4 results on '"Scheibling E"'
Search Results
2. Network medicine-based epistasis detection in complex diseases: ready for quantum computing.
- Author
-
Hoffmann M, Poschenrieder JM, Incudini M, Baier S, Fritz A, Maier A, Hartung M, Hoffmann C, Trummer N, Adamowicz K, Picciani M, Scheibling E, Harl MV, Lesch I, Frey H, Kayser S, Wissenberg P, Schwartz L, Hafner L, Acharya A, Hackl L, Grabert G, Lee SG, Cho G, Cloward ME, Jankowski J, Lee HK, Tsoy O, Wenke N, Pedersen AG, Bønnelykke K, Mandarino A, Melograna F, Schulz L, Climente-González H, Wilhelm M, Iapichino L, Wienbrandt L, Ellinghaus D, Van Steen K, Grossi M, Furth PA, Hennighausen L, Di Pierro A, Baumbach J, Kacprowski T, List M, and Blumenthal DB
- Subjects
- Humans, Quantum Theory, Multifactorial Inheritance genetics, Disease genetics, Computational Biology methods, Algorithms, Genetic Predisposition to Disease, Epistasis, Genetic, Polymorphism, Single Nucleotide
- Abstract
Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs) (1-3). Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL (network-based epistasis detection via local search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies., (© The Author(s) 2024. Published by Oxford University Press on behalf of Nucleic Acids Research.)
- Published
- 2024
- Full Text
- View/download PDF
3. Network medicine-based epistasis detection in complex diseases: ready for quantum computing.
- Author
-
Hoffmann M, Poschenrieder JM, Incudini M, Baier S, Fitz A, Maier A, Hartung M, Hoffmann C, Trummer N, Adamowicz K, Picciani M, Scheibling E, Harl MV, Lesch I, Frey H, Kayser S, Wissenberg P, Schwartz L, Hafner L, Acharya A, Hackl L, Grabert G, Lee SG, Cho G, Cloward M, Jankowski J, Lee HK, Tsoy O, Wenke N, Pedersen AG, Bønnelykke K, Mandarino A, Melograna F, Schulz L, Climente-González H, Wilhelm M, Iapichino L, Wienbrandt L, Ellinghaus D, Van Steen K, Grossi M, Furth PA, Hennighausen L, Di Pierro A, Baumbach J, Kacprowski T, List M, and Blumenthal DB
- Abstract
Most heritable diseases are polygenic. To comprehend the underlying genetic architecture, it is crucial to discover the clinically relevant epistatic interactions (EIs) between genomic single nucleotide polymorphisms (SNPs)
1-3 . Existing statistical computational methods for EI detection are mostly limited to pairs of SNPs due to the combinatorial explosion of higher-order EIs. With NeEDL ( ne twork-based e pistasis d etection via l ocal search), we leverage network medicine to inform the selection of EIs that are an order of magnitude more statistically significant compared to existing tools and consist, on average, of five SNPs. We further show that this computationally demanding task can be substantially accelerated once quantum computing hardware becomes available. We apply NeEDL to eight different diseases and discover genes (affected by EIs of SNPs) that are partly known to affect the disease, additionally, these results are reproducible across independent cohorts. EIs for these eight diseases can be interactively explored in the Epistasis Disease Atlas (https://epistasis-disease-atlas.com). In summary, NeEDL is the first application that demonstrates the potential of seamlessly integrated quantum computing techniques to accelerate biomedical research. Our network medicine approach detects higher-order EIs with unprecedented statistical and biological evidence, yielding unique insights into polygenic diseases and providing a basis for the development of improved risk scores and combination therapies., Competing Interests: Competing interests During the course of the project, HCG became a full-time employee of Novo Nordisk Ltd.- Published
- 2023
- Full Text
- View/download PDF
4. On the limits of graph neural networks for the early diagnosis of Alzheimer's disease.
- Author
-
Hernández-Lorenzo L, Hoffmann M, Scheibling E, List M, Matías-Guiu JA, and Ayala JL
- Subjects
- Humans, Neural Networks, Computer, Early Diagnosis, Apolipoproteins E, Alzheimer Disease diagnosis, Alzheimer Disease genetics, Neurodegenerative Diseases
- Abstract
Alzheimer's disease (AD) is a neurodegenerative disease whose molecular mechanisms are activated several years before cognitive symptoms appear. Genotype-based prediction of the phenotype is thus a key challenge for the early diagnosis of AD. Machine learning techniques that have been proposed to address this challenge do not consider known biological interactions between the genes used as input features, thus neglecting important information about the disease mechanisms at play. To mitigate this, we first extracted AD subnetworks from several protein-protein interaction (PPI) databases and labeled these with genotype information (number of missense variants) to make them patient-specific. Next, we trained Graph Neural Networks (GNNs) on the patient-specific networks for phenotype prediction. We tested different PPI databases and compared the performance of the GNN models to baseline models using classical machine learning techniques, as well as randomized networks and input datasets. The overall results showed that GNNs could not outperform a baseline predictor only using the APOE gene, suggesting that missense variants are not sufficient to explain disease risk beyond the APOE status. Nevertheless, our results show that GNNs outperformed other machine learning techniques and that protein-protein interactions lead to superior results compared to randomized networks. These findings highlight that gene interactions are a valuable source of information in predicting disease status., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.