122 results on '"Samuel M. Clegg"'
Search Results
2. Studies of a Lacustrine‐Volcanic Mars Analog Field Site With Mars‐2020‐Like Instruments
- Author
-
Peter E. Martin, Bethany L. Ehlmann, Nancy H. Thomas, Roger C. Wiens, Joseph J. R. Hollis, Luther W. Beegle, Rohit Bhartia, Samuel M. Clegg, and Diana L. Blaney
- Subjects
Mars‐2020 ,Mars analog ,SuperCam ,Mastcam‐Z ,SHERLOC ,PIXL ,Astronomy ,QB1-991 ,Geology ,QE1-996.5 - Abstract
Abstract On the upcoming Mars‐2020 rover two remote sensing instruments, Mastcam‐Z and SuperCam, and two microscopic proximity science instruments, Scanning for Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) and Planetary Instrument for X‐ray Lithochemistry (PIXL), will collect compositional (mineralogy, chemistry, and organics) data essential for paleoenvironmental reconstruction. The synergies between and limitations of these instruments were evaluated via study of a Mars analog field site in the Mojave desert, using instruments approximating the data that will be returned by Mars‐2020. A ground truth data set was generated for comparison to validate the results. The site consists of a succession of clay‐rich mudstones of lacustrine origin, interbedded tuffs, a carbonate‐silica travertine deposit, and gypsiferous mudstone strata. The major geological units were mapped successfully using simulated Mars‐2020 data. Simulated Mastcam‐Z data identified unit boundaries and Fe‐bearing weathering products. Simulated SuperCam passive shortwave infrared and green Raman data were essential in identifying major mineralogical composition and changes in lacustrine facies at distance; this was possible even with spectrally downsampled passive IR data. Laser‐induced breakdown spectroscopy and simulated PIXL data discriminated and mapped major element chemistry. Simulated PIXL revealed millimeter‐scale zones enriched in zirconium, of interest for age dating. Scanning for SHERLOC‐like data mapped sulfate and carbonate at submillimeter scale; silicates were identified with increased laser pulses/spot or by averaging of hundreds of spectra. Fluorescence scans detected and mapped varied classes of organics in all samples, characterized further with follow‐on spatially targeted deep‐UV Raman spectra. Development of dedicated organics spectral libraries is needed to aid interpretation. Given these observations, the important units in the outcrop would be sampled and cached for sample return.
- Published
- 2020
- Full Text
- View/download PDF
3. Post-Landing Major Element Quantification Using SuperCam Laser Induced Breakdown Spectroscopy
- Author
-
Ryan B Anderson, Olivier Forni, Agnes Cousin, Roger C Wiens, Samuel M Clegg, Jens Frydenvang, Travis S J Gabriel, Ann M Ollila, Susanne Schroder, Olivier Beyssac, Erin Gibbons, David S Vogt, Elise Clave, Jose-Antonio Manrique, Carey Legett IV, Paolo Pilleri, Raymond T Newell, Joseph Sarao, Sylvestre Maurice, Gorka Arana, Karim Benzerara, Pernelle Bernardi, Sylvian Bernard, Bruno Bousquet, Adrian J Brown, Cesar-Alvarez Llamas, Baptiste Chide, Edward Cloutis, Jade Comellas, Stephanie Connell, Erwin Dehouck, Dorothea M Delapp, Ari Essunfeld, Cecile Fabre, Thierry C Fouchet, Cristina Garcia-Florentino, Laura Garcia-Gomez, Patrick Gasda, Olivier Gasnault, Elisabeth Hausrath, Nina L Lanza, Javier Laserna, Jeremie Lasue, Guillermo Lopez, Juan Manuel Madariaga, Lucia Mandon, Nicolas Mangold, Pierre-Yves Meslin, Anthony E Nelson, Horton Newsom, Adriana L Reyes-Newell, Scott Robinson, Fernando Rull, Shiv Sharma, Justin I Simon, Pablo Sobron, Imanol Torre Fernandez, Arya Udry, Dawn Venhaus, Scott M McLennan, Richard V Morris, and Bethany Ehlmann
- Subjects
Geosciences (General) - Abstract
The SuperCam instrument on the PerseveranceMars 2020 rover uses a pulsed 1064 nm laser to ablate targets at a distance and conduct laser induced breakdown spectroscopy (LIBS) by analyzing the light from the resulting plasma. SuperCam LIBS spectra are preprocessed to remove ambient light, noise, and the continuum signal present in LIBS observations. Prior to quantification, spectra are masked to remove noisier spectrometer regions andspectra are normalized to minimize signal fluctuations and effectsof target distance.In some cases, the spectra are also standardized or binned prior to quantification. To determine quantitative elemental compositionsof diverse geologic materials at Jezero crater, Mars, we use a suite of 1198 laboratory spectra of 334 well-characterized reference samples. The samples were selected to span a wide range of compositions and include typical silicate rocks, pure minerals (e.g.,silicates, sulfates, carbonates, oxides),more unusual compositions (e.g.,Mn oreand sodalite), andreplicates of the sintered SuperCam calibration targets (SCCTs) onboardthe rover. For each major element (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), the database was subdivided into five“folds” with similar distributions of the element of interest. One fold was held out as an independent test set, and the remaining fourfolds were used to optimize multivariate regression models relating the spectrum to the composition. We considered a variety of models, and selected several for further investigation for each element, based primarily on the root mean squared error of prediction (RMSEP) on the test set, when analyzed at 3m. In cases with several models of comparable performance at 3 m, we incorporated the SCCT performance at different distances to choose the preferred model. Shortly after landing on Mars and collecting initial spectra of geologic targets, we selected one model per element. Subsequently, with additional data from geologic targets, some models were revised to ensure results that are more consistent with geochemical constraints. The calibration discussed here is a snapshot of an ongoing effort to deliver the most accurate chemical compositions with SuperCam LIBS.
- Published
- 2021
- Full Text
- View/download PDF
4. Perseverance’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) Investigation
- Author
-
Rohit Bhartia, Luther W Beegle, Lauren DeFlores, William J Abbey, Joseph Razzell Hollis, Kyle Uckert, Brian Monacelli, Kenneth S Edgett, Megan R Kennedy, Margarite Sylvia, David Aldrich, Mark S Anderson, Sanford A Asher, Zachary J Bailey, Kerry Boyd, Aaron S Burton, Michael Caffrey, Michael J Calaway, Robert J Calvet, Bruce A Cameron, Michael A Caplinger, Brandi Carrier, Natalie Chen, Amy C Chen, Matthew J Clark, Samuel M Clegg, Pamela G Conrad, Moogega Cooper, Kristine N Davis, Bethany L Ehlmann, Linda J Facto, Marc D Fries, Daniel H Garrison, Denine Gasway, F Tony Ghaemi, Trevor G Graff, Kevin P Hand, Cathleen Harris, Jeffrey D Hein, Nicholas Heinz, Harrison Herzog, Eric B Hochberg, Andrew Houck, William F Hug, Elsa H Jensen, Linda Christine Kah, John A Kennedy, Robert Krylo, Johnathan Lam, Mark A Lindeman, Justin McGlown, John Michel, Ed Miller, Zachary Mills, Michelle E Minitti, Fai Mok, James D Moore, Kenneth H Nealson, Anthony Nelson, Raymond Newell, Brian E Nixon, Daniel A Nordman, Danielle L Nuding, Sonny M Orellana, Michael T Pauken, Glen Peterson, Randy Pollock, Heather Quinn, Claire Quinto, Michael A Ravine, Ray D Reid, Joe Riendeau, Amy J Ross, Joshua Sackos, Jacob A Schaffner, Mark A Schwochert, Molly O Shelton, Rufus Simon, Caroline L Smith, Pablo Sobron, Kimberly B Steadman, Andrew Steele, Dave Thiessen, Vinh D Tran, Tony Tsai, Michael Tuite, Eric Tung, Rami A Wehbe, Rachael Weinberg, Ryan H Weiner, Roger C Weins, Kenneth Williford, Chris Wollonciej, Yen-Hung Wu, R Aileen Yingst, and Jason A Zan
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) is a robotic arm-mounted instrument on NASA’s Perseverance rover. SHERLOC has two primary boresights. The Spectroscopy boresight generates spatially resolved chemical maps using fluorescence and Raman spectroscopy coupled to microscopic images (10.1 μm/pixel). The second boresight is a Wide Angle Topographic Sensor for Operations and eNgineering (WATSON); a copy of the Mars Science Laboratory (MSL) Mars Hand Lens Imager (MAHLI) that obtains color images from microscopic scales (∼13 μm/pixel) to infinity. SHERLOC Spectroscopy focuses a 40 μs pulsed deep UV neon-copper laser (248.6 nm), to a ∼100 μm spot on a target at a working distance of ∼48 mm. Fluorescence emissions from organics, and Raman scattered photons from organics and minerals, are spectrally resolved with a single diffractive grating spectrograph with a spectral range of 250 to ∼370 nm. Because the fluorescence and Raman regions are naturally separated with deep UV excitation (<250 nm), the Raman region ∼ 800 – 4000 cm−1 (250 to 273 nm) and the fluorescence region (274 to ∼370 nm) are acquired simultaneously without time gating or additional mechanisms. SHERLOC science begins by using an Autofocus Context Imager (ACI) to obtain target focus and acquire 10.1 μm/pixel greyscale images. Chemical maps of organic and mineral signatures are acquired by the orchestration of an internal scanning mirror that moves the focused laser spot across discrete points on the target surface where spectra are captured on the spectrometer detector. ACI images and chemical maps (< 100 μm/mapping pixel) will enable the first Mars in situ view of the spatial distribution and interaction between organics, minerals, and chemicals important to the assessment of potential biogenicity (containing CHNOPS). Single robotic arm placement chemical maps can cover areas up to 7x7 mm in area and, with the < 10 min acquisition time per map, larger mosaics are possible with arm movements. This microscopic view of the organic geochemistry of a target at the Perseverance field site, when combined with the other instruments, such as Mastcam-Z, PIXL, and SuperCam, will enable unprecedented analysis of geological materials for both scientific research and determination of which samples to collect and cache for Mars sample return.
- Published
- 2021
- Full Text
- View/download PDF
5. Optical calibration of the SuperCam instrument body unit spectrometers
- Author
-
Carey Legett, Raymond T. Newell, Adriana L. Reyes-Newell, Anthony E. Nelson, Pernelle Bernardi, Steven C. Bender, Olivier Forni, D. M. Venhaus, Samuel M. Clegg, A. M. Ollila, Paolo Pilleri, V. Sridhar, S. Maurice, and Roger C. Wiens
- Published
- 2022
- Full Text
- View/download PDF
6. A data analysis method to rapidly characterize gallium concentration in plutonium matrices using LIBS
- Author
-
Dung M. Vu, John D. Auxier, Elizabeth J. Judge, Kelly E. Aldrich, Brendan J. Gifford, Didier Saumon, Amanda J. Neukirch, Jerrad P. Auxier, James E. Barefield, Samuel M. Clegg, Ronald K. Martinez, Bryan C. Paulus, Lisa K. Fulks, and James P. Colgan
- Subjects
Instrumentation ,Spectroscopy ,Atomic and Molecular Physics, and Optics ,Analytical Chemistry - Published
- 2023
7. First detection of fluorine on Mars: Implications for Gale Crater's geochemistry
- Author
-
Olivier Forni, Michael Gaft, Michael J. Toplis, Samuel M. Clegg, Sylvestre Maurice, Roger C. Wiens, Nicolas Mangold, Olivier Gasnault, Violaine Sautter, Stéphane Le Mouélic, Pierre‐Yves Meslin, Marion Nachon, Rhonda E. McInroy, Ann M. Ollila, Agnès Cousin, John C. Bridges, Nina L. Lanza, and Melinda D. Dyar
- Published
- 2015
- Full Text
- View/download PDF
8. Mechanistic Study of the Production of NOx Gases from the Reaction of Copper with Nitric Acid
- Author
-
Enrique R. Batista, Samuel M. Clegg, Rebecca K. Carlson, and Ping Yang
- Subjects
chemistry.chemical_element ,Copper ,Inorganic Chemistry ,Metal ,chemistry.chemical_compound ,chemistry ,Chemical engineering ,Nitric acid ,Mechanism (philosophy) ,visual_art ,Scientific method ,visual_art.visual_art_medium ,Density functional theory ,Physical and Theoretical Chemistry ,Dissolution ,NOx - Abstract
Copper dissolution in nitric acid is a historic reaction playing a central role in many industrial processes, particularly for metal recovery from the electronics to nuclear industries. The mechanism through which this process occurs is debated. In order to better understand this process, quantum chemical calculations were performed to elucidate the key steps in the mechanism of copper dissolution in nitric acid. We combine both Kohn-Sham density functional theory and ab initio molecular dynamics simulations to understand the mechanism of the formation of the key products: NO2, HNO2, and NO. Our calculations suggest that the mechanisms of formation of NO2, HNO2, and NO are interconnected.
- Published
- 2020
9. Overview of the Morphology and Chemistry of Diagenetic Features in the Clay-Rich Glen Torridon Unit of Gale Crater, Mars
- Author
-
Patrick J. Gasda, Jade Comellas, Ari Essunfeld, Debarati Das, Alexander B. Bryk, Erwin Dehouck, Susanne P. Schwenzer, Laura Crossey, Kenneth Herkenhoff, Jeffrey R. Johnson, Horton Newsom, Nina L. Lanza, William Rapin, Walter Goetz, Pierre‐Yves Meslin, John C. Bridges, Ryan Anderson, Gael David, Stuart M. R. Turner, Michael T. Thorpe, Linda Kah, Jens Frydenvang, Rachel Kronyak, Gwénaël Caravaca, Ann Ollila, Stéphane Le Mouélic, Matthew Nellessen, Megan Hoffman, Deirdra Fey, Anges Cousin, Roger C. Wiens, Samuel M. Clegg, Sylvestre Maurice, Olivier Gasnault, Dorothea Delapp, Adriana Reyes‐Newell, Los Alamos National Laboratory (LANL), McGill University = Université McGill [Montréal, Canada], University of California [Berkeley] (UC Berkeley), University of California (UC), The Open University [Milton Keynes] (OU), The University of New Mexico [Albuquerque], US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS), Max-Planck-Gesellschaft, University of Leicester, Texas State University, NASA Johnson Space Center (JSC), NASA, The University of Tennessee [Knoxville], Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Malin Space Science Systems (MSSS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Max Planck Institute for Solar System Research (MPS), Laboratoire de Planétologie et Géosciences - Angers (LPG-ANGERS), and Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST)
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Geophysics ,ChemCam ,Space and Planetary Science ,Geochemistry and Petrology ,Earth and Planetary Sciences (miscellaneous) ,Mars Science Laboratory ,Glen Torridon ,Gale crater ,diagenesis ,Gale Crater ,Diagenesis - Abstract
International audience; The clay-rich Glen Torridon region of Gale crater, Mars, was explored between sols 2300 and 3007. Here, we analyzed the diagenetic features observed by Curiosity, including veins, cements, nodules, and nodular bedrock, using the ChemCam, Mastcam, and Mars Hand Lens Imager instruments. We discovered many diagenetic features in Glen Torridon, including dark-toned iron- and manganese-rich veins, magnesium- and fluorine-rich linear features, Ca-sulfate cemented bedrock, manganese-rich nodules, and iron-rich strata. We have characterized the chemistry and morphology of these features, which are most widespread in the higher stratigraphic members in Glen Torridon, and exhibit a wide range of chemistries. These discoveries are strong evidence for multiple generations of fluids from multiple chemical endmembers that likely underwent redox reactions to form some of these features. In a few cases, we may be able to use mineralogy and chemistry to constrain formation conditions of the diagenetic features. For example, the dark-toned veins likely formed in warmer, highly alkaline, and highly reducing conditions, while manganese-rich nodules likely formed in oxidizing and circumneutral conditions. We also hypothesize that an initial enrichment of soluble elements, including fluorine, occurred during hydrothermal alteration early in Gale crater history to account for elemental enrichment in nodules and veins. The presence of redox-active elements, including Fe and Mn, and elements required for life, including P and S, in these fluids is strong evidence for habitability of Gale crater groundwater. Hydrothermal alteration also has interesting implications for prebiotic chemistry during the earliest stages of the crater’s evolution and early Mars.
- Published
- 2022
10. Multiplexing of frequency-modulation spectroscopy by spread-spectrum codes, demonstrated in continuous-wave LIDAR
- Author
-
Samuel M. Clegg, K. M. Mertes, Michael D. Di Rosa, and Matthew T. Reiten
- Subjects
Physics ,Signal processing ,business.industry ,Ranging ,Multiplexing ,Atomic and Molecular Physics, and Optics ,Spread spectrum ,Lidar ,Optics ,Heterodyne detection ,business ,Absorption (electromagnetic radiation) ,Phase modulation ,Computer Science::Information Theory - Abstract
Frequency-modulation spectroscopy (FMS) is generally suited to code-division multiplexing, and we demonstrate that capacity in a form of continuous-wave LIDAR, utilizing a sharp CO2 absorption transition at 1.6 µm in simple ranging setups. The approach retains the advantages of FMS, including coherent detection and good rejection of broad absorption backgrounds. Extensions of this multiplexed approach to the continuous, simultaneous detection of several transitions would come by transmitting an encoded combination of frequency-modulated carriers, each tuned to detect a unique absorption transition. Signal analysis at the receiver involves a simple process of de-multiplexing that, in a general application, reveals targets at various distances and the absorption-related FMS signals in between.
- Published
- 2021
11. Quantification of manganese for ChemCam Mars and laboratory spectra using a multivariate model
- Author
-
Dorothea Delapp, Ann Ollila, Olivier Gasnault, Jens Frydenvang, Agnes Cousin, Nina Lanza, A. Reyes-Newell, Patrick J. Gasda, S. N. Lamm, Sylvestre Maurice, Roberta Ann Beal, Roger C. Wiens, Samuel M. Clegg, Ryan B. Anderson, Olivier Forni, Los Alamos National Laboratory (LANL), United States Geological Survey (USGS), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), and Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
010302 applied physics ,Detection limit ,Multivariate statistics ,Materials science ,Mean squared error ,010401 analytical chemistry ,Mineralogy ,Mars Exploration Program ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Standard deviation ,0104 chemical sciences ,Analytical Chemistry ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,13. Climate action ,0103 physical sciences ,Partial least squares regression ,Calibration ,Laser-induced breakdown spectroscopy ,Instrumentation ,Spectroscopy ,ComputingMilieux_MISCELLANEOUS - Abstract
We report a new calibration model for manganese using the laser-induced breakdown spectroscopy instrument that is part of the ChemCam instrument suite onboard the NASA Curiosity rover. The model has been trained using an expanded set of 523 manganese-bearing rock, mineral, metal ore, and synthetic standards. The optimal calibration model uses the Partial Least Squares (PLS) and Least Absolute Shrinkage and Selection Operator (LASSO) multivariate techniques, with a novel “double blending” technique. We determined the detection limit for manganese is 82 ppm using a method blank procedure and is possibly as low as 27 ppm based on visual inspection of the spectra. Based on a representative test set consisting of measurements on 93 standards, the double blended multivariate model shows a Root Mean Squared Error of Prediction (RMSEP) accuracy of 1.39 wt% MnO for the full blended model. Employing a local RMSEP estimate where the model performance is evaluated based on nearby test samples, the accuracy is 0.03 wt% at the quantification limit (0.05 wt% MnO), 0.4 wt% accuracy at 1.0 wt% MnO, and 4.4 wt% accuracy at 100 wt% MnO. Precision is estimated using the standard deviation of the test set measurements, and is ±0.01 wt% MnO at the quantification limit, ±0.09 wt% MnO at 1.0 wt% MnO, and ± 2.1 wt% MnO at 100 wt% MnO (all 1 standard deviation). This new calibration is important for understanding the variation of manganese in the bedrock with the Curiosity rover on Mars, which provides insight into past redox conditions on Mars.
- Published
- 2021
12. Azeotropic isotopologues
- Author
-
Robert P. Currier, Travis B. Peery, Michael F. Herman, Robert F. Williams, Ryszard Michalczyk, Toti E. Larson, Dana M. Labotka, Julianna E. Fessenden, and Samuel M. Clegg
- Subjects
General Chemical Engineering ,General Physics and Astronomy ,Physical and Theoretical Chemistry - Published
- 2019
13. Investigating the role of anhydrous oxidative weathering on sedimentary rocks in the Transantarctic Mountains and implications for the modern weathering of sedimentary lithologies on Mars
- Author
-
K. Truitt, N. Mangold, Mark R. Salvatore, Nina Lanza, Roger C. Wiens, Samuel M. Clegg, Erwin Dehouck, Elizabeth B. Rampe, K. Roszell, Northern Arizona University [Flagstaff], University of Michigan [Dearborn], University of Michigan System, Los Alamos National Laboratory (LANL), NASA Johnson Space Center (JSC), NASA, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Martian ,010504 meteorology & atmospheric sciences ,Lithology ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] ,Geochemistry ,Stratigraphic unit ,Astronomy and Astrophysics ,Weathering ,Mars Exploration Program ,15. Life on land ,01 natural sciences ,Igneous rock ,13. Climate action ,Space and Planetary Science ,Martian surface ,0103 physical sciences ,Sedimentary rock ,010303 astronomy & astrophysics ,0105 earth and related environmental sciences - Abstract
International audience; Alteration of the uppermost surfaces of geologic materials is a pervasive process on planetary surfaces that is dependent upon factors including parent composition and the environment under which alteration is occurring. While rapid and pervasive in hot and humid climates on Earth, chemical weathering of rock surfaces has also been found to dominate in some of Earth's coldest and driest landscapes as well. Specifically, surfaces dominated by resistant fine-grained igneous rocks in the Antarctic preserve evidence of oxidative weathering processes, which represent the initial immature surface alteration processes that stagnate due to the lack of available water and kinetics necessary for the production of more mature alteration phases. In this study, we test the hypothesis that oxidative weathering also dominates the surfaces of sedimentary rocks throughout the Antarctic. We investigated the chemistry and mineralogy of a suite of sedimentary rocks from the Transantarctic Mountains ranging from fine-grained tuffs to coarse-grained sandstones and conglomerates. Our results show that, like the previously studied fine-grained igneous rocks in the Antarctic, sedimentary rocks generally showed only minor chemical weathering signatures at their surfaces relative to their interiors. However, unlike the igneous rocks in this earlier study, the sedimentary rocks exhibited a wide variety of non-systematic differences between surface and interior compositions. This variability of surface weathering signatures is equally as complex as the physical properties and compositions inherently present within these different sedimentary lithologies. Based on these analyses, it is apparent that oxidative weathering products do not dominate the surfaces of sedimentary rocks throughout the Transantarctic Mountains, which instead exhibit a wide array of weathering signatures that are likely dependent on both lithological and environmental factors. Considering that sedimentary lithologies are widespread across a significant fraction of the martian surface, our results suggest that observed alteration signatures limited to the surfaces of martian sedimentary rocks are most likely to be minor and to vary as a result of the lithological properties of the specific rock unit and not as a result of the widespread influences of the modern cold and dry climatic conditions.
- Published
- 2019
14. OrganiCam: a lightweight time-resolved laser-induced luminescence imager and Raman spectrometer for planetary organic material characterization
- Author
-
Seychelles Voit, Logan Ott, Heather Quinn, Magdalena Dale, Samantha Adikari, Patrick J. Gasda, Steven P. Love, Shiv K. Sharma, Benigno Sandoval, Raymond Newell, Charles G. Peterson, Tayro E. Acosta-Maeda, Anupam K. Misra, Sylvestre Maurice, A. Reyes-Newell, Kumkum Ganguly, Roger C. Wiens, and Samuel M. Clegg
- Subjects
Materials science ,Spectrometer ,business.industry ,Brassboard ,Detector ,Atomic and Molecular Physics, and Optics ,Characterization (materials science) ,symbols.namesake ,Optics ,symbols ,Electrical and Electronic Engineering ,Luminescence ,Raman spectroscopy ,business ,Engineering (miscellaneous) ,Diffuser (optics) ,Laser beams - Abstract
OrganiCam is a laser-induced luminescence imager and spectrometer designed for standoff organic and biosignature detection on planetary bodies. OrganiCam uses a diffused laser beam (12° cone) to cover a large area at several meters distance and records luminescence on half of its intensified detector. The diffuser can be removed to record Raman and fluorescence spectra from a small spot from 2 m standoff distance. OrganiCam’s small size and light weight makes it ideal for surveying organics on planetary surfaces. We have designed and built a brassboard version of the OrganiCam instrument and performed initial tests of the system.
- Published
- 2021
15. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
I. Torre-Fdez, V. Gharakanian, E. Cordoba, Jérôme Parisot, R. Perez, Amaury Fau, Peter Willis, Ruth A. Anderson, Pablo Sobron, K. W. Wong, A. Debus, Julien Mekki, Noureddine Melikechi, K. Mathieu, S. Gauffre, M. Toplis, Jesús Martínez-Frías, Alexandre Cadu, Francois Poulet, B. Quertier, Horton E. Newsom, H. Seran, C. Quantin-Nataf, W. D’anna, Jens Frydenvang, Frédéric Chapron, Pierre Beck, Jean-François Mariscal, B. Chide, Y. André, Y. Michel, G. Orttner, N. Toulemont, A. Dufour, Briana Lucero, Olivier Gilard, Marion Bonafous, D. Pheav, Q.-M. Lee, D. Standarovsky, Franck Montmessin, R. Gonzalez, S. Le Mouélic, Cedric Virmontois, L. Roucayrol, I. Gontijo, M. Deleuze, L. Parès, L. Oudda, Y. Micheau, F. Manni, Bruno Dubois, Bruno Bousquet, G. de los Santos, D. M. Delapp, Guillermo Lopez-Reyes, L. Picot, Clément Royer, E. Clave, Richard Leveille, Erwin Dehouck, Gaetan Lacombe, J. Javier Laserna, Olivier Beyssac, P. Romano, Y. Daydou, Scott M. McLennan, John Michel, V. Sridhar, Driss Kouach, Gabriel Pont, M. Dupieux, Michel Gauthier, Jean-Michel Reess, J. Moros, J.-C. Dameury, T. Fouchet, Ann Ollila, Sophie Jacquinod, P. Y. Meslin, M. Egan, Juan Manuel Madariaga, Karim Benzerara, G. Hervet, Gilles Montagnac, Woodward W. Fischer, Olivier Gasnault, T. Nelson, Stanley M. Angel, Lauren DeFlores, Violaine Sautter, Marco Veneranda, C. Leyrat, Olivier Humeau, Y. Morizet, Jose Antonio Manrique, M. Sodki, P. Pilleri, C. Velasco, Naomi Murdoch, M. J. Schoppers, S. A. Storms, Sylvestre Maurice, Benigno Sandoval, Cedric Pilorget, N. Striebig, S. Robinson, V. Mousset, David Mimoun, Morten Madsen, M. Heim, A. Doressoundiram, Christophe Montaron, Eric Lewin, Patrick Pinet, C. Donny, Susanne Schröder, Agnès Cousin, Sadok Abbaki, John P. Grotzinger, Claude Collin, Xavier Jacob, Jeffrey R. Johnson, Cécile Fabre, K. McCabe, C. Legett, J. P. Berthias, Shiv K. Sharma, Timothy H. McConnochie, A. Sournac, Ralph D. Lorenz, M. Viso, Yann Parot, N. Mangold, W. Rapin, Jérémie Lasue, Gorka Arana, Joan Ervin, E. Le Comte, N. Nguyen Tuong, P. Cais, Olivier Forni, D. Rambaud, T. Battault, D. Venhaus, Anupam K. Misra, K. Clark, M. Tatat, Laurent Lapauw, P. Bernardi, Roger C. Wiens, Samuel M. Clegg, Nina Lanza, Sylvain Bernard, Soren N. Madsen, Kepa Castro, M. Boutillier, Raymond Newell, D. Granena, Y. Hello, Fernando Rull, M. Ruellan, R. Mathon, Edward A. Cloutis, Gilles Dromart, L. Le Deit, Rafik Hassen-Khodja, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Centre National d'Études Spatiales [Toulouse] (CNES), Universidad de Valladolid [Valladolid] (UVa), Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), University of South Carolina [Columbia], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), University of Winnipeg, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, University of Hawai‘i [Mānoa] (UHM), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), PLANETO - LATMOS, Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), McGill University = Université McGill [Montréal, Canada], Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Maryland [College Park], University of Maryland System, Stony Brook University [SUNY] (SBU), State University of New York (SUNY), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), Laboratoire de Planétologie et Géodynamique - Angers (LPG-ANGERS), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), The University of New Mexico [Albuquerque], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Institut für Optische Sensorsysteme, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), SETI Institute, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of Copenhagen = Københavns Universitet (KU), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), and Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Université Fédérale Toulouse Midi-Pyrénées
- Subjects
Rocks ,010504 meteorology & atmospheric sciences ,Computer science ,[SDU.STU.GP]Sciences of the Universe [physics]/Earth Sciences/Geophysics [physics.geo-ph] ,Mars ,Context (language use) ,Perseverance ,Imaging on Mars ,Mars 2020 Perseverance rover ,01 natural sciences ,SuperCam Instrument ,Unit (housing) ,Mast (sailing) ,Jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,imaging on Mars ,Microphone on Mars ,0103 physical sciences ,Calibration ,Rover ,[PHYS.COND]Physics [physics]/Condensed Matter [cond-mat] ,infrared spectroscopy ,Raman ,010303 astronomy & astrophysics ,Infrared spectroscopy ,0105 earth and related environmental sciences ,[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] ,M2020 ,LIBS ,Payload ,Suite ,Mars2020 ,Astronomy and Astrophysics ,Laser-Induced Breakdown Spectroscopy ,Mars Exploration Program ,microphone on Mars ,Planetary science ,SuperCam ,Space and Planetary Science ,Raman spectroscopy ,Systems engineering ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Mars 2020 PERSEVERANCE rover - Abstract
On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2-7 m, while providing data at sub-mm to mm scales. We report on SuperCam's science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data. In France was provided by the Centre National d'Etudes Spatiales (CNES). Human resources were provided in part by the Centre National de la Recherche Scientifique (CNRS) and universities. Funding was provided in the US by NASA's Mars Exploration Program. Some funding of data analyses at Los Alamos National Laboratory (LANL) was provided by laboratory-directed research and development funds.
- Published
- 2021
16. The Venus Strategic Plan
- Author
-
Lynn M. Carter, Kevin McGouldrick, James A. Cutts, Laurent G. J. Montési, Tibor Kremic, Suzanne E. Smrekar, Joseph O'Rourke, Michael Amato, Scott Hensley, Noam R. Izenberg, Paul K. Byrne, Christopher T. Russell, Gary W. Hunter, Samuel M. Clegg, Jeff Balcerski, Ethiraj Venkatapathy, Giada Arney, Walter Keifer, James W. Head, Larry Matthies, M. Darby Dyar, Candace Gray, Stephen R. Kane, Allan H. Treiman, and Natasha M. Johnson
- Subjects
Strategic planning ,biology ,Venus ,Business ,biology.organism_classification ,Management - Published
- 2021
17. Mineral and Trace Element Identification in Jezero Crater, Mars, with SuperCam’s Time-Resolved Raman (TRR) and Luminescence (TRL) Techniques
- Author
-
Bruno Bousquet, Guillermo Lopez-Reyes, Kepa Castro, Olivier Forni, Peter Willis, Jose Antonio Manrique, Jesús Martínez-Frías, Agnes Cousin, P. Bernardi, Juan Manuel Madariaga, Stanley Mike Angel, Ann Ollila, Samuel M. Clegg, Olivier Gasnault, Karim Benzerara, Olivier Beyssac, Sylvain Bernard, E. Clave, Shiv K. Sharma, and Gorka Arana
- Subjects
symbols.namesake ,Mineral ,Impact crater ,Trace element ,symbols ,Mineralogy ,Mars Exploration Program ,Raman spectroscopy ,Luminescence ,Geology - Abstract
In February 2021, NASA’s Perseverance rover will begin its exploration of Jezero crater near a putative ancient delta. Orbital mineralogy indicates the presence of carbonates and clay minerals in the landing site, which will be key targets for study. The SuperCam instrument provides an important tool for remotely surveying for these and other minerals using multiple techniques: Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman (TRR) and Luminescence (TRL) spectroscopies, Visible-Near Infrared (VisIR) spectroscopy, micro-imaging, and acoustics. TRR and TRL use a pulsed 532 nm laser with an adjustable gate width, from 100 ns to several ms. The time at which the gate opens is also adjustable, from coincident with the laser pulse to obtain Raman and fast luminescence out to 10 ms or more to capture the lifetimes of luminescence signals. These techniques will operate at distances up to 7 m from the rover mast and will be most effective if LIBS first removes dust from the targets and chemistry is subsequently obtained at the same location. Early lab results show that TRR is effective for detecting certain carbonates (magnesite, hydromagnesite, siderite, ankerite, calcite, and dolomite), sulfates (gypsum, anhydrite, barite, epsomite, and coquimbite), phosphates (apatite), and silicates (e.g., quartz, feldspar, forsteritic olivine, topaz, and diopside). Many of these minerals are high-priority targets for astrobiology studies because they represent habitable environments and have high biosignature preservation potential in terrestrial rocks. Raman signal strength is significantly decreased in fine-grained materials, however, and clay minerals will be a challenge to detect, as will opaque minerals such as Fe-oxides. TRL will be useful for identifying rare earth elements in phosphates and zircon, Fe3+ in silicates such as feldspar, Mn2+ in carbonates, and Cr3+ in Al-oxides and some silicates. TRL may also be able to identify fast (
- Published
- 2021
18. Supercam Laser Induced Breakdown Spectroscopy Calibration, Data Processing, and First Results
- Author
-
Chip Legett, Agnes Cousin, P. Pilleri, Jens Frydenvang, Sylvestre Maurice, Ryan B. Anderson, Olivier Forni, Roger C. Wiens, and Samuel M. Clegg
- Subjects
Data processing ,Materials science ,Optics ,business.industry ,Calibration ,Laser-induced breakdown spectroscopy ,business - Abstract
The Mars 2020 Mission was designed to address four overarching goals [1]: i) investigate the mineralogy and geology of the Jezero crater as representative of the ancient Martian environment, ii) assess the habitability of this ancient environment, iii) identify and cache samples with a high potential of preserving biosignatures, iv) study the current environmental Martian conditions in preparation for human exploration.The SuperCam Instrumental Suite was designed as the primary tool to remotely investigate elemental composition and mineralogy of rock and soil targets. It will also provide sub-mm context color imaging of outcrop textures, search for organics and volatiles, perform atmospheric characterization, and record sounds [2], [3]. To achieve these objectives, SuperCam implements four nested and co-aligned spectroscopic techniques: laser induced breakdown spectroscopy (LIBS), Raman spectroscopy, time-resolved fluorescence spectroscopy, and passive VISIR spectroscopy. Laser-induced breakdown spectroscopy (LIBS) obtains emission spectra of materials ablated from the samples in electronically excited states. The Supercam LIBS instrument comprises three spectrometers covering the UV (245 – 340 nm), the violet (385 – 465 nm), and the visible and near-infrared (VNIR, 536 – 853 nm) ranges encompassing spectral lines of the majority of the elements of interest. Using a dedicated LIBS database, it is possible to retrieve the composition of the ablated targets. For ChemCam, the first planetary LIBS device on board the Curiosity rover on Mars, this was achieved using multivariate techniques [4] for the major elements and univariate techniques for some minors and traces [5]. A similar procedure has been applied on SuperCam: LIBS measurements of a suite of more than 300 samples covering a wide range of compositions for the major elements has been acquired at a distance of 3m with a representative model of the instrument. The database includes a set of the calibration targets (SCCT) similar to those that are mounted on the Perseverance rover. Measurements of the SCCT were also acquired a 1.5m and 4.2m. Some SCCTs were also analysed using the Flight Model during System Thermal Test (STT). Several steps in the quantification procedure are achieved. i) Identification and removal of outliers ii) Definition of representative five-fold cross-validation for model evaluation. iii) definition of the train set and test set. iv) training of various multivariate regression methods among them Partial Least Squares (PLS), linear methods (Lasso, Elastic Net, Blended Lasso [6]) or ensemble methods (Random Forest, Gradient Boosting) v) prediction of the test set and SCCT at various distances and on the STT targets. The performances of the methods are evaluated using statistical for both the Cross Validation and Prediction) vi) Selection of the best model for a given element. A specialized pipeline is designed to produce the quantified results at tactical timescales.[1] Farley et al. (2020), Space Sci. Rev. 216, 142. [2] Wiens et al. (2020) Space Sci. Rev. 216, in press [3] Maurice et al. (2020) Space Sci. Rev. 216, in press [4] Clegg et al. (2017), SCAB, 129, 64. [5] Payré et al. (2017) JGR, 122, 650. [6] Anderson et al. (2017), SCAB, 129, 49.
- Published
- 2021
19. The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
- Author
-
Francois Poulet, Nina Lanza, John Michel, Kerry Boyd, Valerie Mousset, Fernando Rull, Anupam K. Misra, Horton E. Newsom, Magdalena Dale, Richard Leveille, Sylvain Bernard, Karim Benzerara, Logan Ott, Timothy H. McConnochie, M. George Duran, Jonathan Deming, C. Glen Peterson, Jorden Celis, Juan Manuel Madariaga, Anthony Nelson, Elizabeth C. Auden, Violaine Sautter, Paolo Pilleri, Naomi Murdoch, Susanne Schröder, Joseph H. Sarrao, Miles Egan, Bruno Dubois, Ann Ollila, Roberta A. Klisiewicz, M. Deleuze, K. McCabe, Ryan B. Anderson, Kevin Clark, Noureddine Melikechi, Jens Frydenvang, Matthew R. Dirmyer, A. Regan, Pierre Beck, Olivier Forni, A. Reyes-Newell, David Mimoun, Lauren DeFlores, Stéphane Le Mouélic, Nicolas Mangold, Eric Lorigny, Denine Gasway, John P. Grotzinger, M. Caffrey, Shiv K. Sharma, J. Javier Laserna, Olivier Gasnault, Steven P. Love, Eric Lewin, Sophie Jacquinod, Jeffrey R. Johnson, Dorothea Delapp, Soren N. Madsen, James Lake, Kepa Castro, Joan Ervin, Olivier Beyssac, C. Donny, Yann Parot, J. P. Martinez, Pierre-Yves Meslin, Gabriel Pont, Jean-Michel Reess, L. Parès, P. Bernardi, D. Venhaus, Guillermo Lopez-Reyes, Benjamin Quertier, Gorka Arana, Morten Madsen, Ivair Gontijo, Ralph D. Lorenz, Philip J. Romano, Ian A. Trettel, S. Michael Angel, Gilles Montagnac, Joseph Becker, Vishnu Sridhar, Rafal Pawluczyk, Jérémie Lasue, P. Cais, William Rapin, Jose Antonio Manrique, Xavier Jacob, Clement Royer, Jacob Valdez, I. Torre-Fdez, Amaury Fau, Peter Willis, Louis Borges, Cheryl Provost, Elizabeth C. Cordoba, M. L. Underwood, Justin McGlown, Daniel Seitz, S. A. Storms, Briana Lucero, Heather Quinn, Thierry Fouchet, Raymond Newell, Cécile Fabre, B. Chide, Y. André, Jeffrey Carlson, Roger C. Wiens, Scott M. McLennan, Woodward W. Fischer, Benigno Sandoval, S. Robinson, Patrick Pinet, Samuel M. Clegg, Agnes Cousin, Sylvestre Maurice, Edward A. Cloutis, Gilles Dromart, Franck Montmessin, C. Legett, Andres Valdez, Bruno Bousquet, Reuben Fresquez, Terra Shepherd, Zachary R. Ousnamer, Pablo Sobron, M. Toplis, Marcel J. Schoppers, Jesús Martínez-Frías, D. T. Beckman, Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of Hawai‘i [Mānoa] (UHM), Astrogeology Science Center [Flagstaff], United States Geological Survey [Reston] (USGS), Centre National d'Études Spatiales [Toulouse] (CNES), University of South Carolina [Columbia], Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), University of Winnipeg, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), California Institute of Technology (CALTECH), University of Copenhagen = Københavns Universitet (UCPH), Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Universidad de Valladolid [Valladolid] (UVa), Universidad de Málaga [Málaga] = University of Málaga [Málaga], McGill University = Université McGill [Montréal, Canada], Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), University of Maryland [College Park], University of Maryland System, State University of New York (SUNY), University of Massachusetts [Lowell] (UMass Lowell), University of Massachusetts System (UMASS), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), The University of New Mexico [Albuquerque], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), FiberTech Optica (FTO), Institut für Optische Sensorsysteme, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), SETI Institute, Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Bordeaux (UB), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), University of Copenhagen = Københavns Universitet (KU), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées, Laboratoire de Planétologie et Géodynamique - Angers (LPG-ANGERS), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Institut Supérieur de l'Aéronautique et de l'Espace - ISAE-SUPAERO (FRANCE), and Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,Mars ,01 natural sciences ,7. Clean energy ,Article ,law.invention ,Telescope ,symbols.namesake ,Jezero crater ,Optics ,ChemCam instrument ,law ,Microphone on Mars ,0103 physical sciences ,SuperCam ,planetary exploration ,luminescence ,Traitement du signal et de l'image ,Perseverance rover ,Spectroscopy ,010303 astronomy & astrophysics ,Infrared spectroscopy ,ComputingMilieux_MISCELLANEOUS ,0105 earth and related environmental sciences ,Physics ,laboratory curiosity rover ,remote Raman system ,LIBS ,Spectrometer ,business.industry ,Detector ,Astronomy and Astrophysics ,Mars Exploration Program ,Gale crater ,Laser ,induced breakdown spectroscopy ,Wavelength ,in-situ ,mission ,13. Climate action ,Space and Planetary Science ,[SDU]Sciences of the Universe [physics] ,Raman spectroscopy ,symbols ,business - Abstract
The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( 105 - 7070 cm − 1 Raman shift relative to the 532 nm green laser beam) with 12 cm − 1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well., Proyecto MINECO Retos de la Sociedad. Ref. ESP2017-87690-C3-1-R
- Published
- 2021
20. CHEMISTRY, MINERALOGY, AND PHYSICAL PROPERTIES OF ROCKS AND SOILS TARGETED BY SUPERCAM AT JEZERO CRATER
- Author
-
Nicolas Mangold, Ann Ollila, Lucia Mandon, Sylvestre Maurice, Olivier Beyssac, Cathy Quantin, Samuel M. Clegg, Jeffrey R. Johnson, R. C. Wiens, and Agnès Cousin
- Subjects
Impact crater ,Soil water ,Geochemistry - Published
- 2021
21. Improving ChemCam LIBS long-distance elemental compositions using empirical abundance trends
- Author
-
Roger C. Wiens, Samuel M. Clegg, Jens Frydenvang, Dot Delapp, Alyre J. Blazon-Brown, Ryan B. Anderson, Sylvestre Maurice, Agnes Cousin, Noureddine Melikechi, Erwin Dehouck, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
Martian ,LIBS ,Curiosity rover ,Mineralogy ,Mars ,Mars Exploration Program ,Composition (combinatorics) ,Atomic and Molecular Physics, and Optics ,Analytical Chemistry ,Meteorite ,Abundance (ecology) ,ChemCam ,[SDU]Sciences of the Universe [physics] ,Calibration ,Environmental science ,Emission spectrum ,Stand-off elemental analyses ,Spectroscopy ,Instrumentation - Abstract
International audience; The ChemCam instrument on the Curiosity rover provides chemical compositions of Martian rocks and soils using remote laser-induced breakdown spectroscopy (LIBS). The elemental calibration is stable as a function of distance for Ti, Fe, Mg, and Ca. The calibration shows small, systematically increasing abundance trends as a function of distance for Al, Na, K, and to some extent, Si. The distance effect is known to be due to a dependence with distance on the relative strengths of atomic transition lines. Emission lines representing transitions from relatively low energy levels remain intense at longer distances while emission lines representing transitions from higher energy levels decrease in intensity more rapidly as a function of distance. The multivariate algorithms used to determine elemental compositions rely on a large number of emission lines in many cases, so rather than trying to correct all emission lines, a study was made of the predicted compositions as a function of distance, in order to determine an empirical correction. Abundance trends can be well approximated by a linear trend with distance within the ranges of abundances and distances observed up to ~6 m. Data from 11 distinct geological members and data groups of the Murray formation in Gale crater, Mars, were used to form the model, selecting the members and data groups yielding the best statistics. The model was tested using data from several targets observed from two different distances, and using data from the Kimberley formation, the composition of which is significantly different from the Murray formation, showing that the model works on other compositions beyond those used to build the model. For long-distance observations up to ~6 m, corrections can be made back to an equivalent composition at the median distance of ChemCam observations (2.6 m). The model has been validated up to 6.2 m, although ChemCam is able to observe bedrock targets to >7 m, and iron meteorites to distances of >9 m.
- Published
- 2021
22. Elemental Calibration of SuperCam’s LIBS
- Author
-
Agnes Cousin, Roger C. Wiens, Samuel M. Clegg, P. Pilleri, Carey Ledgett, Jens Frydenvang, Sylvestre Maurice, Olivier Gasnault, Ryan B. Anderson, and Olivier Forni
- Subjects
Calibration (statistics) ,Environmental science ,Remote sensing - Published
- 2021
23. Mechanistic Study of the Production of NO
- Author
-
Rebecca K, Carlson, Ping, Yang, Samuel M, Clegg, and Enrique R, Batista
- Abstract
Copper dissolution in nitric acid is a historic reaction playing a central role in many industrial processes, particularly for metal recovery from the electronics to nuclear industries. The mechanism through which this process occurs is debated. In order to better understand this process, quantum chemical calculations were performed to elucidate the key steps in the mechanism of copper dissolution in nitric acid. We combine both Kohn-Sham density functional theory and ab initio molecular dynamics simulations to understand the mechanism of the formation of the key products: NO
- Published
- 2020
24. SuperCam Calibration Targets: Design and Development
- Author
-
Ann Ollila, V. Sautter, Juan Manuel Madariaga, Gilles Dromart, J. Javier Laserna, P.-Y. Meslin, P. Bernardi, G. Montagnac, V. Garcia-Baonza, Morten Madsen, Agnes Cousin, C. Castro, J. Aramendia, Andoni Moral, Edward A. Cloutis, I. Sard, M. Toplis, Sylvestre Maurice, C. Drouet, Eva Mateo-Martí, Bruno Dubois, David Escribano, J. A. Sanz-Arranz, Jesús Medina, Soren N. Madsen, C. Ortega, Jeffrey R. Johnson, Olivier Gasnault, Kepa Castro, Jose A. Rodriguez, Fernando Rull, Olivier Forni, Ph. Cais, Olga Prieto-Ballesteros, Guillermo Lopez-Reyes, Pablo Sobron, Cécile Fabre, Marco Veneranda, Jesus Saiz, A. Fernandez, Alicia Berrocal, J. M. Reess, Jérémie Lasue, Sylvain Bernard, Pierre Beck, S. Robinson, J. Moros, Gorka Arana, Roger C. Wiens, Samuel M. Clegg, M. H. Bernt, I. Gontijo, Olivier Beyssac, Jose Antonio Manrique, Universidad de Valladolid [Valladolid] (UVa), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Niels Bohr Institute [Copenhagen] (NBI), Faculty of Science [Copenhagen], University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), Universidad del Pais Vasco / Euskal Herriko Unibertsitatea [Espagne] (UPV/EHU), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), ISDEFE, Laboratoire d'Astrophysique de Bordeaux [Pessac] (LAB), Université de Bordeaux (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Added Value Solutions (AVS), University of Winnipeg, Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Centre interuniversitaire de recherche et d'ingenierie des matériaux (CIRIMAT), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT), Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France, Instituto Nacional de Técnica Aeroespacial (INTA), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Instituto de Geociencias (CSIC-UCM), Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Johns Hopkins University (JHU), Universidad de Málaga [Málaga] = University of Málaga [Málaga], Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), University of Copenhagen = Københavns Universitet (KU)-University of Copenhagen = Københavns Universitet (KU), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA), Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA (UMR_8109)), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement [Lyon] (LGL-TPE), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-École normale supérieure - Lyon (ENS Lyon), Centre National de la Recherche Scientifique (CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Institut de Chimie du CNRS (INC), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD), Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Institut national des sciences de l'Univers (INSU - CNRS), Agencia Estatal de Investigación (AEI), Centre National de la Recherche Scientifique - CNRS (FRANCE), Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE), and Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
- Subjects
010504 meteorology & atmospheric sciences ,Computer science ,Matériaux ,Context (language use) ,01 natural sciences ,Article ,Jezero crater ,Perseverance rover · Jezero crater · LIBS · Raman spectroscopy · Infrared spectroscopy · SuperCam · Calibration ,0103 physical sciences ,Calibration ,Perseverance rover ,Mineral identification ,010303 astronomy & astrophysics ,Infrared spectroscopy ,INDUCED BREAKDOWN SPECTROSCOPY ,0105 earth and related environmental sciences ,Remote sensing ,MISSION ,Elemental composition ,LIBS ,CHEMCAM INSTRUMENT ,Suite ,MARS ,Astronomy and Astrophysics ,Mars Exploration Program ,LABORATORY CURIOSITY ROVER ,Sample (graphics) ,[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM] ,Sound recording and reproduction ,SuperCam ,13. Climate action ,Space and Planetary Science ,Raman spectroscopy ,MAGNETIC-PROPERTIES EXPERIMENTS ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] - Abstract
SuperCam is a highly integrated remote-sensing instrumental suite for NASA’s Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and In frared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover. The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated. The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and eval uate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental condi tions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system., Proyecto MINECO Retos de la Sociedad. Ref. ESP2017-87690-C3-1-R
- Published
- 2020
25. The SuperCam Instrument for the Mars 2020 Rover
- Author
-
Fernando Rull, John Michel, M. Caffrey, Philippe Cais, Sylvestre Maurice, Benigno Sandoval, Roger C. Wiens, S. Robinson, Samuel M. Clegg, Pernelle Bernardi, Jonathan Deming, Ray Newell, Steve Storms, and T. Nelson
- Subjects
Demultiplexer ,Spectrometer ,Microphone ,05 social sciences ,Image intensifier ,Mars Exploration Program ,01 natural sciences ,law.invention ,010309 optics ,law ,0502 economics and business ,0103 physical sciences ,050211 marketing ,Electronics ,Laser-induced breakdown spectroscopy ,Field-programmable gate array ,Geology ,Remote sensing - Abstract
In mid-2019, the SuperCam instrument was installed aboard NASA's Mars 2020 rover, which is scheduled for launch in July 2020 and a landing at Jezero crater in February 2021. SuperCam is a collaboration between Los Alamos National Laboratory (LANL; the lead institution) and the Institut de Recherche en Astrophysique et Planetologie (IRAP), funded by the French Space Agency (CNES) and with contributions by universities and laboratories in France, Spain, and Denmark. SuperCam integrates a number of observation techniques into a single instrument, which builds on the design heritage of ChemCam, a laser induced breakdown spectroscopy (LIBS) instrument aboard the Curiosity rover. While retaining ChemCam's LIBS mode, SuperCam adds a remote Raman spectroscopy mode, an infrared spectrometer (IR), a microphone, and improves upon ChemCam's greyscale context imager with a color imager. This paper will give a broad overview of the SuperCam instrument, which is divided into three portions: the LANL-built SuperCam Body Unit (SCBU), the French-built SuperCam Mast Unit (SCMU), and the Spanish-built SuperCam Calibration Target (SCCT). The instrument operational modes will be detailed, explaining how the instrument as a whole is used to collect and process its data within the context of the Mars 2020 rover. Next, we will detail LANL's design, integration, and testing of the SCBU. The SCBU is installed inside the rover's body and features an optical demultiplexer feeding a set of three spectrometers, which are digitized by three charge-coupled devices (CCDs) from e2v, controlled by a low-noise spectrometer electronics module. The longest-wavelength visible-range spectrometer employs high-throughput transmission optics and an image intensifier to amplify and electronically gate the incoming light in Raman mode. This transmission spectrometer is powered and controlled by a high voltage power supply, designed and built at LANL. A low voltage power supply converts rover power to voltages used by the instrument. The command and data handling (C&DH) module features a Leon-3-based processor and a field programmable gate array for custom logic, along with a memory array. Instrument flight software architecture will be presented, with a focus on the body unit and mast unit functionality divide. The test qualification scheme will be detailed, with information on instrument optical performance testing.
- Published
- 2020
26. Studies of a Lacustrine‐Volcanic Mars Analog Field Site With Mars‐2020‐Like Instruments
- Author
-
Bethany L. Ehlmann, P. Martin, Roger C. Wiens, Diana L. Blaney, Samuel M. Clegg, Luther W. Beegle, N. H. Thomas, Rohit Bhartia, and Joseph Razzell Hollis
- Subjects
PIXL ,geography ,geography.geographical_feature_category ,Field (physics) ,lcsh:Astronomy ,Mastcam‐Z ,lcsh:QE1-996.5 ,Mars‐2020 ,Mars Exploration Program ,Geophysics ,Environmental Science (miscellaneous) ,Mars analog ,lcsh:QB1-991 ,lcsh:Geology ,SHERLOC ,SuperCam ,Volcano ,General Earth and Planetary Sciences ,Geology - Abstract
On the upcoming Mars‐2020 rover two remote sensing instruments, Mastcam‐Z and SuperCam, and two microscopic proximity science instruments, Scanning for Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) and Planetary Instrument for X‐ray Lithochemistry (PIXL), will collect compositional (mineralogy, chemistry, and organics) data essential for paleoenvironmental reconstruction. The synergies between and limitations of these instruments were evaluated via study of a Mars analog field site in the Mojave desert, using instruments approximating the data that will be returned by Mars‐2020. A ground truth data set was generated for comparison to validate the results. The site consists of a succession of clay‐rich mudstones of lacustrine origin, interbedded tuffs, a carbonate‐silica travertine deposit, and gypsiferous mudstone strata. The major geological units were mapped successfully using simulated Mars‐2020 data. Simulated Mastcam‐Z data identified unit boundaries and Fe‐bearing weathering products. Simulated SuperCam passive shortwave infrared and green Raman data were essential in identifying major mineralogical composition and changes in lacustrine facies at distance; this was possible even with spectrally downsampled passive IR data. Laser‐induced breakdown spectroscopy and simulated PIXL data discriminated and mapped major element chemistry. Simulated PIXL revealed millimeter‐scale zones enriched in zirconium, of interest for age dating. Scanning for SHERLOC‐like data mapped sulfate and carbonate at submillimeter scale; silicates were identified with increased laser pulses/spot or by averaging of hundreds of spectra. Fluorescence scans detected and mapped varied classes of organics in all samples, characterized further with follow‐on spatially targeted deep‐UV Raman spectra. Development of dedicated organics spectral libraries is needed to aid interpretation. Given these observations, the important units in the outcrop would be sampled and cached for sample return.
- Published
- 2020
27. Origin and composition of three heterolithic boulder- and cobble-bearing deposits overlying the Murray and Stimson formations, Gale Crater, Mars
- Author
-
Frances Rivera-Hernandez, Jeffrey R. Johnson, Horton E. Newsom, Olivier Forni, Lucy M. Thompson, Jens Frydenvang, William E. Dietrich, Valerie Payre, Patrick J. Gasda, Kathryn M. Stack, Ashwin R. Vasavada, Roger C. Wiens, Samuel M. Clegg, Olivier Gasnault, Nina Lanza, Sylvestre Maurice, Candice Bedford, Nicolas Mangold, Alexander B. Bryk, Alberto G. Fairén, Agnes Cousin, Kenneth S. Edgett, Ann Ollila, Los Alamos National Laboratory (LANL), Malin Space Science Systems (MSSS), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Department of Earth and Planetary Science [UC Berkeley] (EPS), University of California [Berkeley], University of California-University of California, Laboratoire de Planétologie et Géodynamique [UMR 6112] (LPG), Université d'Angers (UA)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), University of New Brunswick (UNB), Johns Hopkins University (JHU), Institut de recherche en astrophysique et planétologie (IRAP), Institut national des sciences de l'Univers (INSU - CNRS)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Observatoire Midi-Pyrénées (OMP), Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Météo France-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Centre National de la Recherche Scientifique (CNRS), The University of New Mexico [Albuquerque], Rice University [Houston], Dartmouth College [Hanover], Payre, V. [0000-0002-7052-0795], Frydenvang, J. [0000-0001-9294-1227], Johnson, J. [0000-0002-5586-4901], Gasnault, O. [0000-0002-6979-9012], Unidad de Excelencia Científica María de Maeztu Centro de Astrobiología del Instituto Nacional de Técnica Aeroespacial y CSIC, MDM-2017-0737, Centre National D'Etudes Spatiales (CNES), European Research Council (ERC), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), and Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)
- Subjects
010504 meteorology & atmospheric sciences ,Cobble ,Outcrop ,Curiosity rover ,Geochemistry ,Stratigraphic unit ,Fluvial ,01 natural sciences ,Article ,Butte ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,Impact crater ,Greenheugh pediment ,0103 physical sciences ,Heterolithic unit ,010303 astronomy & astrophysics ,Lithification ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,Astronomy and Astrophysics ,15. Life on land ,Gale crater ,Stimson formation ,Murray formation ,Space and Planetary Science ,Clastic rock ,Geology - Abstract
Heterolithic, boulder-containing, pebble-strewn surfaces occur along the lower slopes of Aeolis Mons (“Mt. Sharp”) in Gale crater, Mars. They were observed in HiRISE images acquired from orbit prior to the landing of the Curiosity rover. The rover was used to investigate three of these units named Blackfoot, Brandberg, and Bimbe between sols 1099 and 1410. These unconsolidated units overlie the lower Murray formation that forms the base of Mt. Sharp, and consist of pebbles, cobbles and boulders. Blackfoot also overlies portions of the Stimson formation, which consists of eolian sandstone that is understood to significantly postdate the dominantly lacustrine deposition of the Murray formation. Blackfoot is elliptical in shape (62 × 26 m), while Brandberg is nearly circular (50 × 55 m), and Bimbe is irregular in shape, covering about ten times the area of the other two. The largest boulders are 1.5–2.5 m in size and are interpreted to be sandstones. As seen from orbit, some boulders are light-toned and others are dark-toned. Rover-based observations show that both have the same gray appearance from the ground and their apparently different albedos in orbital observations result from relatively flat sky-facing surfaces. Chemical observations show that two clasts of fine sandstone at Bimbe have similar compositions and morphologies to nine ChemCam targets observed early in the mission, near Yellowknife Bay, including the Bathurst Inlet outcrop, and to at least one target (Pyramid Hills, Sol 692) and possibly a cap rock unit just north of Hidden Valley, locations that are several kilometers apart in distance and tens of meters in elevation. These findings may suggest the earlier existence of draping strata, like the Stimson formation, that would have overlain the current surface from Bimbe to Yellowknife Bay. Compositionally these extinct strata could be related to the Siccar Point group to which the Stimson formation belongs. Dark, massive sandstone blocks at Bimbe are chemically distinct from blocks of similar morphology at Bradbury Rise, except for a single float block, Oscar (Sol 516). Conglomerates observed along a low, sinuous ridge at Bimbe consist of matrix and clasts with compositions similar to the Stimson formation, suggesting that stream beds likely existed nearly contemporaneously with the dunes that eventually formed the Stimson formation, or that they had the same source material. In either case, they represent a later pulse of fluvial activity relative to the lakes associated with the Murray formation. These three units may be local remnants of infilled impact craters (especially circular-shaped Brandberg), decayed buttes, patches of unconsolidated fluvial deposits, or residual mass-movement debris. Their incorporation of Stimson and Murray rocks, the lack of lithification, and appearance of being erosional remnants suggest that they record erosion and deposition events that post-date the exposure of the Stimson formation., With funding from the Spanish government through the "María de Maeztu Unit of Excellence" accreditation (MDM-2017-0737)
- Published
- 2020
28. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy
- Author
-
Ryan B. Anderson, Olivier Forni, Agnes Cousin, Roger C. Wiens, Samuel M. Clegg, Jens Frydenvang, Travis S.J. Gabriel, Ann Ollila, Susanne Schröder, Olivier Beyssac, Erin Gibbons, David S. Vogt, Elise Clavé, Jose-Antonio Manrique, Carey Legett, Paolo Pilleri, Raymond T. Newell, Joseph Sarrao, Sylvestre Maurice, Gorka Arana, Karim Benzerara, Pernelle Bernardi, Sylvain Bernard, Bruno Bousquet, Adrian J. Brown, César Alvarez-Llamas, Baptiste Chide, Edward Cloutis, Jade Comellas, Stephanie Connell, Erwin Dehouck, Dorothea M. Delapp, Ari Essunfeld, Cecile Fabre, Thierry Fouchet, Cristina Garcia-Florentino, Laura García-Gómez, Patrick Gasda, Olivier Gasnault, Elisabeth M. Hausrath, Nina L. Lanza, Javier Laserna, Jeremie Lasue, Guillermo Lopez, Juan Manuel Madariaga, Lucia Mandon, Nicolas Mangold, Pierre-Yves Meslin, Anthony E. Nelson, Horton Newsom, Adriana L. Reyes-Newell, Scott Robinson, Fernando Rull, Shiv Sharma, Justin I. Simon, Pablo Sobron, Imanol Torre Fernandez, Arya Udry, Dawn Venhaus, Scott M. McLennan, Richard V. Morris, Bethany Ehlmann, US Geological Survey [Flagstaff], United States Geological Survey [Reston] (USGS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen = Københavns Universitet (UCPH)-University of Copenhagen = Københavns Universitet (UCPH), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), McGill University = Université McGill [Montréal, Canada], Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Plancius Research LLC, Universidad de Málaga [Málaga] = University of Málaga [Málaga], University of Manitoba [Winnipeg], Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), GeoRessources, Institut national des sciences de l'Univers (INSU - CNRS)-Centre de recherches sur la géologie des matières premières minérales et énergétiques (CREGU)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), University of Nevada [Las Vegas] (WGU Nevada), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), The University of New Mexico [Albuquerque], University of Hawai‘i [Mānoa] (UHM), NASA Johnson Space Center (JSC), NASA, Search for Extraterrestrial Intelligence Institute (SETI), State University of New York at Stony Brook, Stony Brook University [SUNY] (SBU), State University of New York (SUNY)-State University of New York (SUNY), Division of Geological and Planetary Sciences [Pasadena], and California Institute of Technology (CALTECH)
- Subjects
LIBS ,Mars ,Multivariate regression ,Laser induced breakdown spectroscopy ,Regression ,Atomic and Molecular Physics, and Optics ,Analytical Chemistry ,[SDU]Sciences of the Universe [physics] ,Calibration ,Chemometrics ,Laser induced breakdown spectroscopy LIBS Mars Multivariate regression Regression Chemometrics Calibration ,Instrumentation ,Spectroscopy - Abstract
International audience; The SuperCam instrument on the Perseverance Mars 2020 rover uses a pulsed 1064 nm laser to ablate targets at a distance and conduct laser induced breakdown spectroscopy (LIBS) by analyzing the light from the resulting plasma. SuperCam LIBS spectra are preprocessed to remove ambient light, noise, and the continuum signal present in LIBS observations. Prior to quantification, spectra are masked to remove noisier spectrometer regions and spectra are normalized to minimize signal fluctuations and effects of target distance. In some cases, the spectra are also standardized or binned prior to quantification. To determine quantitative elemental compositions of diverse geologic materials at Jezero crater, Mars, we use a suite of 1198 laboratory spectra of 334 well-characterized reference samples. The samples were selected to span a wide range of compositions and include typical silicate rocks, pure minerals (e.g., silicates, sulfates, carbonates, oxides), more unusual compositions (e.g., Mn ore and sodalite), and replicates of the sintered SuperCam calibration targets (SCCTs) onboard the rover. For each major element (SiO2, TiO2, Al2O3, FeOT, MgO, CaO, Na2O, K2O), the database was subdivided into five "folds" with similar distributions of the element of interest. One fold was held out as an independent test set, and the remaining four folds were used to optimize multivariate regression models relating the spectrum to the composition. We considered a variety of models, and selected several for further investigation for each element, based primarily on the root mean squared error of prediction (RMSEP) on the test set, when analyzed at 3 m. In cases with several models of comparable performance at 3 m, we incorporated the SCCT performance at different distances to choose the preferred model. Shortly after landing on Mars and collecting initial spectra of geologic targets, we selected one model per element. Subsequently, with additional data from geologic targets, some models were revised to ensure results that are more consistent with geochemical constraints. The calibration discussed here is a snapshot of an ongoing effort to deliver the most accurate chemical compositions with SuperCam LIBS.
- Published
- 2022
29. Comparing vis–NIRS, LIBS, and Combined vis–NIRS‐LIBS for Intact Soil Core Soil Carbon Measurement
- Author
-
Philip J. Turk, Samuel M. Clegg, David J. Brown, and Ross S. Bricklemyer
- Subjects
Soil core ,Materials science ,Environmental chemistry ,010401 analytical chemistry ,040103 agronomy & agriculture ,0401 agriculture, forestry, and fisheries ,Soil Science ,04 agricultural and veterinary sciences ,Soil carbon ,01 natural sciences ,0104 chemical sciences - Published
- 2018
30. In situ detection of boron by ChemCam on Mars
- Author
-
Nina Lanza, William Rapin, Rhonda E. McInroy, Susanne P. Schwenzer, Kenneth E. Herkenhoff, Ethan B. Haldeman, Benton C. Clark, Roger C. Wiens, Samuel M. Clegg, Patrick J. Gasda, Thomas F. Bristow, Jens Frydenvang, D. M. Delapp, John Bridges, Veronica L. Sanford, Sylvestre Maurice, and Madeleine R. Bodine
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Evaporite ,Bedrock ,chemistry.chemical_element ,Mars Exploration Program ,01 natural sciences ,Astrobiology ,Diagenesis ,Geophysics ,chemistry ,Abiogenesis ,0103 physical sciences ,General Earth and Planetary Sciences ,Boron ,010303 astronomy & astrophysics ,Geology ,Groundwater ,Earth (classical element) ,0105 earth and related environmental sciences - Abstract
We report the first in situ detection of boron on Mars. Boron has been detected in Gale crater at levels
- Published
- 2017
31. A test of the significance of intermolecular vibrational coupling in isotopic fractionation
- Author
-
Travis Peery, Michael F. Herman, Samuel M. Clegg, and Robert P. Currier
- Subjects
0301 basic medicine ,Quantitative Biology::Biomolecules ,Dimer ,Intermolecular force ,General Physics and Astronomy ,010502 geochemistry & geophysics ,01 natural sciences ,Diatomic molecule ,Bond length ,03 medical and health sciences ,chemistry.chemical_compound ,030104 developmental biology ,chemistry ,Chemical physics ,Computational chemistry ,Bound state ,Physics::Atomic and Molecular Clusters ,Quantum-mechanical explanation of intermolecular interactions ,Physics::Chemical Physics ,Physical and Theoretical Chemistry ,Rotational–vibrational coupling ,Magnetic dipole–dipole interaction ,0105 earth and related environmental sciences - Abstract
Intermolecular coupling of dipole moments is studied for a model system consisting of two diatomic molecules (AB monomers) arranged co-linearly and which can form non-covalently bound dimers. The dipolar coupling is a function of the bond length in each molecule as well as of the distance between the centers-of-mass of the two molecules. The calculations show that intermolecular coupling of the vibrations results in an isotope-dependent modification of the AB-AB intermolecular potential. This in turn alters the energies of the low-lying bound states of the dimers, producing isotope-dependent changes in the AB-AB dimer partition function. Explicit inclusion of intermolecular vibrational coupling then changes the predicted gas-dimer isotopic fractionation. In addition, a mass dependence in the intermolecular potential can also result in changes in the number of bound dimer states in an equilibrium mixture. This in turn leads to a significant dimer population shift in the model monomer-dimer equilibrium system considered here. The results suggest that intermolecular coupling terms should be considered when probing the origins of isotopic fractionation.
- Published
- 2017
32. Phase discrimination of uranium oxides using laser-induced breakdown spectroscopy
- Author
-
James E. Barefield, Nicholas R. Wozniak, Samuel M. Clegg, Elizabeth J. Judge, David P. Kilcrease, Kenneth R. Czerwinski, James Colgan, Marianne P. Wilkerson, and Keri R. Campbell
- Subjects
Nuclear fuel cycle ,Nuclear forensics ,010401 analytical chemistry ,Analytical chemistry ,chemistry.chemical_element ,02 engineering and technology ,Uranium ,021001 nanoscience & nanotechnology ,01 natural sciences ,Emission intensity ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Analytical Chemistry ,chemistry.chemical_compound ,chemistry ,Uranium oxide ,Emission spectrum ,Laser-induced breakdown spectroscopy ,0210 nano-technology ,Spectroscopy ,Instrumentation - Abstract
Nuclear forensics goals for characterizing samples of interest include qualitative and quantitative analysis of major and trace elements, isotopic analysis, phase identification, and physical analysis. These samples may include uranium oxides UO2, U3O8, and UO3, which play an important role in the front end of the nuclear fuel cycle, from mining to fuel fabrication. The focus of this study is to compare the ratios of the intensities of uranium and oxygen emission lines which can be used to distinguish between different uranium oxide materials using Laser-Induced Breakdown Spectroscopy (LIBS). Measurements at varying laser powers were made under an argon atmosphere at 585 Torr to ensure the oxygen emission intensity was originating from the sample, and not from the atmosphere. Fifteen uranium emission lines were used to compare experimental results with theoretical calculations in order to determine the plasma conditions. Using a laser energy of 26 mJ, the uranium lines 591.539 and 682.692 nm provide the highest degree of discrimination between the uranium oxides. The study presented here suggests that LIBS is useful for discriminating uranium oxide phases, UO2, U3O8, and UO3.
- Published
- 2017
33. Laser-induced breakdown spectroscopy of light water reactor simulated used nuclear fuel: Main oxide phase
- Author
-
Samuel M. Clegg, David P. Kilcrease, James Colgan, James E. Barefield, Kenneth R. Czerwinski, Elizabeth J. Judge, and Keri R. Campbell
- Subjects
Zirconium ,Cerium oxide ,Materials science ,010401 analytical chemistry ,Uranium dioxide ,Analytical chemistry ,Oxide ,chemistry.chemical_element ,02 engineering and technology ,Uranium ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Analytical Chemistry ,chemistry.chemical_compound ,Cerium ,chemistry ,Laser-induced breakdown spectroscopy ,0210 nano-technology ,Ternary operation ,Instrumentation ,Spectroscopy - Abstract
The analysis of light water reactor simulated used nuclear fuel using laser-induced breakdown spectroscopy (LIBS) is explored using a simplified version of the main oxide phase. The main oxide phase consists of the actinides, lanthanides, and zirconium. The purpose of this study is to develop a rapid, quantitative technique for measuring zirconium in a uranium dioxide matrix without the need to dissolve the material. A second set of materials including cerium oxide is also analyzed to determine precision and limit of detection (LOD) using LIBS in a complex matrix. Two types of samples are used in this study: binary and ternary oxide pellets. The ternary oxide, (U,Zr,Ce)O2 pellets used in this study are a simplified version the main oxide phase of used nuclear fuel. The binary oxides, (U,Ce)O2 and (U,Zr)O2 are also examined to determine spectral emission lines for Ce and Zr, potential spectral interferences with uranium and baseline LOD values for Ce and Zr in a UO2 matrix. In the spectral range of 200 to 800 nm, 33 cerium lines and 25 zirconium lines were identified and shown to have linear correlation values (R2) > 0.97 for both the binary and ternary oxides. The cerium LOD in the (U,Ce)O2 matrix ranged from 0.34 to 1.08 wt% and 0.94 to 1.22 wt% in (U,Ce,Zr)O2 for 33 of Ce emission lines. The zirconium limit of detection in the (U,Zr)O2 matrix ranged from 0.84 to 1.15 wt% and 0.99 to 1.10 wt% in (U,Ce,Zr)O2 for 25 Zr lines. The effect of multiple elements in the plasma and the impact on the LOD is discussed.
- Published
- 2017
34. Diagenetic silica enrichment and late-stage groundwater activity in Gale crater, Mars
- Author
-
Violaine Sautter, N. Mangold, Horton E. Newsom, Insoo Jun, Fred Calef, Candice Bedford, P. Edwards, William Rapin, R. Gellert, Kenneth S. Edgett, David T. Vaniman, Lucy M. Thompson, P. Y. Meslin, J. A. Watkins, Martin R. Fisk, Ryan B. Anderson, John Bridges, Melissa S. Rice, John P. Grotzinger, Jeffrey R. Johnson, Ralph E. Milliken, Nina Lanza, Patrick J. Gasda, Kjartan M. Kinch, Dawn Y. Sumner, B. C. Clark, Nathaniel Stein, David F. Blake, Morten Madsen, Sanjeev Gupta, Agnès Cousin, Ashwin R. Vasavada, Joel A. Hurowitz, I. G. Mitrofanov, Sylvestre Maurice, Jens Frydenvang, Roger C. Wiens, Samuel M. Clegg, Valerie Payre, Abigail A. Fraeman, Susanne P. Schwenzer, and J. Van Beek
- Subjects
geography ,geography.geographical_feature_category ,010504 meteorology & atmospheric sciences ,Earth science ,Bedrock ,Geochemistry ,Mars Exploration Program ,Structural basin ,01 natural sciences ,Deposition (geology) ,Diagenesis ,Geophysics ,13. Climate action ,0103 physical sciences ,General Earth and Planetary Sciences ,Aeolian processes ,Sedimentary rock ,010303 astronomy & astrophysics ,Geology ,Groundwater ,0105 earth and related environmental sciences - Abstract
Diagenetic silica enrichment in fracture-associated halos that crosscut lacustrine and unconformably overlying aeolian sedimentary bedrock is observed on the lower north slope of Aeolis Mons in Gale crater, Mars. The diagenetic silica enrichment is colocated with detrital silica enrichment observed in the lacustrine bedrock yet extends into a considerably younger, unconformably draping aeolian sandstone, implying that diagenetic silica enrichment postdates the detrital silica enrichment. A causal connection between the detrital and diagenetic silica enrichment implies that water was present in the subsurface of Gale crater long after deposition of the lacustrine sediments and that it mobilized detrital amorphous silica and precipitated it along fractures in the overlying bedrock. Although absolute timing is uncertain, the observed diagenesis likely represents some of the most recent groundwater activity in Gale crater and suggests that the timescale of potential habitability extended considerably beyond the time that the lacustrine sediments of Aeolis Mons were deposited.
- Published
- 2017
35. Characterization of LIBS emission lines for the identification of chlorides, carbonates, and sulfates in salt/basalt mixtures for the application to MSL ChemCam data
- Author
-
Olivier Forni, Jérémie Lasue, Bethany L. Ehlmann, Sylvestre Maurice, Dana E. Anderson, D. M. Delapp, Rhonda E. McInroy, Susanne Schröder, Agnès Cousin, Olivier Gasnault, Roger C. Wiens, Samuel M. Clegg, N. H. Thomas, and M. D. Dyar
- Subjects
chemistry.chemical_classification ,010504 meteorology & atmospheric sciences ,Chemistry ,010401 analytical chemistry ,Salt (chemistry) ,Mineralogy ,chemistry.chemical_element ,Mars Exploration Program ,01 natural sciences ,Chloride ,Sulfur ,0104 chemical sciences ,chemistry.chemical_compound ,Geophysics ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,Martian surface ,Earth and Planetary Sciences (miscellaneous) ,medicine ,Carbonate ,Sulfate ,Spectroscopy ,0105 earth and related environmental sciences ,medicine.drug - Abstract
Ancient environmental conditions on Mars can be probed through the identification of minerals on its surface, including water-deposited salts and cements dispersed in the pore space of sedimentary rocks. Laser-induced breakdown spectroscopy (LIBS) analyses by the Martian rover Curiosity's ChemCam instrument can indicate salts, and ChemCam surveys aid in identifying and selecting sites for further, detailed in situ analyses. We performed laboratory LIBS experiments under simulated Mars conditions with a ChemCam-like instrument on a series of mixtures containing increasing concentrations of salt in a basaltic background to investigate the potential for identifying and quantifying chloride, carbonate, and sulfate salts found only in small amounts, dispersed in bulk rock with ChemCam, rather than concentrated in veins. Data indicate that the presence of emission lines from the basalt matrix limited the number of Cl, C, and S emission lines found to be useful for quantitative analysis; nevertheless, several lines with intensities sensitive to salt concentration were identified. Detection limits for the elements based on individual emission lines ranged from ~20 wt % carbonate (2 wt % C), ~5–30 wt % sulfate (1–8 wt % S), and ~5–10 wt % chloride (3–6 wt % Cl) depending on the basaltic matrix and/or salt cation. Absolute quantification of Cl, C, and S in the samples via univariate analysis depends on the cation-anion pairing in the salt but appears relatively independent of matrices tested, following normalization. These results are promising for tracking relative changes in the salt content of bulk rock on the Martian surface with ChemCam.
- Published
- 2017
36. Improved accuracy in quantitative laser-induced breakdown spectroscopy using sub-models
- Author
-
Scott M. McLennan, Ryan B. Anderson, Bethany L. Ehlmann, M. Darby Dyar, Richard V. Morris, Roger C. Wiens, Samuel M. Clegg, and Jens Frydenvang
- Subjects
Multivariate statistics ,010504 meteorology & atmospheric sciences ,Mean squared error ,010401 analytical chemistry ,Regression analysis ,Mars Exploration Program ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Analytical Chemistry ,Test set ,Partial least squares regression ,Calibration ,Environmental science ,Laser-induced breakdown spectroscopy ,Instrumentation ,Spectroscopy ,0105 earth and related environmental sciences ,Remote sensing - Abstract
Accurate quantitative analysis of diverse geologic materials is one of the primary challenges faced by the laser-induced breakdown spectroscopy (LIBS)-based ChemCam instrument on the Mars Science Laboratory (MSL) rover. The SuperCam instrument on the Mars 2020 rover, as well as other LIBS instruments developed for geochemical analysis on Earth or other planets, will face the same challenge. Consequently, part of the ChemCam science team has focused on the development of improved multivariate analysis calibrations methods. Developing a single regression model capable of accurately determining the composition of very different target materials is difficult because the response of an element's emission lines in LIBS spectra can vary with the concentration of other elements. We demonstrate a conceptually simple “sub-model” method for improving the accuracy of quantitative LIBS analysis of diverse target materials. The method is based on training several regression models on sets of targets with limited composition ranges and then “blending” these “sub-models” into a single final result. Tests of the sub-model method show improvement in test set root mean squared error of prediction (RMSEP) for almost all cases. The sub-model method, using partial least squares (PLS) regression, is being used as part of the current ChemCam quantitative calibration, but the sub-model method is applicable to any multivariate regression method and may yield similar improvements.
- Published
- 2017
37. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications
- Author
-
Ann Ollila, Jérémie Lasue, Marion Nachon, Roger C. Wiens, Samuel M. Clegg, Olivier Forni, Olivier Gasnault, N. Mangold, Nina Lanza, Agnes Cousin, L. Le Deit, Violaine Sautter, P. Y. Meslin, Sylvestre Maurice, Valerie Payre, Cécile Fabre, and W. Rapin
- Subjects
010504 meteorology & atmospheric sciences ,Calibration (statistics) ,Gale crater ,Mineralogy ,Weathering ,Mars Exploration Program ,Alkali metal ,01 natural sciences ,Trace (semiology) ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,Igneous differentiation ,Laser-induced breakdown spectroscopy ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Published
- 2017
38. Advancing the readiness level of LunaLIBS for future exploration of the Moon
- Author
-
Samuel M. Clegg, A. Reyes-Newell, Justin McGlown, and Ann Ollila
- Published
- 2019
39. ChemCam investigation of the John Klein and Cumberland drill holes and tailings, Gale crater, Mars
- Author
-
Horton E. Newsom, Sylvestre Maurice, Olivier Gasnault, P.-Y. Meslin, J. M. Williams, R. Jackson, Luther W. Beegle, D. T. Vaniman, S. Schröder, Agnès Cousin, Roger C. Wiens, and Samuel M. Clegg
- Subjects
musculoskeletal diseases ,Basalt ,010504 meteorology & atmospheric sciences ,Drill ,education ,Geochemistry ,Mars ,Mars Surface ,Drilling ,Sediment ,Astronomy and Astrophysics ,Mars Exploration Program ,equipment and supplies ,01 natural sciences ,Tailings ,Diagenesis ,Space and Planetary Science ,0103 physical sciences ,otorhinolaryngologic diseases ,Experimental Techniques ,Clay minerals ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
The ChemCam instrument on the Mars Science Laboratory rover analyzed the rock surface, drill hole walls, tailings, and unprocessed and sieved dump piles to investigate chemical variations with depth in the first two martian drill holes and possible fractionation or segregation effects of the drilling and sample processing. The drill sites are both in Sheepbed Mudstone, the lowest exposed member of the Yellowknife Bay formation. Yellowknife Bay is composed of detrital basaltic materials in addition to clay minerals and an amorphous component. The drill tailings are a mixture of basaltic sediments and diagenetic material like calcium sulfate veins, while the shots on the drill site surface and walls of the drill holes are closer to those pure end members. The sediment dumped from the sample acquisition, processing, and handling subsystem is of similar composition to the tailings; however, due to the specifics of the drilling process the tailings and dump piles come from different depths within the hole. This allows the ChemCam instrument to analyze samples representing the bulk composition from different depths. On the pre-drill surfaces, the Cumberland site has a greater amount of CaO and evidence for calcium sulfate veins, than the John Klein site. However, John Klein has a greater amount of calcium sulfate veins below the surface, as seen in mapping, drill hole wall analysis, and observations in the drill tailings and dump pile. In addition, the Cumberland site does not have any evidence of variations in bulk composition with depth down the drill hole, while the John Klein site has evidence for a greater amount of CaO (calcium sulfates) in the top portion of the hole compared to the middle section of the hole, where the drill sample was collected.
- Published
- 2016
40. 'Standoff Biofinder' for Fast, Noncontact, Nondestructive, Large-Area Detection of Biological Materials for Planetary Exploration
- Author
-
Patrick J. Gasda, Roger C. Wiens, Samuel M. Clegg, Paul G. Lucey, Christopher P. McKay, M. Nurul Abedin, G. Jeffrey Taylor, Tayro E. Acosta-Maeda, Shiv K. Sharma, Anupam K. Misra, and Luke P. Flynn
- Subjects
Time Factors ,Materials science ,Extraterrestrial Environment ,Planetary protection ,Antarctic Regions ,Planets ,Context (language use) ,Spectrum Analysis, Raman ,01 natural sciences ,Fluorescence ,law.invention ,010309 optics ,Optics ,law ,Exobiology ,0103 physical sciences ,Remote sensing ,Millisecond ,Bacteria ,Fossils ,business.industry ,Lasers ,010401 analytical chemistry ,Laser ,Agricultural and Biological Sciences (miscellaneous) ,Biological materials ,0104 chemical sciences ,Space and Planetary Science ,Equipment Contamination ,Time-resolved spectroscopy ,business ,Luminescence ,Planetary exploration - Abstract
We developed a prototype instrument called the Standoff Biofinder, which can quickly locate biological material in a 500 cm(2) area from a 2 m standoff distance with a detection time of 0.1 s. All biogenic materials give strong fluorescence signals when excited with UV and visible lasers. In addition, the luminescence decay time of biogenic compounds is much shorter (100 ns) than the micro- to millisecond decay time of transition metal ions and rare-earth ions in minerals and rocks. The Standoff Biofinder takes advantage of the short lifetime of biofluorescent materials to obtain real-time fluorescence images that show the locations of biological materials among luminescent minerals in a geological context. The Standoff Biofinder instrument will be useful for locating biological material during future NASA rover, lander, and crewed missions. Additionally, the instrument can be used for nondestructive detection of biological materials in unique samples, such as those obtained by sample return missions from the outer planets and asteroids. The Standoff Biofinder also has the capacity to detect microbes and bacteria on space instruments for planetary protection purposes.Standoff Biofinder-Luminescence-Time-resolved fluorescence-Biofluorescence-Planetary exploration-Planetary protection-Noncontact nondestructive biodetection. Astrobiology 16, 715-729.
- Published
- 2016
41. Experimental and theoretical studies of laser-induced breakdown spectroscopy emission from iron oxide: Studies of atmospheric effects
- Author
-
James Colgan, Samuel M. Clegg, Keri R. Campbell, D. P. Kilcrease, Heather Johns, Rhonda E. McInroy, James E. Barefield, and Elizabeth J. Judge
- Subjects
Work (thermodynamics) ,010401 analytical chemistry ,Iron oxide ,Analytical chemistry ,02 engineering and technology ,Plasma ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Analytical Chemistry ,chemistry.chemical_compound ,chemistry ,Laser-induced breakdown spectroscopy ,Emission spectrum ,0210 nano-technology ,Spectroscopy ,Instrumentation - Abstract
We report on a comprehensive study of the emission spectra from laser-induced breakdown spectroscopy (LIBS) measurements on iron oxide. Measurements have been made of the emission from Fe 2 O 3 under atmospheres of air, He, and Ar, and at different atmospheric pressures. The effect of varying the time delay of the measurement is also explored. Theoretical calculations were performed to analyze the plasma conditions and find that a reasonably consistent picture of the change in plasma temperature and density for different atmospheric conditions can be reached. We also investigate the sensitivity of the OI 777 nm emission lines to the plasma conditions, something that has not been explored in detail in the previous work. Finally, we also show that LIBS can be used to differentiate between FeO and Fe 2 O 3 by examining the ratio of the intensities of selected Fe emission to O emission lines.
- Published
- 2016
42. Theoretical and experimental investigation of matrix effects observed in emission spectra of binary mixtures of sodium and copper and magnesium and copper pressed powders
- Author
-
Elizabeth J. Judge, James E. Barefield, James Colgan, Keri R. Campbell, David P. Kilcrease, Samuel M. Clegg, and Heather Johns
- Subjects
education.field_of_study ,Electron density ,010504 meteorology & atmospheric sciences ,Magnesium ,Sodium ,010401 analytical chemistry ,Population ,Inorganic chemistry ,Analytical chemistry ,chemistry.chemical_element ,Plasma ,01 natural sciences ,Copper ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Analytical Chemistry ,Ion ,chemistry ,Emission spectrum ,education ,Instrumentation ,Spectroscopy ,0105 earth and related environmental sciences - Abstract
The goal of this work was to investigate the matrix effect of copper in the presence of sodium or magnesium in a laser-induced plasma. Varying amounts of copper were mixed and pressed with a constant amount of sodium or magnesium and a stearic acid binder. Experimental parameters such as delay time and laser pulse energy were varied to observe trends in the emission intensity of the Na I 588.99 nm, Na I 589.59 nm, Mg I 277.98 nm, and Mg II 279.08 nm lines. Experimental observations are supported by theoretical calculations and modeling that show the Na I and Mg I emission intensities increase in the presence of copper while the Mg II line intensity decreases due to the increase in electron density (Ne) of the plasma when copper is added. The increase in electron density changes the population of the atomic species within the plasma through an increase in recombination of ions with electrons, shifting the populations toward more neutral states, providing an explanation for the observed matrix effects found in these, and many previous, studies.
- Published
- 2016
43. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars
- Author
-
John P. Grotzinger, David T. Vaniman, Javier Martin-Torres, Fred Calef, Jeffrey R. Johnson, Kenneth S. Edgett, Cécile Fabre, Stéphane Le Mouélic, Jérémie Lasue, Susanne Schröder, Raymond E. Arvidson, Violaine Sautter, Ann Ollila, John L. Campbell, Jens Frydenvang, Jeff A. Berger, Nicolas Mangold, Allan H. Treiman, Craig Hardgrove, María Paz Zorzano, James F. Bell, Douglas W. Ming, Scott VanBommel, Agnes Cousin, Horton E. Newsom, Woodward W. Fischer, Nathan T. Bridges, Marie J. McBride, Olivier Forni, Michael C. Malin, Roger C. Wiens, Samuel M. Clegg, Richard V. Morris, Martin R. Fisk, Sylvestre Maurice, Scott M. McLennan, Ralf Gellert, Nina Lanza, Benton C. Clark, Diana L. Blaney, Melissa S. Rice, Lucy M. Thompson, Joel A. Hurowitz, and Keian R. Hardy
- Subjects
010504 meteorology & atmospheric sciences ,Evaporite ,Mineralogy ,chemistry.chemical_element ,Manganese ,Mars Exploration Program ,01 natural sciences ,Atmosphere ,Geophysics ,Planetary science ,Deposition (aerosol physics) ,chemistry ,13. Climate action ,0103 physical sciences ,General Earth and Planetary Sciences ,Trace metal ,010303 astronomy & astrophysics ,Earth (classical element) ,Geology ,0105 earth and related environmental sciences - Abstract
The Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. Based on the strong association between Mn-oxide deposition and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.
- Published
- 2016
44. Analysis of geological materials containing uranium using laser-induced breakdown spectroscopy
- Author
-
Heather Johns, Elizabeth J. Judge, James Colgan, Roger C. Wiens, Samuel M. Clegg, Ronald K. Martinez, David P. Kilcrease, Keri R. Campbell, Rhonda E. McInroy, and James E. Barefield
- Subjects
Detection limit ,Spectrometer ,Chemistry ,010401 analytical chemistry ,Atomic emission spectroscopy ,Analytical chemistry ,Mineralogy ,chemistry.chemical_element ,02 engineering and technology ,Uranium ,021001 nanoscience & nanotechnology ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Analytical Chemistry ,Matrix (mathematics) ,Emission spectrum ,Laser-induced breakdown spectroscopy ,Spectral resolution ,0210 nano-technology ,Instrumentation ,Spectroscopy - Abstract
Laser induced breakdown spectroscopy (LIBS) is a rapid atomic emission spectroscopy technique that can be configured for a variety of applications including space, forensics, and industry. LIBS can also be configured for stand-off distances or in-situ, under vacuum, high pressure, atmospheric or different gas environments, and with different resolving-power spectrometers. The detection of uranium in a complex geological matrix under different measurement schemes is explored in this paper. Although many investigations have been completed in an attempt to detect and quantify uranium in different matrices at in-situ and standoff distances, this work detects and quantifies uranium in a complex matrix under Martian and ambient air conditions. Investigation of uranium detection using a low resolving-power LIBS system at stand-off distances (1.6 m) is also reported. The results are compared to an in-situ LIBS system with medium resolving power and under ambient air conditions. Uranium has many thousands of emission lines in the 200–800 nm spectral region. In the presence of other matrix elements and at lower concentrations, the limit of detection of uranium is significantly reduced. The two measurement methods (low and high resolving-power spectrometers) are compared for limit of detection (LOD). Of the twenty-one potential diagnostic uranium emission lines, seven (409, 424, 434, 435, 436, 591, and 682 nm) have been used to determine the LOD for pitchblende in a dunite matrix using the ChemCam test bed LIBS system. The LOD values determined for uranium transitions in air are 409.013 nm (24,700 ppm), 424.167 nm (23,780 ppm), 434.169 nm (24,390 ppm), 435.574 nm (35,880 ppm), 436.205 nm (19,340 ppm), 591.539 nm (47,310 ppm), and 682.692 nm (18,580 ppm). The corresponding LOD values determined for uranium transitions in 7 Torr CO 2 are 424.167 nm (25,760 ppm), 434.169 nm (40,800 ppm), 436.205 nm (32,050 ppm), 591.539 nm (15,340 ppm), and 682.692 nm (29,080 ppm). The LOD values determine for uranium emission lines using the medium resolving power (10,000 λ/Δλ) LIBS system for the dunite matrix in air are 409.013 nm (6120 ppm), 424.167 nm (5356 ppm), 434.169 nm (5693 ppm), 435.574 nm (6329 ppm), 436.205 nm (2142 ppm), and 682.692 nm (10,741 ppm). The corresponding LOD values determined for uranium transitions in a SiO 2 matrix are 409.013 nm (272 ppm), 424.167 nm (268 ppm), 434.169 nm (402 ppm), 435.574 nm (1067 ppm), 436.205 nm (482 ppm), and 682.692 nm (720 ppm). The impact of spectral resolution, atmospheric conditions, matrix elements, and measurement distances on LOD is discussed. The measurements will assist one in selecting the proper system components based upon the application and the required analytical performance.
- Published
- 2016
45. Application of distance correction to ChemCam laser-induced breakdown spectroscopy measurements
- Author
-
Gilles Berger, M. D. Dyar, Eric Lewin, Roger C. Wiens, Samuel M. Clegg, T. Boucher, Agnes Cousin, Jérémie Lasue, Sylvestre Maurice, A. Mezzacappa, Olivier Forni, Noureddine Melikechi, Nina Lanza, R. L. Tokar, S. Bender, Olivier Gasnault, and Cécile Fabre
- Subjects
Reproducibility ,010504 meteorology & atmospheric sciences ,Chemistry ,010401 analytical chemistry ,Mars Exploration Program ,01 natural sciences ,Atomic and Molecular Physics, and Optics ,Spectral line ,0104 chemical sciences ,Analytical Chemistry ,Computational physics ,Mars rover ,Laser-induced breakdown spectroscopy ,Emission spectrum ,Spectroscopy ,Instrumentation ,Radiant intensity ,0105 earth and related environmental sciences ,Remote sensing - Abstract
Laser-induced breakdown spectroscopy (LIBS) provides chemical information from atomic, ionic, and molecular emissions from which geochemical composition can be deciphered. Analysis of LIBS spectra in cases where targets are observed at different distances, as is the case for the ChemCam instrument on the Mars rover Curiosity, which performs analyses at distances between 2 and 7.4 m is not a simple task. In our previous work we showed that spectral distance correction based on a proxy spectroscopic standard created from first-shot dust observations on Mars targets ameliorates the distance bias in multivariate-based elemental-composition predictions of laboratory data. In this work, we correct an expanded set of neutral and ionic spectral emissions for distance bias in the ChemCam data set. By using and testing different selection criteria to generate multiple proxy standards, we find a correction that minimizes the difference in spectral intensity measured at two different distances and increases spectral reproducibility. When the quantitative performance of distance correction is assessed, there is improvement for SiO2, Al2O3, CaO, FeOT, Na2O, K2O, that is, for most of the major rock forming elements, and for the total major-element weight percent predicted. However, for MgO the method does not provide improvements while for TiO2, it yields inconsistent results. In addition, we have observed that many emission lines do not behave consistently with distance, evidenced from laboratory analogue measurements and ChemCam data. This limits the effectiveness of the method.
- Published
- 2016
46. The potassic sedimentary rocks in Gale Crater, Mars, as seen by ChemCam on boardCuriosity
- Author
-
Horton E. Newsom, Jérémie Lasue, K. M. Stack, Diana L. Blaney, Dawn Y. Sumner, Martin R. Fisk, William Rapin, S. Le Mouélic, Valerie Payre, Gilles Dromart, Scott M. McLennan, P. Y. Meslin, Allan H. Treiman, Olivier Gasnault, Ryan B. Anderson, Nina Lanza, Cécile Fabre, N. Mangold, Olivier Forni, Melissa S. Rice, S. Maurice, John P. Grotzinger, Susanne Schröder, Sanjeev Gupta, Violaine Sautter, Agnès Cousin, Roger C. Wiens, Samuel M. Clegg, L. Le Deit, and Marion Nachon
- Subjects
Basalt ,Martian ,Olivine ,010504 meteorology & atmospheric sciences ,Outcrop ,Geochemistry ,Crust ,Mars Exploration Program ,engineering.material ,01 natural sciences ,On board ,Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,engineering ,Sedimentary rock ,010303 astronomy & astrophysics ,Geology ,0105 earth and related environmental sciences - Abstract
Key Points: • Mean K2O abundance in sedimentary rocks >5 times higher than that of the average Martian crust • Presence of alkali feldspars and K-phyllosilicates in basaltic sedimentary rocks along the traverse • The K-bearing minerals likely have a detrital origin
- Published
- 2016
47. Observation of > 5 wt % zinc at the Kimberley outcrop, Gale crater, Mars
- Author
-
Sylvestre Maurice, N. Mangold, Jérémie Lasue, L. Le Deit, Olivier Forni, S. Le Mouélic, William Rapin, Valerie Payre, Agnès Cousin, Roger C. Wiens, Marion Nachon, Samuel M. Clegg, Jeff A. Berger, Jeffrey R. Johnson, Cécile Fabre, Walter Goetz, Olivier Gasnault, K. M. Stack, Diana L. Blaney, Nina Lanza, and Dawn Y. Sumner
- Subjects
Supergene (geology) ,010504 meteorology & atmospheric sciences ,Hypogene ,chemistry.chemical_element ,Mineralogy ,Mars Exploration Program ,Zinc ,engineering.material ,01 natural sciences ,Geophysics ,Sphalerite ,chemistry ,13. Climate action ,Space and Planetary Science ,Geochemistry and Petrology ,Sauconite ,0103 physical sciences ,Earth and Planetary Sciences (miscellaneous) ,engineering ,Siliciclastic ,010303 astronomy & astrophysics ,Geology ,Gossan ,0105 earth and related environmental sciences - Abstract
Zinc-enriched targets have been detected at the Kimberley formation, Gale crater, Mars, using the Chemistry Camera (ChemCam) instrument. The Zn content is analyzed with a univariate calibration based on the 481.2 nm emission line. The limit of quantification for ZnO is 3 wt % (at 95% confidence level) and 1 wt % (at 68% confidence level). The limit of detection is shown to be around 0.5 wt %. As of sol 950, 12 targets on Mars present high ZnO content ranging from 1.0 wt % to 8.4 wt % (Yarrada, sol 628). Those Zn-enriched targets are almost entirely located at the Dillinger member of the Kimberley formation, where high Mn and alkali contents were also detected, probably in different phases. Zn enrichment does not depend on the textures of the rocks (coarse-grained sandstones, pebbly conglomerates, and resistant fins). The lack of sulfur enhancement suggests that Zn is not present in the sphalerite phase. Zn appears somewhat correlated with Na2O and the ChemCam hydration index, suggesting that it could be in an amorphous clay phase (such as sauconite). On Earth, such an enrichment would be consistent with a supergene alteration of a sphalerite gossan cap in a primary siliciclastic bedrock or a possible hypogene nonsulfide zinc deposition where Zn, Fe, Mn would have been transported in a reduced sulfur-poor fluid and precipitated rapidly in the form of oxides.
- Published
- 2016
48. NOx speciation from copper dissolution in nitric acid/water solutions using FTIR spectroscopy
- Author
-
Samuel M. Clegg, Robert P. Currier, Ronald K. Martinez, Enrique R. Batista, Kristy L. Nowak-Lovato, Rebecca K. Carlson, Marianne P. Wilkerson, Aaron S. Anderson, and Jacquelyn M. Dorhout
- Subjects
010304 chemical physics ,Infrared ,media_common.quotation_subject ,chemistry.chemical_element ,010402 general chemistry ,01 natural sciences ,Copper ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,chemistry.chemical_compound ,Speciation ,chemistry ,Nitric acid ,0103 physical sciences ,Physical and Theoretical Chemistry ,Fourier transform infrared spectroscopy ,Spectroscopy ,Dissolution ,NOx ,Nuclear chemistry ,media_common - Abstract
The speciation of NO2, NO, and N2O gases formed from the dissolution of copper in nitric acid is measured and characterized using Fourier-transform infrared (FTIR) spectroscopy. This study describes analysis of the gas phase species formed and ingrowths of their concentrations as a function of time. Acid concentrations range from 14 to 4 M and the NO2, NO, and N2O are analyzed using FTIR between 1585 and 2209 wavenumbers. The concentrations of the gases range from 0 to 230 ppm and change over time and as a function of acid concentration.
- Published
- 2020
49. Characterization of nitrogen-containing species produced from nitric acid/water systems
- Author
-
Robert P. Currier, Jacquelyn M. Dorhout, Ronald K. Martinez, Marianne P. Wilkerson, Rebecca K. Carlson, Aaron S. Anderson, Samuel M. Clegg, Kristy L. Nowak-Lovato, Enrique R. Batista, and Zhenghua Li
- Subjects
010304 chemical physics ,Infrared ,media_common.quotation_subject ,Inorganic chemistry ,chemistry.chemical_element ,010402 general chemistry ,01 natural sciences ,Nitrogen ,Atomic and Molecular Physics, and Optics ,0104 chemical sciences ,Catalysis ,chemistry.chemical_compound ,Speciation ,chemistry ,Nitric acid ,0103 physical sciences ,Physical and Theoretical Chemistry ,Fourier transform infrared spectroscopy ,Spectroscopy ,NOx ,media_common - Abstract
The speciation of gases formed in the vapor phase above HNO3-H2O mixtures at room temperature is measured and characterized using Fourier-transform infrared (FTIR) spectroscopy. Although studies of speciation of compounds have been performed in the solution phase, this study focuses solely on the gas phase species formed over HNO3-H2O mixtures and their concentrations as a function of time. The nitric acid concentration in the experiments range from 14 to 4 M. The NO2, NO, and N2O (collectively known at NOx) gases are measured by FTIR at 1585, 1850, and 2208 wavenumbers, respectively. The concentrations of these NOx species ranges from 0 to 3 ppm and change over time as a function of acid concentration. Two purities of commercially available HNO3 are used to prepare the HNO3-H2O mixtures. An analysis of thermodynamic data shows that the formation of NOx gases without the presence of a catalyst are thermodynamically favorable.
- Published
- 2020
50. Partitioning of oxygen isotopes during the aqueous solvation of nitric acid
- Author
-
Robert P. Currier, Julianna Fessenden, Robert F. Williams, Samuel M. Clegg, Toti E. Larson, and G. Perkins
- Subjects
Quantitative Biology::Biomolecules ,Aqueous solution ,010405 organic chemistry ,Stable isotope ratio ,General Chemical Engineering ,Inorganic chemistry ,Solvation ,General Physics and Astronomy ,02 engineering and technology ,01 natural sciences ,0104 chemical sciences ,law.invention ,chemistry.chemical_compound ,Isotope fractionation ,020401 chemical engineering ,chemistry ,Nitric acid ,law ,Azeotrope ,Physics::Chemical Physics ,0204 chemical engineering ,Physical and Theoretical Chemistry ,Isotope-ratio mass spectrometry ,Distillation ,Physics::Atmospheric and Oceanic Physics - Abstract
Mixtures of water and inorganic acids show differences in isotopic composition between the vapor and liquid phases, reportedly even at an azeotrope. A recent reactive azeotropy analysis rationalized this by allowing for differences in stable isotope composition between bound solvation complexes and the bulk liquid. The objective of this study is to determine whether or not significant differences in stable isotope composition exist between bound solvation complexes involving inorganic acids and the bulk solution. Rayleigh distillation of a solution of nitric acid and water was conducted. During the distillation, it was expected that bulk water would be vaporized first while (bound) water involved with hydrating the acid would be vaporized at later times along with the acid. Samples of both distillate and residual liquid were collected over time intervals and analyzed to determine oxygen and nitrogen stable isotope composition using isotope ratio mass spectrometry. As a reference, comparative samples were collected from Rayleigh distillation of water alone. The measured oxygen fractionation factors suggest that the acid is preferentially hydrated with 18O-enriched water, compared to the unbound, or bulk, water. Preferential coordination of 18O-enriched water with the dissolved acid is consistent with heavier water forming stronger bonds relative to light water. The results, although obtained under non-equilibrum conditions, suggest that isotope-dependent partitioning between bulk solvent and dissolved complexes may prove necessary in developing accurate descriptions of isotope fractionation during vapor-liquid equilibrium.
- Published
- 2020
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.