1. Reduced bone mass in collagen prolyl 4-hydroxylase P4ha1+/-; P4ha2-/- compound mutant mice
- Author
-
Tolonen, J.-P. (Jussi-Pekka), Salo, A. M. (Antti M.), Finnilä, M. (Mikko), Aro, E. (Ellinoora), Karjalainen, E. (Emma), Ronkainen, V.-P. (Veli-Pekka), Drushinin, K. (Kati), Merceron, C. (Christophe), Izzi, V. (Valerio), Schipani, E. (Ernestina), and Myllyharju, J. (Johanna)
- Subjects
collagen ,bone μct ,genetic animal models ,osteoblasts ,bone histomorphometry - Abstract
Proper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures. We have previously shown that inactivation of the mouse P4ha1 gene, which codes for the catalytic α subunit of the major C-P4H isoform, is embryonic lethal, whereas inactivation of the P4ha2 gene produced only a minor phenotype. Instead, mice with a haploinsufficiency of the P4ha1 gene combined with a homozygous deletion of the P4ha2 gene present with a moderate chondrodysplasia due to transient cell death of the growth plate chondrocytes. Here, to further characterize the bone phenotype of the P4ha1+/−; P4ha2−/− mice, we have carried out gene expression analyses at whole-tissue and single-cell levels, biochemical analyses, microcomputed tomography, histomorphometric analyses, and second harmonic generation microscopy to show that C-P4H α subunit expression peaks early and that the C-P4H deficiency leads to reduced collagen amount, a reduced rate of bone formation, and a loss of trabecular and cortical bone volume in the long bones. The total osteoblast number in the proximal P4ha1+/−; P4ha2−/− tibia and the C-P4H activity in primary P4ha1+/−; P4ha2−/− osteoblasts were reduced, whereas the population of osteoprogenitor colony-forming unit fibroblasts was increased in the P4ha1+/−; P4ha2−/− marrow. Thus, the P4ha1+/−; P4ha2−/− mouse model recapitulates key aspects of a recently recognized congenital connective tissue disorder with short stature and bone dysplasia caused by biallelic variants of the human P4HA1 gene. Altogether, the data demonstrate the allele dose-dependent importance of the C-P4Hs to the developing organism and a threshold effect of C-P4H activity in the proper production of bone matrix.
- Published
- 2022