1. Automatic detection of large-scale flux ropes and their geoeffectiveness with a machine learning approach
- Author
-
Pal, Sanchita, Santos, Luiz F. G. dos, Weiss, Andreas J., Narock, Thomas, Narock, Ayris, Nieves-Chinchilla, Teresa, Jian, Lan K., and Good, Simon W.
- Subjects
Astrophysics - Solar and Stellar Astrophysics - Abstract
Detecting large-scale flux ropes (FRs) embedded in interplanetary coronal mass ejections (ICMEs) and assessing their geoeffectiveness are essential since they can drive severe space weather. At 1 au, these FRs have an average duration of 1 day. Their most common magnetic features are large, smoothly rotating magnetic fields. Their manual detection has become a relatively common practice over decades, although visual detection can be time-consuming and subject to observer bias. Our study proposes a pipeline that utilizes two supervised binary-classification machine learning (ML) models trained with solar wind magnetic properties to automatically detect large-scale FRs and additionally determine their geoeffectiveness. The first model is used to generate a list of auto-detected FRs. Using the properties of southward magnetic field the second model determines the geoeffectiveness of FRs. Our method identifies 88.6\% and 80\% large-scale ICMEs (duration $\ge 1$ day) observed at 1 au by Wind and Sun Earth Connection Coronal and Heliospheric Investigation (STEREO) mission, respectively. While testing with a continuous solar wind data obtained from Wind, our pipeline detected 56 of the 64 large-scale ICMEs during 2008 - 2014 period (recall= 0.875) but many false positives (precision= 0.56) as we do not take into account any additional solar wind properties than the magnetic properties. We found an accuracy of 0.88 when estimating the geoeffectiveness of the auto-detected FRs using our method. Thus, in space weather now-casting and forecasting at L1 or any planetary missions, our pipeline can be utilized to offer a first-order detection of large-scale FRs and geoeffectiveness., Comment: 19 pages, 6 figures
- Published
- 2024
- Full Text
- View/download PDF