Johnson, David, McComb, Peter, Beamsley, Brett, de Lange, Willem P., Healy, Terry R., Schimel, Alexandre Carmelo Gregory, Johnson, David, McComb, Peter, Beamsley, Brett, de Lange, Willem P., Healy, Terry R., and Schimel, Alexandre Carmelo Gregory
In the last decade, following the growing concern for the conservation of marine ecosystems, a wide range of approaches has been developed to achieve the identification, classification and mapping of seabed types and of benthic habitats. These approaches, commonly grouped under the denominations of Benthic Habitat Mapping or Acoustic Seabed Classification, exploit the latest scientific and engineering advancements for the exploration of the bottom of the ocean, particularly in underwater acoustics. Among all acoustic seabed-mapping systems available for this purpose, a growing interest has recently developed for Multibeam Echosounders (MBES). This interest is mainly the result of the multiplicity of these systems’ outputs (that is, bathymetry, backscatter mosaic, angular response and water-column data), which allows for multiple approaches to seabed or habitat classification and mapping. While this diversity of mapping approaches and this multiplicity of MBES data products contribute to an increasing quality of the charting of the marine environment, they also unfortunately delay the future standardization of mapping methods, which is required for their effective integration in marine environment management strategies. As a preliminary step towards such standardization, there is a need for generalized efforts of comparison of systems, data products, and mapping approaches, in order to assess the most effective ones given mapping objectives and environment conditions. The main goal of this thesis is to contribute to this effort through the development and implementation of tools and methods for the comparison of categorical seabed or habitat maps, with a specific focus on maps obtained from up-to-date methodologies of classification of MBES backscatter data. This goal is attained through the achievement of specific objectives treated sequentially. First, the need for comparison is justified through a review of the diversity characterizing the fields of Benthic Habita