1. Laser-written scalable sapphire integrated photonics platform
- Author
-
Wang, Mohan, Salter, Patrick S., Payne, Frank P., Liu, Tongyu, Booth, Martin J., and Fells, Julian A. J.
- Subjects
Physics - Optics - Abstract
In this paper, we demonstrate the integration of photonic devices on sapphire substrates using multi-layer depressed cladding waveguides at both 780 nm and 1550 nm. The devices are up to 10-cm long and written at depths down to 400 um. The propagation losses for single-mode guiding are ~ 0.6 dB/cm at 780 nm and ~ 0.7 dB/cm at 1550 nm. A number of structures have been fabricated with simultaneous single-mode and polarization independent operation: evanescently coupled waveguide arrays, Y-branch splitters, Mach-Zehnder interferometers, and a 2x2 directional-coupler. All the devices were fabricated using adaptive optics-assisted femtosecond laser direct writing with a customized laser writing algorithm. This work enables the integration of single-mode sapphire photonics devices in a scalable manner, enabling many applications in communications, imaging, computing, and sensing.
- Published
- 2024