie, additional, Lafaye, Pierre, additional, Shorte, Spencer, additional, Piel, Matthieu, additional, Krijnse-Locker, Jacomine, additional, Brochard-Wyart, Françoise, additional, Bassereau, Patricia, additional, and Duménil, Guillaume, additional
- Published
- 2018
- Full Text
- View/download PDF
32. Imaging Intermediate Filaments and Microtubules with 2-dimensional Direct Stochastic Optical Reconstruction Microscopy
- Author
-
Leduc, Cécile, primary, Salles, Audrey, primary, Shorte, Spencer L., primary, and Etienne-Manneville, Sandrine, primary
- Published
- 2018
- Full Text
- View/download PDF
33. ZOLA 3D, single molecule microscope technological transfer from research lab to ISO 9001 core facility
- Author
-
Gregor, Ingo, Koberling, Felix, Erdmann, Rainer, Gosselin, Yumi, Lelek, Mickael, Salles, Audrey, Zimmer, Christophe, Shorte, Spencer, and Esposito, Elric
- Published
- 2024
- Full Text
- View/download PDF
34. Drosophila cells use nanotube-like structures to transfer dsRNA and RNAi machinery between cells
- Author
-
Karlikow, Margot, primary, Goic, Bertsy, additional, Mongelli, Vanesa, additional, Salles, Audrey, additional, Schmitt, Christine, additional, Bonne, Isabelle, additional, Zurzolo, Chiara, additional, and Saleh, Maria-Carla, additional
- Published
- 2016
- Full Text
- View/download PDF
35. ICOS Ligation Recruits the p50{alpha} PI3K Regulatory Subunit to the Immunological Synapse.: ICOS-p50α interactions
- Author
-
Fos, Camille, Salles, Audrey, Lang, Valérie, Carrette, Florent, Audebert, Stéphane, Pastor, Sonia, Ghiotto, Marguerite, Olive, Daniel, Bismuth, Georges, Nunès, Jacques, Centre de Recherche en Cancérologie de Marseille (CRCM / U891 Inserm), Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Université de la Méditerranée - Aix-Marseille 2, Institut Cochin (UMR_S567 / UMR 8104), Université Paris Descartes - Paris 5 (UPD5)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Contrat INCa projet libre PL06-026
- Subjects
MESH: Signal Transduction ,MESH: Costimulation ,MESH: Protein Kinases/Phosphatases ,[SDV.IMM]Life Sciences [q-bio]/Immunology ,[SDV.CAN]Life Sciences [q-bio]/Cancer ,costimulatory molecules ,MESH: T Cells ,PI3K - Abstract
International audience; ICOS ligation in concert with TCR stimulation results in strong PI3K activation in T lymphocytes. The ICOS cytoplasmic tail contains an YMFM motif that binds the p85alpha subunit of class IA PI3K, similar to the YMNM motif of CD28, suggesting a redundant function of the two receptors in PI3K signaling. However, ICOS costimulation shows greater PI3K activity than CD28 in T cells. We show in this report that ICOS expression in activated T cells triggers the participation of p50alpha, one of the regulatory subunits of class IA PI3Ks. Using different T-APC cell conjugate systems, we report that p50alpha accumulates at the immunological synapse in activated but not in resting T cells. Our results demonstrate that ICOS membrane expression is involved in this process and that p50alpha plasma membrane accumulation requires a functional YMFM Src homology 2 domain-binding motif in ICOS. We also show that ICOS triggering with its ligand, ICOSL, induces the recruitment of p50alpha at the synapse of T cell/APC conjugates. In association with the p110 catalytic subunit, p50alpha is known to carry a stronger lipid kinase activity compared with p85alpha. Accordingly, we observed that ICOS engagement results in a stronger activation of PI3K. Together, these findings provide evidence that p50alpha is likely a determining factor in ICOS-mediated PI3K activity in T cells. These results also suggest that a differential recruitment and activity of class IA PI3K subunits represents a novel mechanism in the control of PI3K signaling by costimulatory molecules.
- Published
- 2008
- Full Text
- View/download PDF
36. Barcoding T Cell Calcium Response Diversity with Methods for Automated and Accurate Analysis of Cell Signals (MAAACS)
- Author
-
Salles, Audrey, primary, Billaudeau, Cyrille, additional, Sergé, Arnauld, additional, Bernard, Anne-Marie, additional, Phélipot, Marie-Claire, additional, Bertaux, Nicolas, additional, Fallet, Mathieu, additional, Grenot, Pierre, additional, Marguet, Didier, additional, He, Hai-Tao, additional, and Hamon, Yannick, additional
- Published
- 2013
- Full Text
- View/download PDF
37. Preferential Transfer of Certain Plasma Membrane Proteins onto T and B Cells by Trogocytosis
- Author
-
Daubeuf, Sandrine, primary, Aucher, Anne, additional, Bordier, Christine, additional, Salles, Audrey, additional, Serre, Laurent, additional, Gaibelet, Gérald, additional, Faye, Jean-Charles, additional, Favre, Gilles, additional, Joly, Etienne, additional, and Hudrisier, Denis, additional
- Published
- 2010
- Full Text
- View/download PDF
38. Nanoscale Membrane Organization and Receptor Signaling in T- Lymphocytes
- Author
-
Hamon, Yannick, primary, Bernard, Anne-Marie, additional, Salles, Audrey, additional, Hawchar, Omar, additional, Marguet, Didier, additional, He, Hai-Tao, additional, and Guo, Xiao-Jun, additional
- Published
- 2008
- Full Text
- View/download PDF
39. A very rapid and simple assay based on trogocytosis to detect and measure specific T and B cell reactivity by flow cytometry
- Author
-
Puaux, Anne‐Laure, primary, Campanaud, Julie, additional, Salles, Audrey, additional, Préville, Xavier, additional, Timmerman, Benedikt, additional, Joly, Etienne, additional, and Hudrisier, Denis, additional
- Published
- 2006
- Full Text
- View/download PDF
40. The Flemmingsome reveals an ESCRT-to-membrane coupling via ALIX/syntenin/syndecan-4 required for completion of cytokinesis
- Author
-
Quentin Giai Gianetto, Neetu Gupta-Rossi, Mariette Matondo, Stéphane Frémont, Frédérique Cuvelier, Audrey Salles, Julia Chamot-Rooke, Hervé Ménager, Florine Milin, Sandrine Schmutz, Cyril Addi, Murielle Rocancourt, Magalie Duchateau, Arnaud Echard, Thibaut Douché, Adrien Presle, Pascale Zimmermann, Trafic membranaire et Division cellulaire - Membrane Traffic and Cell Division, Institut Pasteur [Paris]-Centre National de la Recherche Scientifique (CNRS), Collège doctoral [Sorbonne universités], Sorbonne Université (SU), Cytometrie et Biomarqueurs – Cytometry and Biomarkers (UTechS CB), Institut Pasteur [Paris], Spectrométrie de Masse pour la Biologie – Mass Spectrometry for Biology (UTechS MSBio), Institut Pasteur [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Plateforme de Protéomique / Proteomics platform, Institut Pasteur [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris]-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Hub Bioinformatique et Biostatistique - Bioinformatics and Biostatistics HUB, BioImagerie Photonique – Photonic BioImaging (UTechS PBI), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Aix Marseille Université (AMU), Catholic University of Leuven - Katholieke Universiteit Leuven (KU Leuven), This work has been supported by Institut Pasteur, CNRS, and ANR (AbCyStem, Cytosign) to A.E. C.A. received a fellowship from the Doctoral School Complexité du Vivant ED515, contrat n° 2412/2016 and AMX. A.P. received a fellowship from the Doctoral School Complexité du Vivant ED515, contrat n°2611 bis/2016 and Fondation ARC pour la recherche sur le cancer (DOC20190508876)., We thank R. Basto, G. Hickson, J. Mathieu, J.-R. Huyhn, R. Shaughnessy, M. Serres, and T. Wai for critical reading of the paper, the Echard Lab members for helpful discussions, the Recombinant antibodies platform (TAb-IP, Institut Curie, Paris) and the DSHB (University of Iowa) for antibodies. GFP-MKLP2 cells were from the Hyman Lab MPI-MCBG Dresden45., UTechS PBI is part of the France–BioImaging infrastructure network (FBI) supported by the French National Research Agency (ANR-10-INSB-04, Investments for the Future), and acknowledges support from ANR/FBI and the Région Ile-de-France (program 'Domaine d’Intérêt Majeur-Malinf') for the use of the Zeiss LSM 780 Elyra PS1 microscope. We thank P.H. Commere from the Utechs CB, Institut Pasteur for FACS sorting., Institut Pasteur [Paris] (IP)-Centre National de la Recherche Scientifique (CNRS), Collège Doctoral, Institut Pasteur [Paris] (IP), Institut Pasteur [Paris] (IP)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut Pasteur [Paris] (IP)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Pasteur [Paris] (IP)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Aix Marseille Université (AMU)-Institut Paoli-Calmettes, Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Fédération nationale des Centres de lutte contre le Cancer (FNCLCC)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), and Salles, Audrey
- Subjects
0301 basic medicine ,Syntenins ,SYNDECAN ,[SDV]Life Sciences [q-bio] ,General Physics and Astronomy ,Cell Cycle Proteins ,Plasma protein binding ,ABSCISSION ,0302 clinical medicine ,ALIX ,SYNTENIN ,lcsh:Science ,Multidisciplinary ,Chemistry ,MOLECULAR-MECHANISMS ,Transmembrane protein ,3. Good health ,Cell biology ,[SDV] Life Sciences [q-bio] ,Multidisciplinary Sciences ,Midbody ,Science & Technology - Other Topics ,MACHINERY ,LATE STEPS ,Protein Binding ,Cell division ,Science ,BIOGENESIS ,SCISSION ,HIV Budding ,Endosomes ,macromolecular substances ,General Biochemistry, Genetics and Molecular Biology ,ESCRT ,Article ,03 medical and health sciences ,Abscission ,Humans ,Cytokinesis ,Organelles ,MIDBODY ,Science & Technology ,Endosomal Sorting Complexes Required for Transport ,Calcium-Binding Proteins ,Cell Membrane ,General Chemistry ,030104 developmental biology ,Membrane protein ,Syndecan-4 ,lcsh:Q ,030217 neurology & neurosurgery ,HeLa Cells - Abstract
Cytokinesis requires the constriction of ESCRT-III filaments on the side of the midbody, where abscission occurs. After ESCRT recruitment at the midbody, it is not known how the ESCRT-III machinery localizes to the abscission site. To reveal actors involved in abscission, we obtained the proteome of intact, post-abscission midbodies (Flemmingsome) and identified 489 proteins enriched in this organelle. Among these proteins, we further characterized a plasma membrane-to-ESCRT module composed of the transmembrane proteoglycan syndecan-4, ALIX and syntenin, a protein that bridges ESCRT-III/ALIX to syndecans. The three proteins are highly recruited first at the midbody then at the abscission site, and their depletion delays abscission. Mechanistically, direct interactions between ALIX, syntenin and syndecan-4 are essential for proper enrichment of the ESCRT-III machinery at the abscission site, but not at the midbody. We propose that the ESCRT-III machinery must be physically coupled to a membrane protein at the cytokinetic abscission site for efficient scission, uncovering common requirements in cytokinesis, exosome formation and HIV budding., ESCRT filaments drive the final abscission between two daughter cells but how they physically interact with the membrane is unclear. Using proteomics, the authors show that syndecan-4/syntenin/ALIX couples the ESCRT machinery to the abscission site and thus promotes efficient abscission.
- Published
- 2020
- Full Text
- View/download PDF
41. Intracellular offspring released from SFB filaments are flagellated
- Author
-
Valérie Gaboriau-Routhiau, Vincent Jung, Jacomina Krijnse-Locker, Olivier Gorgette, Philippe J. Sansonetti, Céline Mulet, Nadine Cerf-Bensussan, Marion Bérard, Giulia Nigro, Ida Chiara Guerrera, Pamela Schnupf, Aurélie Couesnon, Yoshinori Umesaki, Maryse Moya-Nilges, Tatsuichiro Shima, Gyanendra P. Dubey, Audrey Salles, Iris Nkamba, Laboratory of Intestinal Immunity (Equipe Inserm U1163), Imagine - Institut des maladies génétiques (IHU) (Imagine - U1163), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Cité (UPCité), UFR Sciences humaines et sociales [Sociétés et Humanités] - Université Paris Cité (UFR SHS UPCité ), Université Paris Cité (UPCité), Pathogénie microbienne moléculaire, Institut Pasteur [Paris] (IP)-Institut National de la Santé et de la Recherche Médicale (INSERM), Plateforme BioImagerie Ultrastructurale – Ultrastructural BioImaging Platform (UTechS UBI), Institut Pasteur [Paris] (IP), BioImagerie Photonique – Photonic BioImaging (UTechS PBI), Plateforme Protéomique Necker [SFR Necker] (PPN - 3P5), Structure Fédérative de Recherche Necker (SFR Necker - UMS 3633 / US24), Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), MICrobiologie de l'ALImentation au Service de la Santé (MICALIS), AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Yakult Central institute [Tokyo], Animalerie centrale (Plate-forme), Collège de France - Chaire Microbiologie et Maladies infectieuses, Collège de France (CdF (institution)), Laboratoire Interaction Hôte-Microbiote [Institut Necker Enfants Malades, Paris], Institut Necker Enfants-Malades (INEM - UM 111 (UMR 8253 / U1151)), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), French National Research Agency (ANR)ANR-10-INSB-04ERC Advanced Grant DECRYPT Pasteur LabEx IBEID Doctoral fellowship ERC Advanced Grant IMMUNOBIOTA Bill and Melinda Gates Foundation Grand Challenge Grant OPP1141322Pasteur Institute Paris Descartes Université Institut National de la Santé et de la Recherche Médicale (Inserm), We are grateful to the members of the Center for Gnotobiology of the Institut Pasteur (T. Angélique, E. Maranghi, M. Jacob and M.G. Lopez Dieguez) for technical support with the gnotobiotic mice and also thank C. Schmitt and R. Tournebize for technical assistance. We thank the UTechS PBI and UBI (Center for Resources and Research in Technology, Institut Pasteur, Paris), the France-BioImaging infrastructure network supported by the ANR (ANR-10-INSB-04, Investments for the Future) and the Région Ile-de-France (programme DIM-Malinf) for the use of the Zeiss LSM 780 Elyra PS1 microscope., ANR-16-CE92-0008,membrane dynamics,Rupture et réparation membranaire : stratégies d'assemblage virale(2016), European Project: 339579,EC:FP7:ERC,ERC-2013-ADG,DECRYPT(2014), European Project: 339407,EC:FP7:ERC,ERC-2013-ADG,IMMUNOBIOTA(2014), Salles, Audrey, Decrypting signals in the crypt. - DECRYPT - - EC:FP7:ERC2014-04-01 - 2019-03-31 - 339579 - VALID, Host-microbiota interactions across the gut immune system:lessons from early onset inflammatory bowel diseases and from gnotobiotic mice - IMMUNOBIOTA - - EC:FP7:ERC2014-03-01 - 2019-02-28 - 339407 - VALID, Université Paris Cité - UFR Sciences humaines et sociales [Sociétés et Humanités] (UPCité UFR SHS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Paris (UP), Université de Paris - Faculté des Sciences humaines et sociales [Sociétés et Humanités] (UP Faculté SHS), Université de Paris (UP), Institut Pasteur [Paris]-Institut National de la Santé et de la Recherche Médicale (INSERM), Institut Pasteur [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Chaire Microbiologie et Maladies infectieuses, and Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
- Subjects
Microbiology (medical) ,Offspring ,[SDV]Life Sciences [q-bio] ,Immunology ,Biology ,Bacterial physiology ,Applied Microbiology and Biotechnology ,Microbiology ,Article ,Cell Line ,03 medical and health sciences ,Bacteria, Anaerobic ,Mice ,Immune system ,Ileum ,Bacterial development ,Genetics ,Animals ,Humans ,Intestinal Mucosa ,030304 developmental biology ,0303 health sciences ,Segmented filamentous bacterium ,030306 microbiology ,Cell Biology ,Gene Expression Regulation, Bacterial ,Bacterial host response ,Cell biology ,Rats ,[SDV] Life Sciences [q-bio] ,Toll-Like Receptor 5 ,Flagella ,Intracellular ,Ileal epithelium ,Flagellin - Abstract
International audience; The gut commensal segmented filamentous bacterium (SFB) attaches to the ileal epithelium and potently stimulates the host immune system. Using transmission electron microscopy (TEM), we show that mouse and rat SFB are flagellated above the concave tip at the unicellular intracellular offspring (IO) stage and that flagellation occurs prior to full IO differentiation and release of IOs from SFB filaments. This finding adds a missing link to the SFB life cycle.
- Published
- 2019
- Full Text
- View/download PDF
42. A relay race of ESCRT-III paralogs drives cell division in a hyperthermophilic archaeon.
- Author
-
Liu J, Lelek M, Yang Y, Salles A, Zimmer C, Shen Y, and Krupovic M
- Abstract
Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon Saccharolobus islandicus . Our data suggest that ESCRT-III plays an active role during the early stage of membrane constriction during cytokinesis, whereas ESCRT-III-1 and ESCRT-III-2 are indispensable for the "pre-late" and "late" stages of cytokinesis, respectively. In the escrt-III-1 deletion strain, the division is blocked when the mid-cell constriction reaches ~30% of the initial cell diameter ("pre-late" stage), yielding "chain-like" cellular aggregates. Depletion of ESCRT-III-2 leads to the accumulation of cells connected through narrow membrane bridges ("late" stage), consistent with the key role of this protein in the final membrane abscission. We used 3D-single molecule localization microscopy to image ESCRT-III rings of different diameters and show that the decrease in the ESCRT-III ring diameter and membrane constriction are inconsistent with a mechanism exclusively based on spiraling of the ESCRT-III filaments. By contrast, the cone-shaped assemblies of ESCRT-III-1 and ESCRT-III-2 are consistent with spiral formation, highlighting the distinct roles of the three ESCRT-III proteins during the cytokinesis. We propose the "relay race" model, whereby the cytokinesis is achieved through a sequential and concerted action of different ESCRT machinery components., Importance: Two major cytokinesis mechanisms, rooted in contractile FtsZ and endosomal sorting complexes required for transport (ESCRT) rings, respectively, have emerged in the course of evolution. Whereas bacteria rely on the FtsZ-based mechanism, different lineages of archaea use either of the two systems, and eukaryotes have inherited the ESCRT-based cell division machinery from their archaeal ancestors. The mechanism of ESCRT-based cell division in archaea remains poorly understood and mechanistic studies on different archaeal model systems are essential to unravel the natural history of the ESCRT machinery. Here we investigate the interplay between three major ESCRT-III homologs during the division of a hyperthermophilic archaeon Saccharolobus islandicus and propose the "relay race" model of cytokinesis.
- Published
- 2024
- Full Text
- View/download PDF
43. ICOS ligation recruits the p50alpha PI3K regulatory subunit to the immunological synapse.
- Author
-
Fos C, Salles A, Lang V, Carrette F, Audebert S, Pastor S, Ghiotto M, Olive D, Bismuth G, and Nunès JA
- Subjects
- Amino Acid Motifs, Animals, Antigens, Differentiation, T-Lymphocyte genetics, Cells, Cultured, Chlorocebus aethiops, Cricetinae, Humans, Inducible T-Cell Co-Stimulator Protein, Lymphocyte Activation immunology, Lymphocytes enzymology, Lymphocytes immunology, Phosphatidylinositol 3-Kinases genetics, Phosphorylation, Protein Binding, Protein Subunits genetics, Protein Subunits metabolism, Protein Transport, Proto-Oncogene Proteins c-akt metabolism, Signal Transduction immunology, Antigens, Differentiation, T-Lymphocyte immunology, Antigens, Differentiation, T-Lymphocyte metabolism, Phosphatidylinositol 3-Kinases metabolism
- Abstract
ICOS ligation in concert with TCR stimulation results in strong PI3K activation in T lymphocytes. The ICOS cytoplasmic tail contains an YMFM motif that binds the p85alpha subunit of class IA PI3K, similar to the YMNM motif of CD28, suggesting a redundant function of the two receptors in PI3K signaling. However, ICOS costimulation shows greater PI3K activity than CD28 in T cells. We show in this report that ICOS expression in activated T cells triggers the participation of p50alpha, one of the regulatory subunits of class IA PI3Ks. Using different T-APC cell conjugate systems, we report that p50alpha accumulates at the immunological synapse in activated but not in resting T cells. Our results demonstrate that ICOS membrane expression is involved in this process and that p50alpha plasma membrane accumulation requires a functional YMFM Src homology 2 domain-binding motif in ICOS. We also show that ICOS triggering with its ligand, ICOSL, induces the recruitment of p50alpha at the synapse of T cell/APC conjugates. In association with the p110 catalytic subunit, p50alpha is known to carry a stronger lipid kinase activity compared with p85alpha. Accordingly, we observed that ICOS engagement results in a stronger activation of PI3K. Together, these findings provide evidence that p50alpha is likely a determining factor in ICOS-mediated PI3K activity in T cells. These results also suggest that a differential recruitment and activity of class IA PI3K subunits represents a novel mechanism in the control of PI3K signaling by costimulatory molecules.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.