1. Amphiphilic ligand exchange reaction-induced supercapacitor electrodes with high volumetric and scalable areal capacitances
- Author
-
Yongmin Ko, Sanghyuk Cheong, Jinhan Cho, Donghyeon Nam, and Yeongbeom Heo
- Subjects
Supercapacitor ,Horizontal scan rate ,Materials science ,General Physics and Astronomy ,02 engineering and technology ,Surfaces and Interfaces ,General Chemistry ,Carbon nanotube ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Condensed Matter Physics ,01 natural sciences ,Capacitance ,0104 chemical sciences ,Surfaces, Coatings and Films ,law.invention ,Indium tin oxide ,PEDOT:PSS ,Chemical engineering ,law ,Electrode ,0210 nano-technology ,Ternary operation - Abstract
We introduce high-performance supercapacitor electrodes with ternary components prepared from consecutive amphiphilic ligand-exchange-based layer-by-layer (LbL) assembly among amine-functionalized multi-walled carbon nanotubes (NH2-MWCNTs) in alcohol, oleic acid-stabilized Fe3O4 nanoparticles (OA-Fe3O4 NPs) in toluene, and semiconducting polymers (PEDOT:PSS) in water. The periodic insertion of semiconducting polymers within the (OA-Fe3O4 NP/NH2-MWCNT)n multilayer-coated indium tin oxide (ITO) electrode enhanced the volumetric and areal capacitances up to 408 ± 4 F cm−3 and 8.79 ± 0.06 mF cm−2 at 5 mV s−1, respectively, allowing excellent cycling stability (98.8% of the initial capacitance after 5000 cycles) and good rate capability. These values were higher than those of the OA-Fe3O4 NP/NH2-MWCNT multilayered electrode without semiconducting polymer linkers (volumetric capacitance ∼241 ± 4 F cm−3 and areal capacitance ∼1.95 ± 0.03 mF cm−2) at the same scan rate. Furthermore, when the asymmetric supercapacitor cells (ASCs) were prepared using OA-Fe3O4 NP- and OA-MnO NP-based ternary component electrodes, they displayed high volumetric energy (0.36 mW h cm−3) and power densities (820 mW cm−3).
- Published
- 2018