1. From Entanglement to Bonds: Chemical Bonding Concepts from Quantum Information Theory
- Author
-
Ding, Lexin, Matito, Eduard, and Schilling, Christian
- Subjects
Quantum Physics ,Physics - Chemical Physics - Abstract
Chemical bonding is a nonlocal phenomenon that binds atoms into molecules. Its ubiquitous presence in chemistry, however, stands in stark contrast to its ambiguous definition and the lack of a universal perspective for its understanding. In this work, we rationalize and characterize chemical bonding through the lens of an equally nonlocal concept from quantum information, the orbital entanglement. We introduce maximally entangled atomic orbitals (MEAOs) whose entanglement pattern is shown to recover both Lewis (two-center) and beyond-Lewis (multicenter) structures, with multipartite entanglement serving as a comprehensive index of bond strength. Our unifying framework for bonding analyses is effective not only for equilibrium geometries but also for transition states in chemical reactions and complex phenomena such as aromaticity. It also has the potential to elevate the Hilbert space atomic partitioning to match the prevalent real-space partitioning in the theory of atoms in molecules. Accordingly, our work opens new pathways for understanding fuzzy chemical concepts using rigorous, quantitative descriptors from quantum information., Comment: 9+7 pages, 5+5 figures
- Published
- 2025