1. Long-Term Effects of Single-Dose Cephalosporin or Macrolide Use on the Prevalence of AmpC and Extended-Spectrum β-Lactamase Producing Escherichia coli in the Feces of Beef Cattle
- Author
-
Gizem Levent, Ashlynn Schlochtermeier, Javier Vinasco, Jenny Jennings, John Richeson, Samuel E. Ives, Keri N. Norman, Sara D. Lawhon, Guy H. Loneragan, and H. Morgan Scott
- Subjects
Escherichia coli ,ESBL ,AmpC ,feedlot cattle ,Biology (General) ,QH301-705.5 - Abstract
Extended-spectrum-β-lactamase (ESBL) and AmpC-lactamase-producing Enterobacteriaceae are serious public health threats. Due to an increasing number of reports of ESBL and AmpC producing Escherichia coli in agricultural settings, it is critical to understand the relationship between the use of two of the highest priority critically important human antibiotics (e.g., third generation cephalosporins [3GC] and macrolides) in food animals and their potential contribution to the selection of ESBL/AmpC E. coli. The objective of our randomized controlled feedlot trial was to measure the effects of ceftiofur crystalline-free acid and tulathromycin on 3GC resistant fecal E. coli populations in cattle before and at various time points after treatment up to and including at slaughter. Multi-level mixed-effects linear regression showed no effect of ceftiofur and tulathromycin on 3GC E. coli CFU counts at slaughter (Day 99); however, a significant (p < 0.05) population shift was observed from susceptible to 3GC resistant E. coli immediately after ceftiofur administration (Day 7). Among 799 fecal samples screened using selective media, 17.7% were ESBL/AmpC E. coli positive, which were further tested for phenotypic antibiotic susceptibility. The majority of the isolates from these plates were multidrug-resistant (94.3%) and expressed either AmpC (78.1%) or ESBL (28.1%) phenotype. A subset of isolates was whole-genome sequenced (n = 20) and identified to harbor chromosomal and/or plasmidal bla genes such as CMY-2, CTX-M, and TEM. Our findings show a time-dependent selection of antibiotics on 3GC-resistant E. coli. High prevalence of multidrug-resistant ESBL/AmpC E. coli found in cattle feces highlights the importance of prudent use of antibiotics in livestock.
- Published
- 2022
- Full Text
- View/download PDF